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Abstract: The physical and the mental health of a human being largely depends
upon his physical life-routine (PLR) and today’s much advanced technological
methods make it possible to recognize and keep track of an individual’s PLR.
With the successful and accurate recognition of PLR, a sublime service of health
education can be made copious. In this regard, smartphones can play a vital role
as they are ubiquitous and have utilitarian sensors embedded in them. In this
paper, we propose a framework that extracts the features from the smartphone
sensors data and then uses the sequential feature selection to select the most useful
ones. The system employs a novel approach of codebook assignment that uses
vector quantization to efficiently manipulate the data coming from the smartphone
sensors of different nature and serve as a data compression module at the same
time. The proposed system uses a multilayer perceptron classifier to differentiate
among different PLRs. The experimentation was performed on the benchmark
Real-life HAR dataset. It provides the data of four sensors: accelerometer, gyro-
scope, magnetometer, and global positioning system (GPS) for the recognition of
four activities namely active, inactive, walking, and driving. The performance of
the proposed system was validated using 10-fold cross-validation and the confi-
dence of the system was recorded to be 91.80%.

Keywords: Codebook generation; human activity recognition; multilayer
perceptron; physical life routines; smartphone sensors

1 Introduction

With the technological evolution of the world, humans expect technology to pillar their lives in every
domain and one of the areas that are of key importance in a human being’s life is his physical health
[1,2]. If a person gets to know his current physical health condition [3,4], he can be more cautious in
case of danger and can save his life. As PLR [5,6] is a combination of locomotion activities that are
performed by a human being, this research problem lies in the domain of human locomotion activity
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recognition (HLAR) [7]. If we are able to accurately recognize and track the locomotion activities of a
specific human being, we can identify his PLR and as its benefit, we can predict his current physical
health condition and make useful suggestions to make him keep his health up [&].

HLAR has been a field of research that has kept the interest of researchers for more than a decade now.
Besides health education, HLAR has many other applications like indoor localization [9], security [10],
rescue [11], entertainment [12], smart homes [13] and life-logging [14,15]. But for the sake of this paper,
we will be concentrating only on the application of health education and physical exercise. There has
been a lot of work done to accurately recognize the human locomotion activities following various
approaches including wearable sensors [16,17], computer vision [18] and smartphone sensors [19]. Every
technique has its benefits and drawbacks also. The wearable sensors provide ease in analysis and more
reliable data due to their fixed position, but they can annoy the users as it is strenuous to wear the
sensors. Vision-based techniques can be user-friendly because they have no physical contact with the
user, but the vision system has a high cost and can also cause privacy issues [20]. On the other hand,
smartphones are ubiquitous, and people carry them without any annoyance. Although they can cause
difficulties in computing and analysis as their position is not fixed, these difficulties can be easily
overcome with the help of appropriate computation methods and the addition of useful sensors in the data
that can eliminate the ambiguity [21]. Due to ease of use and the cost-effectiveness of smartphone
technology, the basis of our research is smartphone sensors.

In this research article, we proposed an efficient method for HLAR using some very useful features like
Parseval’s energy, skewness, FFT-min-max-difference, FFT-min-max-ratio, and ar-coefficients. For the
classification purpose, it utilizes a multilayer perceptron (MLP) classifier. The proposed system starts its
operation by denoising the acquired signal and then performs windowing and segmentation. After that, it
extracts useful time-domain and frequency-domain features. To select the best features among the
extracted, our system performs the feature selection based on the sequential feature selection (SFS)
methodology. A very useful aspect of our proposed system is the codebook assignment. The codebook
assignment module uses vector quantization (VQ) for the generation of the codewords. The labeled
codeword for every example of a certain class is accumulated into a single data-frame that is known as a
codebook of that particular class. Finally, the classification of locomotion activities is performed using a
multilayer perceptron (MLP) classifier [22]. We used a publicly available benchmark dataset “real-life
HAR?” that provides the data of four smartphone sensors i.e., accelerometer, gyroscope, magnetometer,
and GPS to recognize four locomotion activities namely active, inactive, walking, and driving. We
validated our HLAR results against other available state-of-the-art models. The proposed system
comprehensively outperformed the state-of-the-art methods.

