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Abstract: This study proposes an intelligent remedial learning framework to
improve students’ learning effectiveness. Basically, this framework combines a
genetic algorithm with a concept map in order to select a set of remedial learning
units according to students’ weaknesses of learning concepts. In the proposed
algorithm, a concept map serves to represent the knowledge structure of learning
concepts, and a genetic algorithm performs an iteratively evolutionary procedure
in order to establish remedial learning materials based on students’ understanding
of these learning concepts. This study also conducted simulations in order to vali-
date the proposed framework using artificially generated data sets, and proble-
matic issues regarding generalizing the special case of the proposed framework
are further discussed. The proposed algorithm can be generally-employed in e-
learning, providing a framework for generating remedial learning materials for
all kinds of learning fields.

Keywords: Genetic algorithms; concept maps; remedial learning materials;
intelligent learning systems

1 Introduction

Originally presented by Novak et al. concept maps are utilized to explain the meaningful transitions
(relationships) between and among different learning concepts [1]. Basically there are three components
in a concept map: vertices, arrowed edges, and linking labels, where a vertex represents a concept, an
edge connects two vertices, and a label nearby a particular edge indicates the relationship between the
pair of concepts connected by this particular edge. For example, Fig. 1 shows an original concept map
consisting of six concepts: horse, animal, run, jump, leg, and motion. The arrowed edges and the labels in
this figure indicate the relationships between and among these concepts.

This study further utilizes a concept map to describe the knowledge structure of learning topics (i.e., the
relationships among concepts) in this concept map. Therefore, in this study, a vertex is utilized to represent a
particular concept, while an edge connecting two adjacent concepts (vertices) indicates the conceptual
relationship between the two connected concepts. An edge can be further marked with an arrow to
indicate the relationship’s direction between the pair of vertices linked by this particular edge. In graphic
theory, a graphic is called a directed graphic if all of its edges are arrowed. Moreover, an arrowed edge
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can be marked with a weight to indicate the level of the relationship for this edge. It is important to note that
in this study, the value of each weight in a concept map is between 0 and 1.

A graphic is called a weighted directed graphic if all of its edges are arrowed and marked with weights.
In graphic theory, a weighted directed graphic is also called a “weighted directed acyclic graphic” if it
contains no topological loops. In a weighted directed acyclic graphic, it is impossible to find a
consistently and successively directed sequence of edges, starting from a vertex and finally looping back
to this particular vertex again. An adjacency matrix is utilized to represent the connectivity relationships
between and among the vertices and edges in a weighted directed graphic. In this study, a weighted
directed acyclic graphic is utilized as a concept map in order to represent the knowledge structure of a
series of learning concepts, and an adjacency matrix is used to indicate the directions and relationship
levels of these concepts in the concept map.

In e-learning, the best ways to establish learners’ concepts by providing personalized learning materials
would be a worthwhile area of study. More and more e-learning platforms are now adopting intelligent
tutoring in order to guide learners to study personalized learning materials according to their individual
learning levels or situations. Artificial Intelligence (AI)-based methods might be good ways to generate
intelligent learning systems according to learners’ knowledge backgrounds. Popular AI approaches
employed to build intelligent learning systems include neural networks, Genetic Algorithms (GAs), fuzzy
systems, and data mining techniques.

Based on Darwin’s Theory of Evolution, GAs are among the more widely-used AI methods for finding
solutions via a generation-based iterative process. Genes and chromosomes are the fundamental elements in
GAmanipulations. A gene is a basic unit in GAs; and a chromosome is constituted by a sequence of genes. A
chromosome is called a “binary chromosome” if all of its underlying genes have binary values. For instance,
a binary chromosome “0110” will be constituted by a sequence of binary genes ‘0’, ‘1’, ‘1’, and ‘0’.
Moreover, a fitness function is an evaluation function used to measure the performance of a GA. The
goal of GAs is to find optimal or sub-optimal solutions (best or sub-best fitness values) through an
iterative process from generation to generation.

There are three basic manipulations of GAs: crossover, selection, and mutation. In a crossover
manipulation, each chromosome from parent generations is divided into several parts. These parts are
then recombined with the divided parts from other parents, forming new chromosomes for possible child
generations. Three most common crossover methods are utilized in GAs: single-point, two-point, and
uniform crossovers.

