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Abstract: The Internet of Things (IoT) is a global information and communica-
tion technology which aims to connect any type of device to the internet at any
time and in any location. Nowadays billions of IoT devices are connected to
the world, this leads to easily cause vulnerability to IoT devices. The increasing
of users in different IoT-related applications leads to more data attacks is happen-
ing in the IoT networks after the fog layer. To detect and reduce the attacks the
deep learning model is used. In this article, a hybrid sample selected recurrent
neural network-extreme learning machine (hybrid SSRNN-ELM) algorithm that
uses recurrent neural network (RNN) as a supervised and extreme learning
machine (ELM) classifier as unsupervised. In the proposed algorithm sample
selected features are extracting from the original dataset using linear regression
with recursive feature extraction (LR-RFE) and sequence forward selector
(SFS) then RNN is used to learn the behavior of the important features and at
end layer the ELM classifier is used. This hybrid intrusion detection algorithm
is placed in between the fog layer and its devices. NSL_KDD benchmark is used
for detecting the distributed denial-of-service (DDoS) attack in IoT devices after
the fog node. The proposed hybrid SSRNN-ELM model exposes the attacks while
testing with enhanced accuracy of up to 99% from NSL-KDD data set. Experi-
mental results outperform by using proposed technique when compared with
the existing models.

Keywords: Distributed denial of service; internet of things; sample selected; linear
regression-recursive feature extraction; sequence forward selector; recurrent neural
network; extreme learning machine

1 Introduction

The Internet of Things (IoT) device is a resource-limited system that sense or transmit any information to
the internet [1]. Some of the IoT applications are autonomous driving, unmanned mining, smart power grids,
health care, and emergency alert systems etc., [2]. To avoid unauthorized user data, transfer the radio
frequency identification (RFID) [3] card-based identification is used to communicate the sensor data to
the actuator. Many IoT devices can connect with sensors and communicate to actuator with the help of
internet to monitor or control any applications. Due to the heterogeneity, larger size hardware and
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resource limited the IoT security has become difficult [4]. In smart health care system security breaches can
result in degraded performance of IoT devices and degrade life-threatening damages. If any of the IoT device
attempts to connect to the target system without validating its own identity is referred as an unauthorized
device. Such attempts are called as network classification attack; it can be identified by machine learning
algorithms such as K-Means, Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM),
and Bayesian Network [5].

The behavior of the attack model helps locate threat models and determine which attack. The patterned
behavior of attacks can be determined by features collected, including the total of bytes sent and received,
link time, error count, and the total amount of requests. Manual feature engineering is required in [6]. Deep
learning is used to solve the feature extraction problem in ML [7]. Due to its multilayer structure, a profound
representation of the raw data can be given to DL and classify or predict the data more accurately relative to
ML [8–10]. The DL algorithm has been applied to the categorization of IoT cyber-attacks. Fog computing
has been developed for implementation with DL models directly by processing IoT devices to store and
analyze vast amounts of low latency and fast response time data on fog nodes [11,12]. The idea is to
transfer data using sensors on the layer of edge towards the nearest data source where little time is
required to analyze the data using DL.

