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Abstract: Dengue Hemorrhagic Fever (DHF) is a tropical disease that always
attacks densely populated urban communities. Some factors, such as environment,
climate and mobility, have contributed to the spread of the disease. The Aedes
aegypti mosquito is an agent of dengue virus in humans, and by inhibiting its life
cycle it can reduce the spread of the dengue disease. Therefore, it is necessary to
involve the dynamics of mosquito's life cycle in a model in order to obtain a reli-
able risk map for intervention. The aim of this study is to develop a stochastic
convolution susceptible, infective, recovered-susceptible, infective (SIR-SI) mod-
el describing the dynamics of the relationship between humans and Aedes aegypti
mosquitoes. This model involves temporal trend and uncertainty factors for both
local and global heterogeneity. Bayesian approach was applied for the parameter
estimation of the model. It has an intrinsic recurrent logic for Bayesian analysis by
including prior distributions. We developed a numerical computation and carry
out simulations in WinBUGS, an open-source software package to perform Mar-
kov chain Monte Carlo (MCMC) method for Bayesian models, for the complex
systems of convolution SIR-SI model. We considered the monthly DHF data of
the 2016–2018 periods from 10 districts in Kendari-Indonesia for the application
as well as the validation of the developed model. The estimated parameters were
updated through to Bayesian MCMC. The parameter estimation process reached
convergence (or fulfilled the Markov chain properties) after 50000 burn-in and
10000 iterations. The deviance was obtained at 453.7, which is smaller compared
to those in previous models. The districts of Wua-Wua and Kadia were consistent
as high-risk areas of DHF. These two districts were considered to have a signifi-
cant contribution to the fluctuation of DHF cases.
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1 Introduction

Epidemic diseases are fatal infectious diseases, for example measles, dengue fever, malaria, HIV/AIDS,
tuberculosis, influenza, etc. To reduce the threat of virus spread, various strategies can be used using
epidemic models. Many studies have been applied to the investigation of infectious diseases, including
nonlinear differential equation models to describe nonlinear incidence rates and relative risk analysis [1–
4]. Epidemic cases have played an important role as one of the causes of poverty, misery, and death for
humanity for centuries. In recent years, statistical models and their computations have been able to
explain more formal epidemic studies. Several types of epidemic models using various techniques have
been proposed such as the susceptible,infected,removed (SIR) model to understand the evolution of
complex infectious diseases to predict the impact of public health programs [5].

Dengue Hemorrhagic Fever (DHF) is a tropical disease. It has become a plague and always attacks
densely populated urban communities every year. The transmission process is influenced by several
factors, such as environment, climate change, and uncertainty or mobility of people, e.g., [5,6]. The agent
of DHF is Aedes aegypti mosquitoes to humans through bites. The Aedes aegypti mosquitoes carry the
dengue virus to humans. A common symptom of dengue virus infection is fever. It is often ignored and it
results in a fatal end.

One way to reduce the DHF spread is to break the Aedes aegypti mosquitoes life cycle. However, it
requires detailed calculation as its population fluctuates depending on the environmental characteristics
that cannot be controlled. Besides, characteristic differences of locations lead to the complexity in
controlling the spread of dengue disease. These characteristics of location are subject to change and
affected by seasons. The mobility of people also plays an important role in DHF cases. Therefore, a
comprehensive model that accommodates all conditions mentioned above is needed. Several statistical
studies have been undertaken to analyze DHF cases spatially and temporally. For example, the Bayesian
zero-inflated spatial-temporal Poisson model by [7–10] to analyze the relative risk of dengue cases. Those
models accommodated the environmental ecological factors and two random effects (local and global
heterogeneity) to represent the actual mobility of people. However, the studies did not consider the cross-
infection dynamics between humans and the Aedes aegypti mosquitoes. The dynamics of the cross-
infection relationship is not reflected in the modeling.