The rest of the article is organized in the following fashion. Section 2 describes previously accomplished
related work for HLAR while Section 3 represents methodology and architecture of the proposed system. In
Section 4, evaluation of performance of our system is given. Finally, Section 5 concludes the paper and
expresses the future directions.

2 Related Works

A lot of work has been done in the field of HLAR while following various remarkable and streamlined
methods. We had a comprehensive review of the systems that had been implemented in this field. Some of
which were implemented using accelerometer and others were implemented using GPS as their basis. The
following sub-sections provide a deep insight into the related work for HLAR.
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2.1 Accelerometer Based HLAR

While working with inertial sensors for an HLAR system, accelerometer is the first and generic priority
for the researchers. There is a lot of work regarding HLAR that revolves around accelerometer. An
accelerometer measures the inertial forces along the x, y, and z direction. Jalal et al. used a tri-axial
accelerometer for a smart home application [23]. They extracted statistical features from accelerometer
data and then applied a random forest classifier to perform the classification. In [24], Batool et al. used an
accelerometer to analyze human activities. They extracted the mel-frequency-cepstral-coefficients
(MFCC) and statistical features and then employed particle swarm optimization (PSO) along with a
support vector machine (SVM) classifier to distinguish among the locomotion activities. Kusuma et al.
used tri-axial accelerometer data to classify static and dynamic activities based on one-dimensional
convolutional neural network (CNN) [25]. A system with statistical features with an SMO-based random
forest classifier was proposed in [26] by Badar et al. An accelerometer-based approach produced very
useful frameworks for the HLAR but the common issue with the accelerometer either wearable or
smartphone accelerometer is that it cannot measure the altitude so efficiently. Moreover, in case of
smartphone accelerometer, there comes another additional issue of the orientation of smartphone. These
issues can only be addressed with the use of some additional useful sensors like gyroscope and
magnetometer etc.

2.2 GPS Based HLAR

GPS provides the longitude and latitude information and the use of GPS sensors has been encouraged
with the development of smartphone technology. In [27], Casella et al. used finite state automata that are
constructed using the grammatical inference technique. They used GPS based approach to recognize
human locomotion activities. Another work captured smartphone GPS data and enhanced its effectiveness
by adding points of interest and user profile information to it. After that they classified the activities that
they initially divided into stop and moves activities [28]. Natal et al. divided their system in two phases 1i.
e., generation phase and execution phase. Besides the GPS data, they also used annotated user profile as
an input for their system. In the generation phase, they extracted timestamped GPS data from user’s
smartphone and preprocessed the it. After that they extracted features and combined them with offline
user profile information and trained their model. In the execution phase, they tested their framework for
HLAR [29]. Another research work extracted GPS data corresponding to a certain activity and using
overlapping windows, they generated shapelets and extracted features using those shapelets. By pseudo-
randomly shuffling the order, they generated training, testing, and validation datasets. They used majority
voting to predict the performed activity [30]. GPS sensor provides the location information that proves to
be very useful contextual information. Using this information along with other inertial sensors of the
smartphone can enhance activity recognition accuracy.

3 Methodology

The proposed system consists of a total of seven modules that are preprocessing, windowing,
segmentation, feature extraction, feature selection, codebook assignment, and classification. Fig. 1
manifests the architecture of the proposed system.