In a selection manipulation, a generation with a better fitness value has a higher probability of being
chosen for the next iteration. It is important to note that a generation with the best fitness value is not
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Figure 1: An illustrative example of original concept maps
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guaranteed to be chosen for the next iteration. Two well-known selection methods are often utilized in GAs:
roulette-wheel and tournament selections. In a roulette-wheel selection, the probability that a child generation
will be chosen into the next iteration is in proportion to its fitness value. In a tournament selection, one first
randomly picks up m child generations from a candidate pool of all possible child generations, and then
selects the n best child generations from the m ones for the next iteration. Moreover, a mutation
manipulation randomly chooses a gene and changes the value of the chosen gene. A binary gene’s binary
value is changed from 0 to 1 or from 1 to 0 when a mutation manipulation is performed.

Lin et al. have proposed a GA-based method to generate remedial materials according to students’
weakness of ten object-oriented program concepts of Java. However, the work by Lin et al. did not use a
concept map to organize the relationships among these learning concepts [2]. Lin et al. have also
proposed a concept-transition method to conduct the transitions of the concepts in a concept map
according to students’ test results of these concepts [3]. However, there still exists a research gap that
how we use a more intelligent method to generate personalized remedial materials for individual students
to overcome their learning weakness, from a well-organized concept map which consists of a set of
highly related learning concepts. Therefore, in this study, based on a GA and a concept map, we propose
a framework to generate intelligent remedial learning materials according to students’ weaknesses of
concepts.

The problem statement of this study is conceptually described as follows.

For a learning domain, given (i) a well-organized concept map consisting of a set of relevant learning
concepts of this learning domain, and (ii) a set of question-based remedial learning units, conduct an
intelligent method to generate personalized remedial learning materials to overcome the weakness of the
learning concepts for individual students from these question-based remedial learning units, according to
test results of these students. The formal and mathematical problem statement will be discussed in
Section 4.3.

To fulfill the problem statement, this study proposes an algorithm called a “Genetic Algorithm With
Concept Map” (GAWCM) algorithm. The proposed algorithm uses a GA to generate personalized
remedial learning materials according to learners’ weaknesses of the concepts in a concept map. It is
basically a framework for generating remedial learning materials for all kinds of learning fields, and can
be generally employed in e-learning. The flowchart of the GAWCM is shown in Fig. 2.

2 Related Work

Since the remedial learning materials generated by the proposed GAWCM algorithm are quiz-based
learning units, this section will first focus on the studies related to test sheet generation. Then, we discuss
how to generate concept maps with optimization methods, and how to establish personalized learning
paths according to difference learning objects. Finally, research on the use of concept maps to construct
knowledge structures will be investigated.

In test sheet generation, several approaches have been proposed in order to optimize the quality of test
sheets. For example, Hwang et al. [4] have presented a mixed integer programming-based technique for
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Figure 2: The flowchart of the proposed algorithm
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generating test sheets for multiple learning concepts. Their work has demonstrated two heuristic methods, the
feasible time first method and the concept lower-bound first method, in order to produce test sheets with sub-
optimal solutions [4]. In addition, a parallel test sheet using the Tabu approach has been proposed for
generating parallel test sheets from very large test item banks for national tests, using a multi-criteria
assessment [5]. Moreover, Moreno et al. have used a GA and a multiple-agent technique to establish a
test sheet generation system in which three factors have been considered: difficulty level, knowledge
points, and teaching requirements [6].

Fuzzy cognitive maps, originally proposed by Kosko, are a tool to describe relevant concepts in a graph-
like diagram where a vertex represents a single concept, and an edge linking two vertices (concepts) indicates
the causal relationships between the two concepts [7]. Furthermore, weights labeled nearby their
corresponding edges are used to indicate the influence degree of the causal relationships of these edges.
Several studies have utilized different approaches to optimize the weights in a fuzzy cognitive map such
as genetic algorithms [8–10] and decomposed parallel ant colony algorithm with gradient descent local
search [11]. In addition, Gunel et al. have proposed a concept map mining method combining a neural
network and some evolutionary algorithms to detect learning concepts from text-based documents [12].
The work by Gunel et al. automatically extracted learning concepts from educational documents without
domain-relevant knowledge, and outperformed traditional concept detection algorithms.