Other studies employed stochastic processes to represent the cross-infection relationship between
humans and mosquitoes, e.g., [11,12]. A more recent study is the work of [13] which is describing the
stochastic process of cross-infection between humans and mosquitoes. This research used a global
random effect, but it cannot represent the pattern of overall distribution. Humans as hosts are divided into
three classes, namely susceptible, infected, and recovered hosts. Meanwhile, mosquitoes as vector are
divided into two classes, namely susceptible and infective vectors. The model is known as a stochastic
SIR-SI model. Our research develops a stochastic SIR-SI model that accommodates two local and global
random effects by involving the temporal trends as well as the spatial-temporal term. This is called the
Bayesian stochastic convolution SIR-SI model with the temporal trend. Detailed descriptions of the local
and global heterogeneity components can be seen in [8]. This model is expected to be used in public
health protection by quickly detecting and responding to outbreaks of DHF cases, which poses a growing
threat to human health.

The Bayesian approach is especially suitable for epidemic modeling contexts, such as this stochastic
SIR-SI model with the temporal trend, because the model parameters have a certain distribution across
the population. To date, virtually all of the literature on Bayesian statistical inference uses numerical
techniques such as Markov Chain Monte Carlo (MCMC) for epidemic modeling [14]. Thus, in this
model, the Bayesian paradigm is used, which can overcome a more complex model. In this article, we
develop the model [9] by adding the uncertainty factor and the temporal trend. We compiled two models,

1176 IASC, 2022, vol.34, no.2



the first model is containing global uncertainty and the second model accommodates local and global
uncertainty as well as temporal trend. The performances of these two models are using monthly DHF
data in 10 districts of Kendari City-Indonesia for the 2016–2018 periods.

The structure of this paper is as follows. In Section 2, we present a schema of cross-infection model. In
Section 3, we present several types of models using the Bayesian stochastic SIR-SI model. To obtain
estimated parameters of model. In Section 4, we illustrate some simulation experiments and determine the
best model using monthly data for 10 districts of Kendari City-Indonesia, for the 2016–2018 periods.

2 The Cross Infection

The cross-infection diagram of the DHF spread between host and vector is based on the disease status.
The host is divided into three classes, namely susceptible host or S hð Þ, infected host or I hð Þ, and recovered host
or R hð Þ. On the other hand, the vector is divided into two classes namely susceptible vector or S vð Þ and infected
vector or I vð Þ. Based on the classification of individuals, a SIR-SI scheme is obtained as in Fig. 1. It is the
basis to construct the stochastic SIR-SI model into ordinary differential equations.

S hð Þ
s;t : Total number of susceptible humans at time t and region s

I hð Þ
s;t : Total number of infective humans at time t and region s

R hð Þ
s;t : Total number of recovered humans at time t and region s

S vð Þ
s;t : Total number of susceptible mosquitoes at time t and region s

I vð Þ
s;t : Total number of infective mosquitoes at time t and region s

l hð Þ: Birth and death rates of humans per time (assumed equal)

l vð Þ: Birth and death rates of mosquitoes per time (assumed equal)

c hð Þ: Rate at which humans recover per time

b: Biting rate per time

m: Number of alternative hosts available as the blood source

b hð Þ: The transmission probability from mosquitoes to humans

b vð Þ: The transmission probability from humans to mosquitoes

N hð Þ
s;t : The human population size for the study time t and region s

N vð Þ
s;t : The mosquito population size for the study time t and region s

Figure 1: The SIR-SI schema (adopted from [13])
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The stochastic SIR-SI model is generally used to study DHF transmission [13]. All individuals in the
population are equally probable to have contact with other individuals [4,15]. In real conditions, the
contact patterns between people are more heterogeneous. This results in heterogeneous patterns of disease
spread. Consequently, a stochastic model can be used to determine the pattern of infection transmission
by assuming that the number of individuals is considered a random variable and has a certain distribution
[16]. Stochastic models can easily be examined from a Bayesian point of view, for example [17–19].