Preprocessing module clips the unwanted parts and denoises the input signals using the Chebyshev filter
and forwards the results to the windowing module that divides the signal into small rectangular windows that
are then segmented with the segmentation module. Using these signal segments, useful time-domain and
frequency-domain features are extracted. Feature selection module that uses sequential feature selection,
selects the best performing features among all of the features that were extracted. The selected features
are then sent to the codebook assignment block where vector quantization is used to generate the
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codebook for each feature and a final data frame is generated along with the labels. This data frame is
processed by a multilayer perceptron algorithm for classification purpose.
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Figure 1: The proposed framework for HLAR

3.1 Preprocessing of the Data

The signals that are just acquired from the sensors have a lot of noise due to the acquisition process.
There is another factor that produces disturbance in the signal and that is the initial and the final states of
the subject. For example, if we are to measure a walking activity, at the very start of performing the
activity the subject would be standing and the same situation will be there at the end of the activity. This
fact makes it very important to clip some part of the signal from the start and also from the end so that
we can get the data that represents the concerned activity in actuality. In our case, clipping 25% of the
data from the start and 25% data from the end produced the best results. The next step in preprocessing is
to denoise the signal using a suitable filter. Usually, the noise is of high frequency so was in our case. We
tried multiple filters including the Butterworth filter and the Chebyshev filters and we also tested them
with different orders and parameters [31]. In our case, the Chebyshev filter performed in the best way.
The Chebysheyv filter defined by Eq. (1) is given below:

[H(Q) = [1 +&T3 <Q%)] R (1

where Ty represents the N order Chebyshev polynomial and is defined by the Eq. (2):
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The Chebysheyv filter performs better than the Butterworth filter with respect to the execution speed and
absolute error. We used 2™ order type-I Chebyshev filter with a ripple factor of 0.001 and wn equal to 0.0003.
This filter was able to denoise input signal very well. Noisy and denoised signals are shown in Fig. 2.
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Figure 2: Signal denoising using the second-order Chebyshev-I filter with a ripple factor equal to 0.001 (a)
Magnetometer Channel-x (b) Magnetometer Channel-y (c) Magnetometer Channel-z

3.2 Windowing and Segmentation

Windowing of the signal is done to reduce the computational complexity of the system [32]. We used the
rectangular windowing approach and divided the preprocessed signal into windows having a duration of five
seconds. If we take a very short length window then important information might not be acquired completely
and if we take a very long length window then we might process redundant information that increases the
computational complexity. According to our experimentation, five-second window produces the best results.

Segmentation is performed by concatenating the windows into an array. It is an excellent technique to
test the performance of the system on different parts of the signal [33]. In our system, we created the segments
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using three five-second windows for each segment and then processed the information based on these
segments.

3.3 Feature Extraction

Human locomotion activities can have idle activities like sitting or standing and also dynamic activities
like walking and jumping. Time-domain features prove to work better for the idle category of activities while
frequency domain features prove beneficial for the dynamic category [34—36]. So, we extracted a total of
seven features from the dataset including both time-domain and frequency-domain features. The features
that we extracted are explained below:

3.3.1 Parseval’s Energy

Parseval energy is used to find the percentage distribution of the energy features in a one-dimensional
signal [37]. It can be calculated both in the time and frequency domain with the help of Egs. (3) and (4)
respectively. Parseval’s energy theorem states that the energy of a signal in the time domain is equal to
the energy of the signal in the frequency domain Eq. (5).

00
Erie-oonanli(0] = [ et G
S T A
EFreq—Domain [x(]w)] = E |X(](U)| dow (4)
—00
ETimefDomain = EFrequomain (5)

where x(2) and x(jw) are the signals in the time and frequency-domain respectively. Parseval’s energy is a
popular feature in the field of brain-computer-interface (BCI) where a one-dimensional EEG signal has to be
processed. Noticing its usefulness for EEG signals, we decided to use it for our HLAR system. Fig. 3a
represents the Parseval energy for walking, inactive, active, and driving activities.

3.3.2 Skewness
Asymmetry of a distribution is measured in terms of the skewness, and it is given by Eq. (6). Where n is
the number of samples, .X; represents an i sample, X is the sample’s average, and S is the standard deviation.

n Xi— X\’
Skewness:(n_l>(n_2)2< 3 > (6)

The skewness for all of the four concerned classes is shown in Fig. 3b

3.3.3 Kurtosis
Kurtosis gives information about the length and weight of the tail of the distribution [38]. Fig. 3c
displays the kurtosis plot for all four classes of the dataset.