An earlier research project has employed a similarity-based approach to search for suitable online
curricula for a trigonometry course using a GA, where eight multiple intelligences were employed as
measurements [13]. Huang et al. have utilized a hybrid method combining a GA and case-based
reasoning to produce customized learning sequences for Java learners [14]. In this work done by Huang
et al. the GA served to generate suitable learning paths according to the difficulties and degrees of
relevance between and among the learning materials; the case-based reasoning was utilized to evaluate
learners’ learning performance. Based on students’ different knowledge levels, Hovakimyan et al. have
implemented a GA-based scenario system to choose teaching resources according to keywords and
searching time [15]. This scenario system could be suitable for e-learning and/or web-based learning,
selecting appropriate learning resources via a set of keywords within a certain period of time. Moreover,
based on learners’ knowledge structures, Chen has employed an enhanced path-finder network to
generate remedial learning paths in an introductory Java course [16]. In Chen’s work, personalized
diagnosis and a remedial learning system were employed to detect learners’ misconceptions and to
recommend learning paths. In addition, a heuristic method has been proposed for finding the optimal
paths in a context-aware ubiquitous learning environment for a primary school’s ecology course,
according to the relationships among different learning objectors [17]. A GA-based technique to
determine learning sequences has been proposed according to the wrong answers on a test, where the
difficulty of courses and the continuity of concepts were considered [18]. Based on a set of learning
objects in a repository, a navigation system has been established for an ecosystem course, decreasing the
learners’ cognitive load [19]. Bina et al. have proposed an immune algorithm to generate adaptive
learning paths for learners based on a concept map [20]. In this immune algorithm, learning objects were
grouped according to these learning concepts in the concept map, and the optimal learning path for a
particular learner was formed by selecting a learning object for each concept.

Many of previous studies have used concept maps to illustrate the knowledge structures of learning
topics in different learning fields. For example, Shallcross has presented case studies using a concept map
for oil platform safety education [21]. Svanström et al. have applied concept maps and statistical methods
to sustainable development education [22]. In computer science education, concept maps have been
utilized in teaching computer programming [23], software engineering [24], and floating-point standards
[25]. Moreover, concept maps could also be adopted as teaching tools for physical problem solving [26],
business processes [27], sports [28], English learning [29], and testing theories [30]. To further reduce
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learners’ cognitive load, an interface called Airmap has been introduced to automatically manage concept
layout [31]. Concept maps could also be employed to correct knowledge ontologies based on two
measures, closeness and similarity, making measurements more precise and powerful [32].

3 Concept Map

Fig. 3 shows an illustrative example of a concept map with four learning concepts. It is a weighted
directed acyclic graphic with 4 vertices. Each vertex in the figure represents one of the four learning
concepts with a one-to-one correspondence. In this figure, each edge connecting two adjacent vertices is
marked with a weight which represents the level of the relationship between the two connected vertices.
Each edge in this concept map is an arrowed edge which indicates the direction of two connected vertices
linked by it. Consider two vertices, Vertex i and Vertex j, connected by a directed edge marked with
an arrow pointing from Vertex i (arrow’s tail) to Vertex j (arrow’s head). Vertex i is called a predecessor
of Vertex j. In contrast, Vertex j is called a successor of Vertex i. Thus, for example, in Fig. 3,
Vertex 1 and Vertex 2 are connected by an arrow extending from Vertex 1 to Vertex 2. Vertex 1 is the
predecessor of Vertex 2, and Vertex 2 is the successor of Vertex 1.

In a concept map, if Vertex i is a predecessor of Vertex j, it means that Concept i (Ci) is a prerequisite
concept of Concept j (Cj), and the weight on the edge indicates the influence level of Concept i on Concept j.
For a weight wij connecting Concept i to Concept j, this can be considered as an “influence coefficient” from
Concept i to Concept j. A higher value of wij means a higher level of influence that Concept i has on Concept
j. For instance, In Fig. 3, Concept 3 has three prerequisite concepts: Concepts 1, 2, and 4, with three
“influence coefficients": w13 = 0.6, w23 = 0.5, and w43 = 0.3, respectively. This implies that the influence of
Concept 1 on Concept 3 is greater than that of Concept 2 on Concept 3, since w13 >w23. Similarly, the
influence of Concept 2 on Concept 3 is greater than that of Concept 4 on Concept 3 since w23 >w43; the
influence of Concept 1 on Concept 3 is greater than that of Concept 4 on Concept 3 since w13 >w43.