Security Information and Event Management (SIEM) solution [13] based approaches are used to detect
the DDOS attack in gateway and monitoring IoT network. The SIEM solution includes parsing/indexing/
secure storage and detection of DDOS attack is based on comparing the number of packets of types such
as SYN, ICMP, or DNS. In [14], Deep neural network hyperparameter optimization is an enhancement
with three top layers such as the input layer, which has the features in the CICDDoS2019 dataset, the
hidden layer is responsible for learning the complex information from the elements, and the output layer
is liable to classify the attack label. Intrusion detection system [15] approach with 25 features from the
real-time traffic such as source address, destination address and packet ID. Neural Network, Naive Bayes,
and Random Forest, KNN, and SVM, datasets processed have different percentages, intending to
facilitate classifying the attacks. The detection of normal data packet flow and DDoS attacks packet flow
on networks is used variety of training function schemes and hidden layer architecture [16]. This
Artificial neural network (ANN) architecture involves several steps such as Extracting data packet flow
features, Training the ANN network, and evaluating the performance of ANN. The linear and mesh
network topology with various sizes can handle the Distributed denial of service attack without managing
channel bandwidth in a software-defined network (SDN) [17]. The SDN uses a round-robin algorithm to
load-balance all connections equally between controllers. The Recurrent Neural Network Software
Defined Regulation (RNN-SDR) technique is performed by the Software-Defined Network Controller
(SDN) vs. the NSL-KDD dataset [18]. The RNN is the technique used to classify and analyze data
sequences using the RNN-SDR. It shows better results in learning sequences and improves the
identification of abnormalities in an SDN environment. In literature [19], a sample selected extreme
learning machine (SS-ELM) algorithm is proposed, which combines a sample selection of features and
according to the network features of fog computing (FC)/Mobile edge computing (MEC) using the ELM.
This approach helped to resolve the issues caused by resource limitations in FC/MEC. The existing
security approach that uses DL to track IoT attacks is discussed in this section. Also, the ability to detect
and remove latent features in different network settings, various attacks from various DL models is
studied. Because of the rapid usage of IoT applications, cyber-attacks have been increased tremendously
over the last ten years [20]. Attackers often use cyber-attacks can hack thousands of globally connected
IoT devices. For instance, certain websites that use the “Dyn” DNS provider were targeted with the help
of a DDoS attack in 2016.

The botnet malware attack is executed in many IoT applications. A decentralized security solution that is
continuously controlling IoT devices is needed to detect zero-day attacks. Several known organizations,
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including Facebook, Yahoo! based on DL, Twitter, and YouTube, have built many applications to track and
analyze enormous amounts of data produced by billions of users [21]. With the new rise of the accessibility of
big data, the graphical processing units (GPUs) with DL models are trained by using powerful learning
algorithms. LSTM detection-based DL has been applied to analyze traffic on the network by botnet attack
detection [22]. For detecting botnets, the behavior of connection between devices with IoT is analyzed.
The dataset is spliced into two, namely training and testing the detection model for these two separate
datasets were used one is labeled, and another unlabeled is tested with LSTM output of different features
using the dataset. In the literature [23], attack detection using a deep network focused on LSTM is fog-to-
things was performed. A distributed method is implemented for obtaining parameter initialization and
updating from the coordinating node using fog nodes. The LSTM model was trained by each fog node
based on the parameters obtained the bias and weight values were sent from one coordinating node to the
other coordinating node. After that, it computes the aggregate parameters sent back to the fog nodes. A
suggested model shows that a typical ML outperforms DL models in terms of accuracy and scalability
compared to a centralized technique. Deep autoencoders are unsupervised DL models that are used to
create feature learning for models of detection. An ensemble learning system has been merged with
different DL models for learning and detection development. A distributed monitoring framework for
attacks is used to identify network traffic at the edge layer; the extreme learning machine (ELM) classifier
has been introduced. Besides all-comprehensive resource activities, the model training and development
were transferred into the cloud layer using the HPC cluster [24]. Model training was conducted using
data anonymized obtained from devices in the edge layer using CNN and LSTM schemes [25]. Then the
model of activity on edge servers is used by classifiers. The tests showed that CNN and LSTM had
improved accuracy with 98%, 74%, and 95%, respectively, in scanning, contact, and infected host
scenarios. However, because of the limited computing, energy capabilities, and storage in IoT devices,
the direct deployment of complicated DL models to detect attacks in devices is complex. Within this
framework, we have proposed a hybrid SSRNN-ELM DL model.

The main contributions of this work are as follows: A hybrid SSRNN-ELM model is proposed to detect
intrusion into IoT networks with great accuracy and less computational complexity. The proposed
methodology is verifying the network data and its activity in the actual network in the IoT networks
against DDoS attacks. An improved sample selected features are obtained from the original dataset using
linear regression with recursive feature extraction (LR-RFE) and sequence forward selector (SFS). With
the NSL-KDD data set, the benchmark tested the SSRNN-ELM model is tested and the results are
compared with existing solutions. The proposed model achieves high accuracy with less time
demonstration compared to other models. This demonstrates an improved model for critical latency in
IoT devices by using SSRNN-ELM.