The distribution of the signal data over its length is very important. Every activity has a special kind of
distribution that can prove helpful in its successful recognition. Kurtosis is defined by Eq. (7). Where 7 is the
number of samples, X; and X represents the i sample and average of the sample respectively and S is the
standard deviation.
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Figure 3: Feature extraction (a) Time-domain Parseval energy for all four activities of the dataset (b)

Skewness for all four activities of the dataset, (¢) Kurtosis for all four activities of the dataset

3.3.4 FFT Min-Max Difference
For this feature [39], the signal is taken from the time-domain to the frequency-domain and power

spectral density is computed. Power spectral density (PSD) analyses the complete frequency range for the
distribution of power. Then the maximum and the minimum points of PSD are calculated and difference
of these two points is taken to use as a feature. Fig. 4a shows the FFT-min-max-difference for all four
activities in the dataset.

3.3.5 FFT Min-Max Ratio
To compute this feature, the same procedure has to be followed that is used to find the FFT-min-max-
difference. Instead of taking the difference of the minimum and maximum points, their ratio is calculated.
Fig. 4b represents the FFT-min-max-ratio for all activities.
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Figure 4: Feature extraction (a) FFT min-max difference for walking, inactive, active and driving (b) FFT
min-max ratio (¢) AR-coefficients (d) Shannon Entropy

3.3.6 Autoregressive Coefficients

The autoregressive (AR) model is used for the forecasting of the time-series. It predicts the future values
based on the previous values [40]. AR-coefficients decide the weightage of a specific previous value. Eq. (8)
represents the AR model.

Yu(t) = Bo + Bim(t — 1) + Bom(t = 2) + ... + B,m(t — n) + E(1) (®)
where f; represents the weights of the past values m and the white noise of the system is represented by E(?).

Fig. 4c depicts the AR-coefficients for all four activities.

3.3.7 Shannon Entropy
Shannon entropy [41—43] measures the amount of uncertainty in the signal. The mathematical
representation of the Shannon entropy is given by Eq. (9).

Shannon Entropy = Zgi * —log(g:) ©)
i—1
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where g; refers to the probability of occurrence of a specific data point. We took the negative log of the
current data point and then multiplied the result with the original data point. Then repeated the same
process for complete data vector and sum all the results together to find the Shannon entropy for a
specific vector. The manifestation of the Shannon entropy is done in Fig. 4d.

3.4 Feature Selection

In the feature extraction module, we extracted seven features. With the aid of feature selection, we can
find the most informative features of the dataset that can help attaining the best performance of the
classification algorithm. For this purpose, we used novel sequential forward selection (SFS) which is a
wrapper-based approach. SFS algorithm considers all possible combinations of the features and evaluates
them for the best accuracy [44,45]. As its output, SFS provides the combination of the best performing
features while the number of features that are to be selected is a hyper-parameter. Previously described
seven features were forwarded to the sequential feature selection algorithm to select five most informative
features among all. The algorithm dropped kurtosis and Shannon entropy and selected Parseval’s energy,
skewness, FFT-min-max-difference, FFT-min-max-ratio, and AR-coefficients as the most informative
features.

3.5 Codebook Assignment

Vector Quantization (VQ) codebook assignment works as a feature improvement and data compression
technique that passes the features of divergent nature from a single channel and generates a codeword that has
the properties of all the features together [46]. The system uses one of the customary VQ codebook
generation algorithms that is Linde-Buzo-Gray (LBG). It takes non-overlapping feature vectors for the
training. As a result, it generates a reference codeword that is then used to generate the codewords for the
feature vectors of other activities. For the generation of the reference codeword, the algorithm requires to
specify the number of bits. We experimented with various number of bits for the codebook generation
and for our system, the 16-bit codebook provided the best results. Fig. 5a represents a 16-bits codeword
for the walking activity, Fig. 5b shows a 16-bit codeword for inactive, Fig. 5S¢ shows codeword for active,
and Fig. 5d shows codeword for driving. The number of bits (V) can be calculated by Eq. (10). After the
codewords for each of the activities of a specific class are generated, they are concatenated into one data
frame that is called a codebook of a specific activity. Whenever the system is tested with an unknown
example, the system generates the codeword for that unknown example and matches it with the
codewords present in the codebook of every class, and makes its decision.