Definition 1: Adjacency Matrix A

An adjacency matrix A for a concept map is a matrix indicating the levels of relationships between and
among the vertices (concepts) in this concept map. Each element in the matrix represents a weight (the level
of the relationship) from a source vertex (arrow’s tail) to a destination vertex (arrow’s head). The diagonal
elements in an adjacency matrix are all assigned a value of 0. If two vertices are not connected by an edge, the
value of this weight is assigned a value of 0. The following matrix is the adjacency matrix associated with the
concept map shown in Fig. 3.

Concept 1

(C1)

Concept 4

(C4)

Concept 2

(C2)

Concept 3

(C3)

0.2 (w12)

0.1
(w14)

0.5 
(w23)

0.4
(w24)

0.6
(w13)

0.3 (w43)

Figure 3: An illustrative example of concept maps used in this study
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SourceVertex

C1 C2 C3 C4

A ¼ Dest: Vertex

C1

C2

C3

C4

0:0 0:0 0:0 0:0

0:2 0:0 0:0 0:0

0:6

0:1

0:5

0:4

0:0

0:0

0:3

0:0

2
6664

3
7775

Definition 2: Transition Matrix T

A “transition matrix” T for a concept map is defined as follows:

T ¼ Aþ I (1)

where A is the adjacent matrix of the concept map, and I is an identity matrix whose diagonal elements are 1,
and 0 elsewhere. Then by Eq. (1), the transition matrix T for the concept map shown in Fig. 3 is

T ¼
1:0 0:0 0:0 0:0
0:2 1:0 0:0 0:0
0:6
0:1

0:5
0:4

1:0
0:0

0:3
1:0

2
64

3
75

Definition 3: Concept Vector~p

In a concept map, a “concept vector”~p is a vector consisting of all concepts in the concept map, which is
of the form

~p ¼
p1
p2
..
.

pn

2
6664

3
7775

where n is the number of concepts in the concept map.

Definition 4: Cumulative Concept Vector~q

For a concept map, a “cumulative concept vector”~q is defined as follows

~q ¼
q1
q2
..
.

qn

2
6664

3
7775

where n is the number of concepts in the concept map.~q is then calculated by

~q ¼ T�~p (2)

For example, consider the concept map shown in Fig. 3 again. By Eq. (2),~q is

~q ¼
q1
q2
q3
q4

2
64

3
75 (3)

where
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q1 ¼ p1

q2 ¼ 0:2� p1 þ p2

q3 ¼ 0:6� p1 þ 0:5� p2 þ p3 þ 0:3� p4

q4 ¼ 0:1� p1 þ 0:4� p2 þ p4

As mentioned earlier, wij can be considered as the influence level of Concept i on Concept j. The ith

element (qi) in cumulative concept vector ~q is the summation of the ith concept (Concept i) itself (with
weight = 1) and all of its prerequisite concepts, multiplied by the corresponding weights (influence
coefficients). For example, the 3rd element in Eq. (3) is

q3 ¼ 0:6� p1 þ 0:5� p2 þ p3 þ 0:3� p4 (4)

Here, then, q3 is the accumulated value of Concept 3 (p3) itself with a weight (influence coefficient) of 1,
Concept 1 (p1) with a weight (influence coefficient) of 0.6, Concept 2 (p2) with a weight (influence
coefficient) of 0.5, and Concept 4 (p4) with a weight (influence coefficient) of 0.3. As mentioned above,
the structure of a concept map can be considered as the structure of the prerequisite relationships between
and among the concepts in this concept map. If a student has a misconception about concept 3, the main
reason will be that he or she is not proficient in Concept 3 (p3) itself. Therefore on the right hand side of
Eq. (4), p3 is multiplied by 1. Another possible cause of any misconceptions about Concept 3 may be that
the student is not proficient in the prerequisite concepts of Concept 3 (i.e., Concepts 1, 2, and 4).
Therefore on the right hand side of Eq. (4), p1, p2, and p4 are multiplied by the influence coefficients
(weights) of 0.6, 0.5, and 0.3, respectively.