The remaining part of the paper is arranged as follows: Section 2 provides research methods of the
proposed methodology; Section 3 presents the results gathered during the analysis and the conclusion is
presented in Section 4.

2 Research Method

The proposed architecture consists of three levels (i) data set configuration, (ii) feature data
discrimination and (iii) attack detection as described in Fig. 1. The NSL-KDD dataset is used in the
proposed hybrid SSRNN-ELM to detect the DDoS attack detection by analyzing the network packets of
normal and abnormal packets. The data features NSL-KDD is configured with trained and test dataset
given to the feature data discriminators. The feature data discriminator has two parts namely full features
data discriminator and sample selected feature data discriminator. For the sample selected features here
two feature selection methods are used such as linear regression-recursive feature elimination (LR-RFE)
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and sequence forward selector (SFS). LR-RFE is a less computational and less complex feature selection
with feature weight coefficients it is based on the tree structure algorithms to reduce the features by using
recursively. In the proposed sample selected the LR-RFE and SFS to gather the important features from
the NSL-KDD dataset and the output is delivered into recurrent neural network (RNN) and other machine
learning algorithms. Finally, the ELM classifier is to classify the normal and DDoS attack.

The proposed model has four modules that run together as shown in Fig. 2. Each module’s details are
discussed below.

2.1 Dataset

One of the best publicly available dataset for DoS attack is NSL KDD dataset with the implementation of
attack detection according to the requirement is possible. NSL-KDD is derived from the KDD CUP 99 [26]
dataset the dimension is reduced in the updated dataset. The updated NSL-KDD dataset can able to detect
some types of DDoS attack only such as neptune, smurf, apache2, teardrop etc.,. The NSL KDD has
42 features as described in the Tab. 1. These 42 features if fed into characteristic extortion (sample
selected) to obtain some important feature.

Figure 1: Framework of hybrid SSRNN-ELM

Data Set

Sample Selected 
features

Recurrent Neural
Network

Extreme Learning

Machine

(Classifier)
Attack

Normal

Figure 2: Modules of hybrid SSRNN-ELM method
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2.2 Characteristic Extraction (Sample Selected Feature Extraction)

The most important stage in the DDoS attack detection method is characteristic extraction. The
performance is highly improved with a collection of strong features to reflect the attack behavior. In
characteristic extraction the attack behaviors are thoroughly analyzed on the application layer of IoT
networks to detect the DDoS attacks. DDoS attackers have generally categorized them into four. The first
is a repetitive attack on a single IoT networks. This form of attack sends a lot of repeated requests at a
fixed speed or random speed to the target. In second repeated attack from the multiple IoT networks. In
this form, attackers submit a lot of server data is send to IoT devices with fix or variable speed. In the
third randomly select the IoT devices for attack. This form of attack software will search the IoT device
with less authorization and authentication of the target and then initiate an attack by randomly selecting
the IoT device as the target. In the fourth randomly select and repeated multiple attack session.
Traditional methods could not be able to detect this kind of DDoS attack because they mask themselves
by simulating typical user behaviors and submit attack requests repeatedly to IoT devices. With the help
of two feature selection methods such as recursive feature elimination (RFE) and sequence feature
selector (SFS) are used to obtain the important feature from the original NSL-KDD dataset.

2.2.1 Linear Regression–Recursive Feature Elimination (LR-RFE)
Recursive Feature Elimination (RFE) is a type of feature selection algorithm. An algorithm that selects a

subset with most relevant features form the original dataset is referred as feature selection algorithm. This
fewer feature can reduce the time complexity of machine learning algorithms and more effective also.
The machine learning may not work properly with irrelevant feature to select the most relevant and best
feature the linear regression recursive feature elimination (LR-RFE) method is used. It is a type of
wrapper-style feature selection which means regression model is combined with RFE for selects the
features. The linear regression model is used to ranking the feature by its importance and removes the