N=2"  wheren=1,2,3 ..., n (10)

3.6 Algorithm of the Proposed System

Algorithm 1: Human Locomotion Activity Recognition (HLAR)

Input: accelerometer-data, gyroscope-data, magnetometer-data, gps-data

Output: Concatenated Codebook matrix as [[Cy1, Cw2, ..., Cunls [Cint> Cin2, -+ -5 Cinnls [Cacts Cac2s «--» Cacnl
[Cdrb CerJ [EES} Cdm]]

# Initializing the Data matrix with sensor data
1 Data « [accelerometer-data, gyroscope-data, magnetometer-data, gps-data]
2 Clipped-sig « []
3 for i in range (4):

(Continued)
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Algorithm 1 (continued).

temp <« Clip (Data[i])
Clipped-sig.append (temp)
4 Denoised-sig <« []
5 for i in range (4):
temp « Cheby (Clipped-sig[i])
Denoised-sig.append (temp)
6 Windowed-sig <« []
7 for i in range (4):
[wl, w2, w3, ...] « wind (Denoised-sig [i])
Windowed-sig.append (w1, w2, w3, ...])
8 Segment-sig « []
9frm«— 0
10to «— 3
11 for i in range (4):
for j in range ((len (Windowed-sig [0]))/3):
temp «— segment (Windowed-sig[i][frm:to])
Segment-sig.append (temp)
fim « to
to « to+1
12 Parseval Energy < Segment-sig
13 Skewness «— Segment-sig
14 Kurtosis «— Segment-sig
15 FFT Min Max Diff < Segment-sig
16 FFT Min Max Ratio < Segment-sig
17 AR Coefficients « Segment-sig
18 Shannon Entropy <« Segment-sig
19 Selected feats <— SFS (Parseval Energy, ..., Shannon Entropy)
20 Codebook « []
21 for i in range (len (Selected feats)):
Codebook.append(LBG-VQ (Selected feats))
22 return Codebook

3.7 Classifier

Due to their remarkable performance, deep learning algorithms have caught the attention of many
technological fields. For our research work, we used a multilayer perceptron (MLP) which is a feed-
forward multilayer network. In MLP, the input layer nodes hold the network’s input features while the
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hidden layers gather the input layer’s weighted inputs and pass their output data to the next layer. Then the
classification results for the input data are stored in the output layer. The network has to learn the weight
matrix to produce the best classification results [47]. Back-propagation is the technique that is usually
used to learn the weight matrix. MLP works in such a way that it multiplies each input with
corresponding weight and adds a bias term to the result. Following the same procedure, it processes all of
the inputs and after adds them together. Then it passes the result to the activation function that converts
the results into a probability distribution. All this multiplication and addition work is done in the hidden
layer and after the application of the activation function, the highest probability value represents the
prediction for the input [48]. The network architecture of MLP is manifested in Fig. 6.
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Figure 5: Codewords for different activities (a) 16-bit codeword for walking (b) 16-bit codeword for
Inactive (c) 16-bit codeword for Active (d) 16-bit codeword for Driving

The mathematical representation of MLP is given in Eq. (11) where Y, represents the output of the k™
perceptron, wy, is the point of the weight matrix that is at i position for k™ perceptron, x; is the i input and
by is the bias for k™ perceptron. Moreover, 1 represents the number of neurons in the current layer and fis the
activation function.
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Yk(x) :f{zn:(Wkixi—i‘bk)} (11)

i=1

For our system, we used an MLP classifier with one input layer, one hidden layer, and an output layer.
Our input layer consisted of 75 neurons as it was the length of our feature vector. Hidden layer contained
100 neurons in it and output layer had 4 neurons because we had four classes to work with. The
activation function and the optimization method were tanh and adam respectively.