4 Genetic Algorithm

This section discusses the design of the GAwhich is based on [2]. We first explain the structure of the
chromosome and the genes of the GA, and then define a weakness vector and a remedial vector based on a
concept map. Finally, we describe the procedure of computing fitness values.

4.1 Chromosome and Genes

In this study, a single chromosome (binary string) has been utilized to formulate the problem. Each
binary character (bit) in the chromosome represents a gene, and is associated with a remedial learning
unit in a repository. If the value of a gene is 1, it means that the remedial learning unit associated with
this particular gene is chosen. On the other hand, if the value of a gene is ‘0’, it indicates that the
remedial learning unit associated with this gene is not chosen. For example, consider a repository
consisting of 100 question-based remedial learning units, marked from Q1 to Q100. One can use a single
chromosome to represent this repository. The number of binary characters in this chromosome is 100,
with a one-to-one correspondence to these 100 remedial learning units. The conceptual structure of this
chromosome is shown in Fig. 4, where the binary characters marked with 1 are the questions selected as
remedial learning units (e.g., Q2, Q5, and Q98), while those marked with 0 are the ones not selected (e.g.,
Q1, Q3, Q4, Q99, and Q100).

Q1 Q2 Q3 Q4 Q5 Q98 Q99 Q100

0 1 0 0 1 1 0 0

Figure 4: Conceptual structure of a chromosome
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4.2 Weakness Vector and Remedial Vector

Assume that there are n concepts in a concept map. A question is designed to cover multiple concepts
(from at least 1 concept to at most n concepts). Consider a question set S, say QS, having m questions. The
“concept coverage matrix” CQS for QS is defined as follows [2].

CQS ¼
c11 c12 � � � c1m
c21 c22 � � � c2m
..
.

cn1

..

.

cn2

. .
.

� � �
..
.

cnm

2
6664

3
7775
n�m

(5)

where cij is the concept coverage of Concept i in Question j, and 0 ≤ cij ≤ 1. In Eq. (5), the sum of the concept
coverages for each question is normalized to 1, i.e.,

Xn
i¼1

cij ¼ 1 for j ¼ 1; 2; 3; . . . ; m (6)

For example, consider a concept map having 4 concepts (C1 to C4), and a question set QS having
7 questions. Suppose that the concept coverage for the 7 questions is shown in Tab. 1.

The concept coverage matrix CQS for QS is given by

CQS ¼
0:6 0:3 0:0 0:2 0:8 0:0 0:5
0:4
0:0
0:0

0:0
0:2
0:5

1:0 0:3 0:0 0:0 0:0
0:0 0:4 0:0 0:7 0:5
0:0 0:1 0:2 0:3 0:0

2
64

3
75

Now suppose that a particular student takes a test and receives a score. Two sets are defined for
calculating the concept weakness for this particular student. They are:

QT: the set of all the questions on the test.

QC: the set of all the questions which have been answered correctly on the test.

In addition, two cumulative concept coverage matrices, U and V, associated with QT and QC, are defined
by the following matrix manipulation formulas:

U ¼ T � CQT (7)

V ¼ T � CQC (8)

Table 1: Concept coverage example

Concept coverage Question number

1 2 3 4 5 6 7

C1 0.6 0.3 0.0 0.2 0.8 0.0 0.5

C2 0.4 0.0 1.0 0.3 0.0 0.0 0.0

C3 0.0 0.2 0.0 0.4 0.0 0.7 0.5

C4 0.0 0.5 0.0 0.1 0.2 0.3 0.0
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The “un-normalized weakness” for Concept i is defined by the following formula [2].

~ki ¼ 1�
PmQC

j¼1 VijPmQT
j¼1 Uij

(9)

where
~ki = the un-normalized weakness for Concept i

Uij = the element in the ith row and jth column in U

mQC = the number of elements in QC.

Vij = the element in the ith row and jth column in V

mQT = the number of elements in QT

The “normalized weakness” for Concept i is calculated by the following equation [2].

ki ¼
~kiPn
i¼1

~ki
(10)

where

ki = the normalized weakness for Concept i
~ki = the un-normalized weakness for Concept i

n = the number of concepts in the test

Definition 5: Weakness Vector~k

Consider a concept map having n concepts. A “weakness vector”~k is defined as follows.