Table 1: Feature description of NSL-KDD dataset

Feature
number

Feature attribute Feature
number

Feature attribute Feature
number

Feature attribute

1. duration 15. su-attempted 29. same_srv_rate

2. type_protocol 16. num_root 30. diff_srv_rate

3. service 17. num_file_creations 31. srv_diff_host_rate

4. flag 18. num_shell 32. dst_host_count

5. src_byte_data 19. num_access_files 33. dst_host_srv_count

6. dst_byte_data 20. num_outbound_cmds 34. dst_host_same_srv_rate

7. land 21. is_host_login 35. dst_host_diff_srv_rate

8. wrong_fragment 22. is_guest_login 36. dst_host_same_src_port_rate

9. urgent 23. count 37. dst_host_srv_diff_host_rate

10. host 24. srv_count 38. dst_host_serror_rate

11. num_failed_login 25. serror_rate 39. dst_host_srv_serror_rate

12. logged_in 26. srv_error_rate 40. dst_host_rerror_rate

13. num_compromised 27. rerror_rate 41. dst_host_srv_rerror_rate

14. root_shell 28. srv_rerror_rate 42. class
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least important features; the RFE collects the subset of features with specified number of features remains as
described in the Algorithm 1. After using the LR-RFE most important 25 features are extracted from the
original NSL-KDD dataset and the import feature number are 2, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 22,
25, 26, 27, 28, 29,30, 31, 35, 36, 37, 38, 39, 41 these feature attributes are shown in Tab. 1.

2.2.2 Sequential Feature Selection
Sequential feature selection based on wrapper type method it adds and removes the features sequentially

from the dataset. It evaluates the individual features and selects the N features from the entire dataset based
on the best on the scores. Sequential feature selection has four sub types of namely sequential forward
selector (SFS), sequential backward selection (SBS), sequential forward floating selection (SFFS) and
sequential backward floating selection (SBFS). For linear variants features the sequential forward selector
and sequential backward selector is used whereas floating variants features sequential forward floating
selection and sequential backward floating selection is used. Two components involved in SFS one is an
objective function which find to minimize the number of overall features to form the subset of features.
Other is sequential search algorithm which adds or removes the features by evaluating the objective
function criterion. This search algorithm will follow one direction to reduce the number of features from
the original feature set as described in Algorithm 2. After using the SFS feature selection methods the
most important 30 features are selected form the original NSL-KDD dataset and the features numbers are
1, 2, 3, 4, 6, 8, 10, 11, 12, 14, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
41 these feature attributes are shown in Tab. 1.

Algorithm 1: LR-RFE Algorithm

Input: TD (Xtt,Ytt) , Where Xtt = [Xtt1, Xtt2 … , Xttn] is the Input features, Ytt = Output Class, n = (1,2,
…N) is Feature number and TD is the total NSL-KDD dataset

Output: SS(Xr,Yr), Where SS is the subset of sample selected features

1 S = [ ]

2 model = linearregression(X,Y)

3 rfe = RFE(model)

4 Xr = rfe.fit_transform(X,Y)

5 model.fit(Xr)

6 S = [rfe.index == True]

7 Xr = X.loc[:,S]

8 Yr = Y.loc[:,S]

9 return SS(Xr,Yr)

Algorithm 2: SFS Algorithm

Input: TD (Xtt,Ytt), Where Xtt = [Xtt1, Xtt2 …. , Xttn] is the Input features, Ytt = Output Class, n = (1,2,
…N) is Feature number and TD is the total NSL-KDD dataset

Output: SS1(Xr,Yr), Where SS1 is the subset from the SFS

Initialization: Xr = NULL, r = 0

1 S1 = [ ]
(Continued)
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2.3 Attack Detection

Once the optimized dataset is obtained after the feature selection the data preprocessing is invoked to
bring the data on refined form. To preprocess the data, normalization and standardization are used. In
normalization, each sample inputs to unit norms based on the cosine similarity of the features of the
range between minimum and maximum values. In standardization the data is uniform distributed with
Gaussian zero and mean variance. After the preprocessing, by using the machine learning algorithms and
proposed SSRNN-ELM algorithm used generate the model and to detect the DDoS attack. Further the
RNN, SSRNN, ELM and finally SSRNN-ELM are discussed below.