In this paper, for s = 1, 2,…, S = study regions, and t = 1, 2,…, T = time periods, each notation showed
in Fig. 1 is defined as follows.

The susceptible, infected and recovered host at time t and region s are represented by S hð Þ
s;t ; I

hð Þ
s;t ; R

hð Þ
s;t for

t ¼ 1; 2; . . . ;T and s ¼ 1; 2; . . . ; S, respectively. Whereas, the notations for the total of susceptible and

infective vectors at time t and region s are represented with S vð Þ
s;t and I vð Þ

s;t for t ¼ 1; 2; . . . ; T and

s ¼ 1; 2; . . . ; S, respectively. Furthermore, the parametersb hð Þ and b vð Þ represent the transmission
probability from vector to host and from host to vector, respectively. The l hð Þand l vð Þ are the host birth
and death rates as well as the vector death rate, respectively. The parameter b is the biting rate per time
and c hð Þ is the host recovered rate. The parameter m represents the number of alternative hosts available

as the blood source. N hð Þ
s;t and N vð Þ

s;t are the host and vector population sizes at t ¼ 1; 2; . . . ; T and region
s ¼ 1; 2; . . . ; S, respectively. The deterministic SIR-SI model for the dynamics of cross-infection
dengue disease transmission is compiled from Fig. 1 based on the differential equation rules, see for
example, [20–22].

dSðhÞs;t

dt
¼ lðhÞN ðhÞ

s;t � lðhÞSðhÞs;t � bðhÞbI ðvÞs;t

N ðhÞ
s;t þ m

SðhÞs;t

dI ðhÞs;t

dt
¼ bðhÞbI ðvÞs;t

N ðhÞ
s;t þ m

SðhÞs;t � lðhÞI ðhÞs;t � cðhÞI ðhÞs;t

dRðhÞ
s;t

dt
¼ cðhÞI ðhÞs;t � lðhÞRðhÞ

s;t

dSðvÞs;t

dt
¼ lðvÞN ðvÞ

s;t � lðvÞSðvÞs;t �
bðvÞbI ðhÞs;t

N ðvÞ
s;t þ m

SðvÞs;t

dI ðvÞs;t

dt
¼ bðvÞbI ðhÞs;t

N ðvÞ
s;t þ m

SðvÞs;t � lðvÞI ðvÞs;t

(1)

The system of ordinary differential Eq. (1) has the same form as that used by [13]. The system is used to

provide a link to the stochastic process. In this study, N hð Þ
s;t and N vð Þ

s;t are assumed to be constant for all time t

where S hð Þ
s;t þ I hð Þ

s;t þ R hð Þ
s;t ¼ N hð Þ

s;t and S vð Þ
s;t þ I vð Þ

s;t ¼ N vð Þ
s;t :

3 Temporal Trend Convolution Stochastic SIR-SI Model

The stochastic SIR-SI model represents the DHF epidemic spread, e.g., [13,23]. This model is useful for
analyzing and mapping the DHF risk cases spatially and temporally, by accommodating the random global

heterogeneity ðV hð Þ
s;t Þ. The stochastic process of SIR-SI (2) is derived from the ordinary differential Eq. (1), as

follows.
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SðhÞs;tþ1 ¼ lðhÞN ðhÞ
s;t þ 1� lðhÞ

� �
SðhÞs;t � AðhÞ

s;t ; A
ðhÞ
s;t � Poisson kðhÞs;t

� �

kðhÞs;t ¼ exp bðvÞ0 þ V ðhÞ
s;t

� � bðhÞbI ðmÞs;t

N ðhÞ
s;t þ m

SðhÞs;t

I ðhÞs;tþ1 ¼ 1� lðhÞ
� �

I ðhÞs;t þ AðhÞ
s;t � BðhÞ

s;t ; B
ðhÞ
s;t ¼ cðhÞI ðhÞs;t

RðhÞ
s;tþ1 ¼ 1� lðhÞ

� �
RðhÞ
s;t þ CðhÞ

s;t ; C
ðhÞ
s;t ¼ lðhÞI ðhÞs;t

SðvÞs;tþ1 ¼ 1� lðvÞ
� �

SðvÞs;t þ lðvÞN ðvÞ
s;t � bðvÞbI ðhÞs;t

N ðvÞ
s;t þ m

SðvÞs;t

I ðvÞs;tþ1 ¼ 1� lðvÞ
� �

I ðvÞs;t þ bðvÞbI ðhÞs;t

N ðvÞ
s;t þ m

SðvÞs;t

(2)