~k ¼
k1
k2
..
.

kn

2
6664

3
7775 (11)

where k1, k2, …, kn are the normalized weaknesses for Concepts 1, 2, …, n, respectively.

Assume that QR is the set of questions in remedial learning materials. The “normalized remedial
coverage” for Concept i is obtained by the following formula [2].

ri ¼
PmQR

j¼1 cQR
ij

mQR

(12)

where

ri = normalized remedial coverage for Concept i

cQR
ij = the element in the ith row and jth column in the concept coverage matrix of QR (i.e., CQR , refer to

Eq. (5)).

mQR = number of elements in QR.
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Definition 6: Remedial Vector

Consider a concept map having n concepts. A “remedial vector”~r is defined as follows.

~r ¼
r1
r2
..
.

rn

2
6664

3
7775 (13)

where r1, r2, …, rn are the normalized remedial coverages for Concepts 1, 2, …, n, respectively.

4.3 Fitness Function

The main goal of the GAWCM algorithm is to generate optimal remedial learning materials such that the
gap between the learning weaknesses of learners and the concepts covered by the remedial materials is
minimal.

Definition 7: Gap Vector

A “gap vector”~g is defined as follows [2]:

~g ¼ j~k �~rj (14)

where
~k = the weakness vector (defined in Eq. (11))

~r = the remedial vector (defined in Eq. (13))

|·| = an absolute value operation

The fitness function is given by the following formula [2].

fitness ¼
Xn
i¼1

gi (15)

where

gi: the i
th element in ~g (defined in Eq. (14)).

n: the number of concepts.

The goal of the GAWCM algorithm is to minimize the fitness function, and the procedure of computing a
fitness value is described as follows.

Step 1: Use a similar way of Eq. (5) to generate concept coverage matrices CQT and CQC for QT and QC.

Step 2: Compute weakness vector~k by Eqs. (7)–(11).

Step 3: Compute remedial vector~r by Eqs. (12) and (13).

Step 4: Compute gap vector ~g by Eq. (14).

Step 5: Compute a fitness value by Eq. (15).

5 Simulations

To validate the proposed GAWCM algorithm, this study performed simulations with artificially
generated data sets. The concept map for the simulations is demonstrated in Fig. 5. The simulations’
parameters are shown as follows:
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GA:

Number of generations: 20

Size of selection pool: 100 chromosomes

Selection methods:

(i) Roulette-wheel selection
(ii) Tournament selections: select the best chromosome from amongm chromosomes that were randomly

chosen from the selection pool, where

m ¼ 2; 4; 6; 8: (16)

Crossover method: uniform crossover

Mutation: no mutation occurred

Number of students: 100

Number of questions in the pre-test: 20

Number of Concepts: 5

Concept coverage for remedial learning units: artificially generated data

Concept coverage for the pre-test: artificially generated data

Sizes of the repository: 50, 100, 150, 200, 250, and 300

Scores of the students: artificially-generated data

To compare results, this study used a random selection method as a counterpart algorithm which selected
chromosomes randomly. Tab. 2 shows the results of using the GAWCM algorithm with a roulette-wheel
selection method. In Tab. 2, ratios of the fitness values for using the GAWCM algorithm to those for
using the random selection method are used to evaluate the performances of the GAWCM algorithms. A
lower ratio means a better performance for the GAWCM algorithm. Tabs. 3–6 demonstrate the results of
the GAWCM algorithm using tournament selections with m = 2, 4, 6, 8, respectively (m refers to Eq.
(16)). Similarly, ratio values are also utilized to indicate the performances of the GAWCM algorithm with
these tournament selections. The summarized results are shown in Fig. 6. In this figure, the x-axis denotes

Concept 1

Concept 2 Concept 3

Concept 4 Concept 5

0.2 0.3

0.5

0.4

0.1

0.3
0.20.2

Figure 5: The concept map for the simulations
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the growing sizes of the repository; the y-axis denotes the ratio of a fitness value using the GAWCM
algorithm to that using the random selection method.