2.3.1 RNN
RNN is a category of neural networks that allow the use of previous outputs as inputs while hidden

states. It has many types like one to one, one to many, many to one, and many to many concerning the
input and output. To calculate the current state of the output feature, calculating the activation layer and
calculating the following formula were used.

qt ¼ f qt�1; atð Þ (1)

where qt - current state, qt�1 - previous state, at - input state

qt ¼ tanh Whhqt�1;Wxhqtð Þ (2)

where: whh - weight at recurrent neuron, wxh - weight at input neuron

ot ¼ Whyqt (3)

where: yt - output Why - weight at output layer

2.3.2 Sample Selected RNN (SSRNN)
In RNN inputs and outputs of all data are independent concerning each other and when it is required for

output status of attacks to predict it takes the previous output features and therefore is always needed to know
the previous data on attacks. Thus, sample selected features LR-RFE and SFS to RNN input layer (SSRNN)
is employed with number hidden layer to resolve the simple RNN problem. The most important aspect of
SSRNN is the output state which knows the information about all the input and output features must be
stored in the memory. It employs the same parameters for all inputs as for the output or hidden layers to
generate the same task. In contrast to other neural networks, this minimizes the complexity of parameters
and reduction in time.

Algorithm 2 (continued)

2 do

3 S1 = arg max TD(Xtt - x), Where x ∈ Xr

4 Xtt-n = Xtt - S1

5 n = n-1

6 until S1 converges

7 Xr = X.loc[:,S1]

8 Yr = Y.loc[:,S1]

9 return SS1(Xr,Yr)
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2.3.3 SSRNN-Extreme Learning Machine (ELM)
Extreme Learning Machines (ELM) is feed forward neural networks. It does not require gradient-based

back propagation to work. The algorithm for traditional neural network classification is the slow speed in
training the data and over-fitting problems when compared to the ELM. ELM is based on the principle of
empirical risk reduction and only requires a single iteration of its learning process. Local minimization
and multiple iterations are avoided by the ELM algorithm. The ELM algorithm is configured to set the
hidden layer nodes in more numbers hence it does not need to alter the input weights of the network and
a hidden bias in the implementation process, and it creates a specific best solution with the reduced time
complexity and high performance. With the ELM classification and further incorporated at RNN output
layer with ensemble feature selection algorithms. By using a trained SSRNN-ELM model the attack is
detected. Algorithm 3 provides detailed steps for SSRNN-ELM training.

Algorithm 3: SSRNNELM Data Training

Input: SS(xtt,ytt), SS1(xtt1,ytt1) Where Xtt = [Xtt1, Xtt2 …., Xttn] is the Input features, Ytt = Output
Class, n = (1,2,…N) is Feature number and SS is the sample selected features using LR-RFE and
SS1 is the sample selected features using SFS

Output: Training model

1 Initialize layers (l), count of neurons (H), bias(B), weight (W), learning rate (η), epoch (E);
accuracy = { }

2 Observed ← Input SS,SS1 to RNNELM

3 Accuracy ← (#(actual == observed) ÷ N) × 100

4 if (accuracy is not satisfactory)

5 change parameters = E, η, H, W

6 else

7 return E, η, H, W

8 set weight←random, bias Bi where i = 1,2,…, L.

9 rnnmodel (r) = sequential()

10 rnnmodel.add(RNN(16))

11 rnnmodel.add(dropout(0.1))

12 rnnmodel.add(RNN(16))

13 rnnmodel.add(dropout(0.1))

14 rnnmodel.add(dense(1))

15 rnnmodel.add(activation(sigmoid))

16 hiddenlayerelm (T) = model(input = rnnmodel.layers [0].output, output = rnnmodel.output)

17 Calculate Matrix H =
r w1; b1; x1ð Þ . . . : r wL; bL; xLð Þ

: : :
r w1; b1; xNð Þ . . . : r wL; bL; xNð Þ

18 Calculate HNew =
Hij

�� ��
PN

i;j¼1 Hij

�� ��
19 Calculate Output Layer weight β = H + T

20 Calculate the Reconstruction error OFi =
1

N

Xn

j¼1

xij � tij
� �2

21 elmmodel(Y) = ELM(T,β)

21 return trained_model (Yj) from higher to lower
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2.3.4 Final Attack Prediction
The trained model is generated by using the input collected data. Algorithm 4 demonstrates the final

detection process of the attack. When the model categorizes the regular traffic, it continues with the
normal operation. If the traffic and the model categories are abnormal the traffic as an attack immediately
activates the module mitigation. The outputs from the model produce the warning “?” immediately sends
the mirrored traffic to detect the attack.