The structure of the system (2) contains the global heterogeneity random effect V hð Þ
s;t

� �
and the new

infective host A hð Þ
s;t

� �
is assumed to be Poisson independently distributed. The parameter b vð Þ

0 is a constant

for describing the overall rates of the host population process. Meanwhile, the DHF disease is not only
transmitted among regions, but also within regions due to the dynamic mobility of people, see for
example [24–33]. The DHF cases are influenced also temporarily fluctuates due to locations. Accordingly,

the model requires additional components of local random heterogeneity effect U hð Þ
s;t

� �
and temporal trend

component aþ ’sð Þ. Therefore, Eq. (2) can be modified by adding components of the local heterogeneity
and temporal trends, as shown in Eq. (3).

SðhÞs;tþ1 ¼ lðhÞN ðhÞ
s;t þ 1� lðhÞ

� �
SðhÞs;t � AðhÞ

s;t ; A
ðhÞ
s;t � Poisson kðhÞs;t

� �

kðhÞs;t ¼ exp bðvÞ0 þ V ðhÞ
s;t þ U ðhÞ

s;t þ aþ ’sð Þtz
� � bðhÞbI ðmÞs;t

N ðhÞ
s;t þ m

SðhÞs;t

I ðhÞs;tþ1 ¼ 1� lðhÞ
� �

I ðhÞs;t þ AðhÞ
s;t � BðhÞ

s;t ; B
ðhÞ
s;t ¼ cðhÞI ðhÞs;t

RðhÞ
s;tþ1 ¼ 1� lðhÞ

� �
RðhÞ
s;t þ CðhÞ

s;t ; CðhÞ
s;t ¼ lðhÞI ðhÞs;t

SðvÞs;tþ1 ¼ 1� lðvÞ
� �

SðvÞs;t þ lðvÞN ðvÞ
s;t � bðvÞbI ðhÞs;t

N ðvÞ
s;t þ m

SðvÞs;t

I ðvÞs;tþ1 ¼ 1� lðvÞ
� �

I ðvÞs;t þ bðvÞbI ðhÞs;t

N ðvÞ
s;t þ m

SðvÞs;t

(3)

The parameters in (2) and (3) are estimated using the MCMC Bayesian approach. The Bayesian
paradigm using a distribution approach is powerful in overcoming complex modeling. In Bayesian
modeling, the observation data is assumed to have a certain distribution. The parameters have uncertainty
properties and, then, require prior distribution [7]. The process for obtaining posterior distribution
requires the likelihood function and the prior distribution. Several types of prior distributions are known
in Bayesian modeling, such as conjugate prior, non-conjugate prior, informative prior, and non-
informative prior [23].
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We use hyper prior derived from the prior distribution family to obtain precise parameter estimates of
models (2) and (3). The prior of host birth l hð Þ� �

, vector death rate l vð Þ� �
, transmission probability

b vð Þ
� �

, the host recovered rate c hð Þ� �
, and local heterogeneity random effect U hð Þ

s;t

� �
are using a normal

zero-mean distribution with a gamma distribution as its hyper prior, respectively. The parameter b vð Þ
0

is using flat distribution because there is no initial information about the overall rates of the host

population process. For the global heterogeneity random effect V hð Þ
s;t

� �
is to use normal conditional auto

regressive (CAR),

V ðhÞ
s;t sVj �N q

PS
j2eðsÞ

Vj

D
;

1

sVD

0
BBB@

1
CCCA

the q is a spatial dependency parameter (�1 � q � 1), D is the total neighbor of all locations, and eðsÞ is the
number of neighboring locations of s. The a and ’s components that represent temporal trend are using
normal distribution and normal CAR, respectively.