Table 2: Fitness values using a roulette-wheel selection

Size of repository Fitness Ratio#

GAWCM Random

50 0.468 1.413 0.331

100 0.653 1.647 0.396

150 0.376 1.362 0.276

200 0.334 1.339 0.250

250 0.453 1.470 0.308

300 0.444 1.478 0.300

Average 0.468 1.413 0.331

#: Fitness of the GAWCM/fitness of the random selection method

Table 3: Fitness values using a tournament selection with m* = 2

Size of repository Fitness Ratio#

GAWCM Random

50 0.390 1.319 0.295

100 0.495 1.530 0.324

150 0.389 1.373 0.284

200 0.459 1.472 0.312

250 0.352 1.383 0.255

300 0.360 1.352 0.266

Average 0.408 1.405 0.289

*: Defined in Eq. (16)

#: Fitness of the GAWCM/fitness of the random selection method

Table 4: Fitness values using a tournament selection with m* = 4

Size of repository Fitness Ratio#

GAWCM Random

50 0.351 1.404 0.250

100 0.308 1.402 0.220

150 0.320 1.414 0.226

200 0.286 1.358 0.211

250 0.494 1.624 0.304

300 0.358 1.472 0.244

Average 0.353 1.446 0.243

*: Defined in Eq. (16)

#: Fitness of the GAWCM/fitness of the random selection method
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Table 5: Fitness values using a tournament selection with m* = 6

Size of repository Fitness Ratio#

GAWCM Random

50 0.350 1.451 0.241

100 0.302 1.412 0.214

150 0.395 1.536 0.257

200 0.377 1.485 0.254

250 0.321 1.409 0.228

300 0.343 1.453 0.236

Average 0.348 1.458 0.238

*: Defined in Eq. (16)

#: Fitness of the GAWCM/fitness of the random selection method

Table 6: Fitness values using a tournament selection with m* = 8

Size of repository Fitness Ratio#

GAWCM Random

50 0.347 1.448 0.240

100 0.363 1.588 0.229

150 0.324 1.481 0.219

200 0.277 1.375 0.202

250 0.385 1.538 0.250

300 0.341 1.410 0.241

Average 0.340 1.473 0.230

*: Defined in Eq. (16)

#: Fitness of the GAWCM/fitness of the random selection method
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Remark: *: refer to Eq. (16)

Figure 6: Performances of using the GAWCM algorithm
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From Tabs. 2–6 and Fig. 6, three findings are stated as follows.

i) The performances of the GAWCM were better than those of the random selection method,
significantly reducing the fitness values.

ii) The performances of the tournament selections were slightly better than those of the roulette-wheel
selection.

iii) In the tournament selections, a higher m got a better performance.

6 Discussions

The GAWCM algorithm uses a weight to indicate an influence-level relationship for two directly-
connected concepts. This section first gives some necessary definitions, and then provides examples for
further discussion. Next, the generalization of the GAWCM algorithm is discussed, followed by a special
case of this algorithm.

6.1 Definitions and Examples

Definition 8: Directed Path

In a concept map, a “directed path” from Vertex x to Vertex y (x ≠ y) is a path constructed by a
consistently and successively directed sequence of edges starting from Vertex x to Vertex y.

It is important to note that the number of directed paths from Vertex x to Vertex y could be more than 1.
(There may be multiple directed paths from Vertex x to Vertex y).

Definition 9: Minimal Directed Path

In a concept map, a “minimal directed path” from Vertex x to Vertex y is a directed path whose total
number of elements in all of the directed paths from Vertex x to Vertex y is minimal.

For example, Fig. 7 shows a concept map having 8 concepts. In this figure, there are two directed paths
from Vertex 2 to Vertex 6. The first is the sequence {Vertex 2, Vertex 4, Vertex 5, Vertex 8, Vertex 6}; the
number of elements in the first directed path is 5. The second directed path from Vertex 2 to Vertex 6 is the
sequence {Vertex 2, Vertex 6}; the number of elements in the second directed path is 2. According to
Definition 8, the minimal directed path from Vertex 2 to Vertex 6 is the sequence {Vertex 2, Vertex 6}.
Similarly, the sequence {Vertex 1, Vertex 2} is a directed path from Vertex 1 to Vertex 2, and is also the
minimal directed path from Vertex 1 to Vertex 2 since there is only one directed path from Vertex
1 to Vertex 2.