3 Results and Discussion

The efficiency of the proposed SSRNN-ELM model and other ML algorithms is achieved using the
original and optimized NSL-KDD data set. Initially the NSL-KDD dataset consists of 42 attributes such
as time, urgency, bytes, bytes, count, etc. The datasets comprise normal traffic instances and various
traffic attacks class instances such as Teardrop, Land, Rootkit, Port Sweep, SPY, IMAP, etc. falling into
one of the four attack classes, namely DDoS, Probing, User to Root, and Remote to Local. The features
are symbolic or numerical. After the sample selected features by using LR-RFE and SFS the feature is
reduced to 25 and 30 features respectively. The optimized NSL-KDD dataset consists of 4,94,021 training
samples and 3,11,029 testing sample. Experimental simulation has been carried out using python 3.6,
keras, tensor flow, sci-kit learn, numpy and pandas.

In this work the assessment is carried out by general performance metrics such as accuracy, attack
detection rate, the attack predictive value, normal prediction value and F1 score. Here true positive (TP),
true negative (TN), false positive (FP) and false negative (FN). Finally, evaluate the degree of accuracy of
measurements as presented and compared to the literature technique with accuracy, attack detection rate,
attack predictive, normal predictive value and F1 score.

3.1 Confusion Matrix

The confusion matrix is an error matrix used to define a classification model (or classifier) performance
on a test data set with the true values. It makes it possible to visualize the performance of an algorithm. This
enables for easier definition of class confusion, e.g., one class is often mislabeled as the other. The key to the
confusion matrix is the number of correct and erroneous forecasts summed with count values and not only the
number of errors made by each class is shown in Fig. 3.

3.1.1 Accuracy-(ACC)
The percentage of all requests correctly defined over all the data is referred as Accuracy and the formula

is shown as follows.

ACC ¼ TP þ TN

TP þ FP þ TN þ FN
(4)

Algorithm 4: Detection of Attack

Input: Traffic Features Extracted (TFE)

Output: Attack Label (AL)

1 AL Trained Model (TFE)

2 if (AL == normal) then Continue with normal operation

3 if (AL == attack class) then Return AL

4 if (AL == ?) then Alarm/Create alert. Return AL
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3.1.2 Detection Rate-(DR)
This percentage of the ratio between total attack traffic instances to the correctly identified attack traffic

instances is referred as detection rate and the formula is as follows.

DR ¼ TP

TP þ FN
(5)

3.1.3 Attack Predictive Value-(APV)
The percentage of the ratio between attack traffic instances correctly detected among the expected cases

as an attack.

APV ¼ TP

TP þ FP
(6)

Figure 3: Confusion matrix for (a) LR, (b) NB, (c) DT, (d) AdaBoost, (e) RF, (f) RNN (g) RNNELM
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3.1.4 Normal Predictive Value-(NPV)
This refers to the percentage of normal traffic instances correctly detected among the real normal traffic

instances.

NPV ¼ TN

FP þ TN
(7)

3.1.5 F1-Score
The F1 Score rate is the ratio of normal requests that are detected as attacks overall normal requests as

follows.

F1 score ¼ 2 � TP
2 � TP þ FP þ FNð Þ (8)

The performance metrics without sample selected features on various ML algorithms with accuracy in
LR is 84.62%, NB 92.94%, DT is 93.0%, Adaboost is 92.48%, RF is 92.67%, RNN is 91.54% and
RNNELM is 91.54% as depicted in Fig. 4 and the other performance measure such as DR, APV, NPV,
F1-Score is also mentioned in Tab. 2.