Input Layer Hidden Layer

Prediction

Figure 6: Network Architecture of Multilayer Perceptron with single hidden layer

4 Performance Evaluation

This section contributes to the paper with a brief description of the dataset and the results of the
experiments that were performed for this research. Lastly, it includes the comparison of the proposed
system with the state-of-the-art systems.

4.1 Dataset

The dataset used for this research work is applied for real-life human activity recognition. For this
dataset, the data was collected from nineteen subjects in a real-life environment where the subjects were
not required to hold the phone in a specific position or tie it somewhere on their bodies rather, they were
free to keep their smartphones according to their desire. The dataset provided the data of four sensors
namely accelerometer, gyroscope, magnetometer, and GPS. Accelerometer, gyroscope, and magnetometer
provided 3-axial data each and GPS provided six-axial data including latitude increment, longitude
increment, altitude increment, GPS speed, GPS bearing, and GPS accuracy. A special property of this
dataset is that all the sensor readings are frequency-independent because when the data was collected, the
frequency was not kept fixed at a constant value. All these features make this dataset a real challenge for
the researchers because it encompasses a real-life scenario. Four activities were performed by all of the
subjects for the data collection i.e., walking, inactive, active, and driving. A brief description of the
dataset is provided in Tab. 1.

4.2 Experimental Settings and Results

All of the experimentation and analysis is done using python on Jupyter notebook 6.1.4. The system
used for the development is Intel(R) Core (TM) i7-7500U CPU @ 2.70 GHz 2.90 GHz with a 64-bit
Windows-10 and 16 GB RAM installed in it. To evaluate our system, we used 10-fold cross-validation to
eliminate the dataset bias.
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Table 1: Real-life HAR dataset

Activity Sensors Subjects Description

Walking Accelerometer, 19 Walking includes the movement of a person from one
Gyroscope, place to another and for this dataset, jogging, and running
Magnetometer, GPS is also considered as walking activity.

Inactive Accelerometer, 19 The person is not carrying his smartphone with him. An
Gyroscope, exemplary situation is that the person has placed his phone
Magnetometer, GPS on the desk and performing other activities.

Active  Accelerometer, 19 The person is carrying his smartphone with him and
Gyroscope, performing some activities but not going anywhere. Some
Magnetometer, GPS exemplary activities can be washing dishes, cooking, or

buying something at the market.

Driving Accelerometer, 19 Moving with the help of transport that is driven with the
Gyroscope, help of an engine, for example, bike, car, truck, etc.

Magnetometer, GPS

4.2.1 Codebook Size Selection

The codebook size selection is a very important hyper-parameter of the proposed system that directly
influences the accuracy of the system. Fig. 7a shows the codewords generated for all four activities while
using an 8-bit codebook. Fig. 7b depicts the codewords using a 16-bit codebook and Fig. 7c shows the
codewords generated using a 32-bit codebook.
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Figure 7: Codewords for varying size of the codebook (a) 8-bit codewords (b) 16-bit codewords (c¢) 32-bit
codewords

We also designed a bar graph to represent the accuracy of the system based on the size of the codebook
and it is given in Fig. 8. The system was tested on five different codebook sizes that are 8-bits, 16-bits,
32-bits, 64-bits, and 128-bits. While using a 10-fold cross-validation, we generated a confusion matrix for
all five codebook sizes and recorded the accuracy for each one of the classes. According to the obvious
results that are recorded in Fig. 8, 16-bit codebook outperformed all other test sizes with each class
scoring above 80%.
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Figure 8: Comparison of the varying codebook sizes with the accuracy of the HLAR system