Concept 1 Concept 2

Concept 5

Concept 4

Concept 6

Concept 7 Concept 8

Concept 3

0.7

0.7

0.3

0.5

0.4

0.2 0.2

ncep

ncep

4

0.6

0.5

ncep

0

ncep

2

Figure 7: Example of predecessors with P-S degree
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Definition 10: The Predecessor-Successor (P-S) Degree of two Vertices

For two vertices in a concept map, Vertex x and Vertex y, if there exists a minimal directed path from
Vertex x to Vertex y, the Predecessor-Successor (P-S) degree of the two vertices is the number of
preceding vertices in this minimal directed path from Vertex x (inclusive) to Vertex y (exclusive).

For example, in Fig. 7 the P-S degree of Vertex 1 and Vertex 2 is 1, since Vertex 2 has only one preceding
vertex (Vertex 1) in the minimal directed path {Vertex 1, Vertex 2}. In this example, Vertex 2 is not
considered a preceding vertex since it is exclusive (by Definition 9). Similarly, the P-S degree of Vertex
2 and 4 is 1 via the minimal directed path of {Vertex 2, Vertex 4} since there is only one preceding
vertex (Vertex 2) in this minimal directed path. The P-S degree of Vertex 2 and Vertex 8 is 3 since there
are three preceding vertices (Vertex 2, Vertex 4, and Vertex 5) via the minimal directed path {Vertex 2,
Vertex 4, Vertex 5, Vertex 8}. The P-S degree of Vertex 2 and 6 is 1 via the minimal directed path
{Vertex 2, Vertex 6} since there is only one preceding vertex (Vertex 2) in this minimal directed path. It
is obvious that for a concept map having n concepts, the maximum P-S degree of any pairs of vertices is
less than n.

6.2 Generalization of the GAWCM Algorithm

The GAWCM algorithm uses a P-S degree of 1 for any pairs of connected vertices in a concept map. It
can be easily generalized when using a P-S degree of d where 2 ≤ d < n. In this case, Eqs. (7) and (8) should
be modified by the following matrix manipulation formulas:

U ¼ T � CQT þ
Xd
i¼2

ðAi � CQT Þ (17)

V ¼ T � CQC þ
Xd
i¼2

ðAi � CQC Þ (18)

where A is an adjacency matrix in a concept map.

6.3 Special Case of the GAWCM Algorithm

For the GAWCM algorithm, if one uses a P-S degree of 0 for any pairs of vertices in a concept map, the
transition matrix (T) of this concept map is an identity matrix whose diagonal elements are all 1, and
0 elsewhere. In this case, the learning concepts in this concept map individually exist without any edges
to connect any other concepts. The GAWCM simply performs GA computing without actually using a
concept map. Thus, Eqs. (7) and (8) are modified by the following matrix manipulation formulas:

U ¼ I � CQT ¼ CQT (19)

V ¼ I � CQC ¼ CQC (20)

where I is an identity matrix whose diagonal elements are all 1, and 0 elsewhere.

7 Conclusions

This study proposes the GAWCM algorithm as a framework for generating intelligent remedial learning
systems. In this framework, a GA and a concept map are utilized to select a set of remedial learning units
from a repository based on learners’ weaknesses in learning concepts. Basically, the GAWCM algorithm
employs a concept map to represent the knowledge structure of the learning concepts in this map, and
then uses GA computing to generate remedial learning materials according to learners’ understanding of
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these learning concepts. In the GAWCM algorithm, a weighted directed acyclic graphic is used as a concept
map to represent the predecessor-successor relationships between and among the learning concepts in the
concept map.

In a predecessor-successor relationship, the predecessors of a particular concept are considered as the
prerequisite concepts of this particular concept. A predecessor-successor pair is formed by two connected
concepts linked by edges marked with a weight (influence coefficient) to indicate how the predecessor
concept affects the successor concept. A transition matrix is utilized to represent the entire structure of
the predecessor-successor relationships in a concept map. The transition matrix is then fed into a GA, and
the GA employs an iteratively evolutionary procedure to obtain a set of remedial learning units based on
the learners’ weaknesses.

To validate the GAWCM algorithm, simulations were conducted using artificially generated data sets.
The generalization and the special case of the GAWCM algorithm were also discussed, taking into
consideration the different P-S degrees of vertices (concepts) in a concept map. The GAWCM algorithm
can be generally-employed in e-learning. It provides a framework for generating remedial learning
materials for all kinds of learning fields. This is the main contribution of this study.
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