4 Application for Relative Risk Estimation

4.1 Data Set

This section demonstrates the numerical process to obtain estimated parameters of the model (2) and
model (3) as described in Section 3. Both models are applied to the same data set of the monthly
10 districts DHF cases of Kendari, Indonesia, for the 2016–2018 periods. The ten districts are Mandonga,
Baruga, Puuwatu, Kadia, Wua-Wua, Poasia, Abeli, Kambu, Kendari, and Kendari Barat. The population
density of Kendari is around 1,364 people per km2. The highest rainfall is around 3000 mm3–3030 mm3

and it usually occurs in early January to April. The data set of rainfall was collected from BMKG
Kendari, Indonesia. The highest rainfall usually supports the proliferation of Aedes aegypti mosquitoes.

4.2 Numerical Experiments

The parameters of models are estimated and analyzed using open-source software WinBUGS (See
Fig. 2). It is a statistical package designed to carry out a wide variety of Bayesian models [7]. The
package provides some models along with their corresponding deviance for a given data set. The best
model is that with the smallest deviance and it is used to analyze the relative and mapping risk of DHF
cases. The results of relative risk estimation based on the best model are presented in graphs to show
overall DHF relative risks for each district in Kendari. Dengue mosquito data is estimated according to

new infective mosquito data I ðvÞs;0 ¼ 0:0557� SðhÞs;0 and the mosquito population is estimated based on

propagation N ðvÞ
s;0 ¼ 8:689� N ðhÞ

s;0 [13].

The parameter estimation was updated throughout iterations via Bayesian MCMC Gibbs Sampler based
on its full conditional distribution. Initial values of

lðhÞð0Þ;lðmÞð0Þ;bðhÞð0Þ; bðvÞð0Þ; cðhÞð0Þ;U ðhÞð0Þ
s;t ;V ðhÞð0Þ

s;t ; að0Þ; ’ð0Þ
s ¼ 0

are based on our experience. The parameter estimation processes of the models achieved convergence in
50000 burn-in 10000 iterations and fulfilled the Markov Chain properties [9]. This is confirmed by the
sample of the history, density, and auto correlation plots. The iteration process showed that the estimated
parameters lied in the same zone. In another hand, iteration n + 1 is equivalent to iteration n (see Fig. 3).
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Figure 2: Flowchart for estimation parameter of the models
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In Fig. 3, we show the numerical process of estimating parameters, for example bðhÞand bðvÞ. In the
Bayesian paradigm, the convergence achieved is shown from the historical, density, and auto correlation
plots. It can be seen that the historical process has been in the same zone, this means that convergence
has been reached. It is also confirmed from the auto correlation plot, which is 1 in lag-1 and decreases to
zero in lag-2, lag-3, …, lag-k. Furthermore, it is also shown from the normal density plot. The summary
of the estimation parameter for the models is presented in Tab. 1.

betaH

iteration
50000 55000 60000

 -0.005

    0.0

  0.005

   0.01 betaV sample: 10001

-4.0E-4 -2.0E-4     0.0

    0.0

5.00E+3

1.00E+4 betaH

lag
0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

History Density Auto correlation 

(a) Sample plot for parameter ( )hβ

betaV

iteration
50000 55000 60000

    0.0

betaH sample: 10001

 -0.005     0.0   0.005

    0.0

  100.0

  200.0

  300.0

  400.0 betaV

lag
0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

History Density Auto correlation

(b) Sample plot for parameter ( )vβ

Figure 3: Samples of parameter estimation of the model (3), 50000 burn-in 10000 iterations

Table 1: Summary of estimation parameters for the models, 50000 burn-in 10000 iterations