4.2.2 Classification

Working with MLP, the most important factor for the accurate classification of the activities is the tuning
of the hyper-parameters. Before starting the tuning, we fixed the solver and the activation function because
these two attributes play a vital role in the classification process. Among all other parameters, according to
our experimentation, the most important parameter to tune is the learning rate. After we got the best learning
rate, we tuned the number of layers and number of neurons in that layer. Then we tuned the number of
iterations using a comprehensive range of numbers. Finally, we tuned the random state. If we could not
have a significantly high accuracy after all this tuning, then we altered the activation function while
keeping the solver the same as before and repeat the described tuning procedure. After training and fine-
tuning MLP, we achieved the best mean accuracy of 91.80% in the recognition of locomotion activities.
As the final values of the hyper-parameters, learning rate was 0.003, alpha was 0.0164, random state was
26, hidden layer size was 100, tanh was the activation function that we used, and the solver was adam.
The confusion matrix for the proposed system is shown in the Tab. 2.

Table 2: Confusion matrix representing recognition accuracy over classes of real-life HAR dataset

Activities Walking Inactive Active Driving
Walking 0.89 0.05 0 0.05
Inactive 0 0.89 0.05 0.05
Active 0 0 1 0
Driving 0 0.11 0 0.89

Mean Accuracy =91.80%

Besides the confusion matrix, we also computed the precision, recall, and F1-score for our system that is
stated in Tab. 3. Precision represents the ratio of the predictions that were correct positives and total positives.
Recall is the ratio of the predictions that were correct positives and total class observations and F1-score is the
weighted average of precision and recall. Mean precision of our system is 0.923 while mean recall and mean
F1-score for the proposed system is 0.918 both.
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Table 3: Precision, Recall and F1 score over four different classes of real-life HAR dataset

Interaction classes Precision Recall F1 Score
Walking 1.00 0.89 0.94
Inactive 0.85 0.89 0.87
Active 0.95 1.00 0.97
Driving 0.89 0.89 0.89

Mean Precision =0.923 Mean Recall=0.918 Mean F1 Score=0.918

As this dataset is a new addition to the technological world, we made our contribution by accepting the
challenge and outperforming the state-of-the-art. Garcia-Gonzalez et al. scored an accuracy of 67.53% while
using a support vector machine (SVM) over accelerometer and GPS data. They also evaluated their model
over accelerometer, gyroscope, magnetometer, and GPS data and scored 69.28% accuracy. Finally, while
evaluating their model over accelerometer, magnetometer, and GPS they scored their highest accuracy
and that was 74.39% [49]. The proposed method comprehensively outperformed the available state-of-
the-art methods. A tabular comparison of the aforementioned algorithms is provided in Tab. 4.

Table 4: Performance comparison of the proposed system with state-of-the-art over real-life HAR dataset

Models Accuracy
SVM + Accelerometer + GPS [49] 67.53%
SVM + Accelerometer + Gyroscope + Magnetometer + GPS [49] 69.28%
SVM + Accelerometer + Magnetometer + GPS [49] 74.39%
Proposed System 91.80%

5 Conclusion

This paper proposes a physical life routine recognition system that can successfully and accurately
recognize the locomotion activities performed by a human being. The system extracts useful features
from the time-domain and the frequency-domain and performs feature reduction using a sequential
feature selection (SFS) algorithm. Then it forwards the most useful features that are selected by SFS to
the codebook assignment unit where every feature vector is converted into a codeword and by combining
those codewords, codebooks are generated for each activity. All of the codebooks are concatenated into a
single matrix and labels are assigned. This labeled data matrix is then forwarded to the novel MLP
classifier for classification. The proposed system outperforms the existing state-of-the-art methods as
shown by the comparison statistics. Besides the PLR recognition and health education, the proposed
system can be used in diverse applications like security, life-logging, and indoor localization.

One of the plans of our team is to develop a system that can recognize more kinds of locomotion
activities than this system irrespective of the indoor or outdoor environments.
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