The performance metrics with sample selected features using LR-RFE on various ML algorithms with
accuracy in LR is 91.63%, NB 91.42%, DT is 92.83%, Adaboost is 92.61%, RF is 98.06%, RNN is 99.27%
and RNNELM is 91.54% as depicted in Fig. 5 and the other performance measure such as DR, APV, NPV,
F1-Score is also mentioned in Tab. 3. The performance metrics with sample selected features using SFS on

Figure 4: Performance metrics of without sample selected features (a) accuracy (b) detection rate using
proposed RNNELM and other ML algorithms
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various ML algorithms with accuracy in LR is 88.73%, NB 91.42%, DT is 92.8%, Adaboost is 92.38%, RF is
92.51%, RNN is 98.44% and RNNELM is 99.25% as depicted in Fig. 6 and the other performance measure
such as DR, APV, NPV and F1-Score is also mentioned in Tab. 4. Hence, the proposed SSRNN-ELM has
better performance than the other conventional algorithms.

The proposed SSRNN-ELM showing the difference in accuracy with the existing method is up to ~5%
due to the sample selected features with ELM classifier.

Table 2: Performance metrics using without sample selected feature selection

Algorithm Accuracy DR APV NPV F1-Score

Logistic regression 84.62 0.818 0.988 0.960 0.896

Naïve bias 92.94 0.923 0.988 0.955 0.955

Decision tree 93.0 0.914 0.998 0.994 0.955

Ada Boost 92.48 0.910 0.995 0.982 0.951

Random Forest 92.67 0.910 0.998 0.995 0.952

RNN 91.54 0.904 0.989 0.961 0.945

RNN-ELM 91.54 0.904 0.989 0.961 0.945

Figure 5: Performance metrics of sample selected features using LR-RFE (a) accuracy (b) detection rate
using proposed RNNELM and other ML algorithms
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Table 3: Performance metrics using LR-RFE

Algorithm Accuracy DR APV NPV F1-Score

Linear regression 91.63 0.90 0.995 0.984 0.945

Navie Bayes 91.42 0.898 0.994 0.977 0.944

Decision Tree 92.83 0.913 0.997 0.989 0.954

Ada Boost 92.89 0.913 0.997 0.991 0.954

Random Forest 92.61 0.91 0.997 0.99 0.952

SSRNN 98.06 0.993 0.982 0.927 0.988

SSRNN-ELM 99.27 0.997 0.992 0.971 0.995

Figure 6: Performance metrics of sample selected feature with SFS (a) accuracy (b) detection rate using
proposed RNNELM and other ML algorithms

Table 4: Performance metrics using SFS

Algorithm Accuracy DR APV NPV F1-Score

Linear regression 88.73 0.866 0.993 0.974 0.925

Navie Bayes 91.42 0.899 0.992 0.973 0.944

Decision Tree 92.80 0.911 0.998 0.994 0.953

Ada Boost 92.38 0.909 0.996 0.984 0.951

Random Forest 92.51 0.908 0.998 0.995 0.951

SSRNN 98.44 0.988 0.992 0.969 0.990

SSRNN-ELM 99.25 0.991 0.999 0.996 0.995
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Fig. 7 presents the best accuracy, best F1 Score, the best detection rate of the attack, and best attack
prediction value by using various machine learning algorithms. This comparison will help make the best-
accuracy attack model mitigate the attack easily with high accuracy. Fig. 8 presents the time complexity
can be seen as the measure of how fast or slow an algorithm will perform for the input size it is always
given concerning some input size.

4 Conclusion

This article proposed the hybrid SSRNN-ELM model for an attack and detecting intrusion prevention
within the IoT network. The solution has been developed based on a deep neural network that is
supervised using RNN and classification as ELM with optimized sample selected features of NSL-KDD
dataset called SSRNN-ELM. The LR-RFE and RFE are the feature selection and reduction techniques
used in the sample selected features. Then, the model trained has been built on the nodes in the fog layer

Figure 7: Graph for accuracy, F1 Score, and precision, recall using various algorithms

Figure 8: Graph for time complexity using various algorithms
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which is used to detect the attack in the detection module. The proposed technique has been tested in the IoT-
fog testbed and the attack can be identified more quickly than deployed on the cloud. The experimental
results show the proposed model is outperforms greater accuracy up to 99% in detecting the attacks in
real-time when compared to all other existing algorithms such as LR, NB, DT, Adaboost, and RF.
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