Node Mean SD MC error 2.5% Median 97.5% Sample

Model (2)

betaH0 1.077 0.454 0.027 0.257 1.046 2.094 10000

betaH 0.5 0.526 1.18 0.412 0.48 0.512 10000

betaV 0.0026 0.0012 0.0024 0.417 0.0026 0.00494 10000

muH 0.004 0.002 0.025 0.43 0.004 0.02 10000

muV 0.515 0.035 0.003 0.46 0.54 0.59 10000

deviance 463.4 3.35 0.22 458.5 462.9 470.9 10000

Model (3)

betaH0 0.0021 0.306 0.01 0.002 0.002 0.003 10000

betaH 0.003 0.001 0.00007 0.0002 0.0025 0.0047 10000

betaV 0.0024 0.0011 0.098 0.078 0.0025 0.0042 10000

muH 0.0102 0.0015 0.055 0.0073 0.0102 0.013 10000

muV 0.0039 0.0016 0.052 0.801 0.0039 0.0069 10000

deviance 453.7 3.08 0.025 421.8 453.9 452.9 10000
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The stochastic model (3) has smaller deviance 453.7 and, therefore, this model is the best one. Thus, this
model (3) was used to analyze the DHF mapping relative risk. The DHF cases in Kendari City was
fluctuating from January to May each year. During this period, the DHF cases showed that Kadia and
Wua-Wua districts were consistent as the highest locations of DHF cases. Other locations around these
two districts, such as Mandonga, Puuwatu, Baruga, and Kendari Barat are fluctuating temporally.
Therefore, these two districts need special treatment to reduce the DHF outbreak in Kendari City. The
monthly dynamics of DHF risk in Kendari city, for the January–May period each year.The dynamics of
DHF risk visualization in Kendari City are described in the mapping in Fig. 4

Figure 4: Relative risk DHF mapping using the model (3)

IASC, 2022, vol.34, no.2 1183



5 Results and Discussion

We have developed a stochastic convolution SIR-SI model of the dynamic relationship between humans
and Aedes aegypti mosquitoes. This model involves temporal trend factors due to the temporal dynamics of
DHF cases. The model also accommodates the uncertainty factors, which are the local and global
heterogeneity. The Bayesian approach becomes the choice for parameter estimations of the models. We
have demonstrated the models using DHF monthly data for 10 districts of Kendari-Indonesia for the
2016–2018 periods. The parameter estimations of the models were updated via Bayesian MCMC Gibbs
Sampler based on its full conditional distribution. The parameter estimation processes of the models
achieved convergences after 50000 burn-in 10000 iterations and fulfilled the Markov Chain properties.
Our model is considered as the best one because of its smallest deviance 453.7. The results of our model
show that Wua-Wua and Kadia districts were consistent as high-risk areas of DHF. In these two districts,
the DHF cases exceeded the common fluctuations in other districts, such as Mandonga, Puuwatu, Baruga,
and Kendari Barat.

We have used numerical processes to determine the convolution SIR-SI model solution. The
convolution SIR-SI model is an ordinary nonlinear differential equation that cannot be solved
analytically. Therefore, it was transformed into a discrete form using the Euler method. This method
effectively converts the continuous-time of the convolution SIR-SI model into discrete-time. The
numerical process has been able to provide useful information for the stochastic process of the nonlinear
convolution SIR-SI system. This process has provided information about SIR and SI populations to
estimate relative risk. This analysis contributes to the prevention and control of infectious diseases.

In general, closed-form expressions for the posterior distributions are often intractable for these complex
models and Markov Chain Monte Carlo (MCMC) algorithms can be used for inference, although this
approach can be computationally demanding. However, a new technique based on the integrated nested
Laplace approximation (INLA). Most results show that INLA is much more computationally efficient
than the other and the precision parameter estimates in both methods are equivalent. For future studies,
we will consider the dynamics of ecological factors to formulate several spatio temporal hierarchical
models either separately or simultaneously in a small area with INLA.
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