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Abstract: With the advancement of communication and computing technologies,
multimedia technologies involving video and image applications have become an
important part of the information society and have become inextricably linked to
people's daily productivity and lives. Simultaneously, there is a growing interest
in super-resolution (SR) video reconstruction techniques. At the moment, the
design of digital twins in video computing and video reconstruction is based on
a number of difficult issues. Although there are several SR reconstruction techni-
ques available in the literature, most of the works have not considered the spatio-
temporal relationship between the video frames. With this motivation in mind,
this paper presents VDCNN-SS, a novel very deep convolutional neural networks
(VDCNN) with spatiotemporal similarity (SS) model for video reconstruction in
digital twins. The VDCNN-SS technique proposed here maps the relationship
between interconnected low resolution (LR) and high resolution (HR) image
blocks. It also considers the spatiotemporal non-local complementary and repeti-
tive data among nearby low-resolution video frames. Furthermore, the VDCNN
technique is used to learn the LR–HR correlation mapping learning process. A
series of simulations were run to examine the improved performance of the
VDCNN-SS model, and the experimental results demonstrated the superiority
of the VDCNN-SS technique over recent techniques.
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1 Introduction

Over the last few decades, multimedia has become an increasingly important component of people's daily
life. It is used as a result of the rapid development of internet users, which, according to ITU (International
Telecommunication Union) figures, reached approximately 3.2 billion users in 2015 [1,2]. Alternatively, the
purchasing cost of multimedia capturing devices is decreasing, and the majority of the devices are now
embedded in tablet, laptop, and mobile phone, making media production a work that can be completed by
anybody, at any time and from any location [3]. Finally, the influence of social media and the human desire
to interact with family and friends through chatting, words, and texts, as well as the richness of audio-visual
content, has inspired a novel way of communicating with their social surroundings via social networks such
as Twitter, Facebook, and Instagram [4]. As a result, the diversity, amount, and complexity of digital media
generated, recorded, analysed, saved, and processed via distributed and heterogeneous media sources and
cloud frameworks such as Flickr and Picasa have increased. This vast amount of multimedia content,
known as User Generated Content (UGC) [5] could be used to improve human-to-human communication,
but it is also used in a variety of unique application domains such as culture, tourism, entertainment, and
leisure. The general technique of video reconstruction is depicted in Fig. 1.

One intriguing approach is to use today's massive multimedia data sources for the reconstruction step
[6]. This will result in “wild” modelling, in which image data are obtained from distributed, web/social-
based multimedia sources for private or other purposes but not for correct reconstruction [7]. They
expanded on the preceding approach in this study by focusing on video series hosted on heterogeneous
and dispersed multimedia platforms. The goal is to generate modules of the scene they portray using high
visual data from video content. As a result, such movies contain a plethora of non-interesting items and
noises, such as persons in front of a cluttered background, monuments, moving vehicles, and so on [8].

To create modules, the video frames are first summarized using a video summarizing algorithm. To
summarise the videos, the unique idea proposed is to use discriminant Principal Component Analysis (d-
PCA). Recently, the d-PCA concept [9] was proposed to cluster the objects in order to maximize the
coherency of the foreground to the background. The use of Machine Learning (ML) based techniques is
widespread in many aspects of their lives, ranging from corporate logistics and advertising schemes to

Figure 1: General video reconstruction process
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applications on their cameras and smartphones, which are supported by a large number of devices and
dedicated hardware. Recently, there has been a surge in interest in Deep Learning (DL) approaches in the
research community. It is a subset of ML approaches that enables a smart scheme for manually learning
an acceptable data representation from the data itself. Because of the potential of DL-based approaches
for extracting the implicit data of this type of information, it is particularly beneficial for multimedia
applications such as audio and video classifications. Many DL classifications, for example, have attained
human performance in medical image classification for recognizing a large variety of disorders,
narrowing the gap between machine and human analytical capacity.

Recently, deep learning techniques have produced efficient learning methods in a wide spectrum of AI,
particularly for video and image analytics. This method can extract knowledge from massive amounts of
unstructured data and deliver data-driven solutions. They have made significant progress in a wide range of
research applications and domains, including pattern recognition, audio visual signal processing, and
computer vision. Furthermore, it is expected that DL and its improved methodologies would be included
into future image and sensor schemes. These methods are commonly used in CV and, more recently, video
analysis. Indeed, different DL methods have emerged in research scholars, business, and academics
scientists with efficient answers for numerous video and image-related difficulties. The primary goal of
developing DL is to achieve greater detection accuracy than prior algorithms. With the rapid development
of creative DL approaches and models such as Long Short-term Memory, Generative Adversarial Networks,
DotNetNuke, and Recurrent Neural Network, as well as the increased demand for visual signal processing
efficiency, unique probabilities are emerging in DL-based video processing, sensing, and imaging.

This research introduces VDCNN-SS, a novel VDCNN with spatiotemporal similarity (SS) model for video
reconstruction in digital twins. The suggested VDCNN-SS technique visualizes the relationship between
interconnected low resolution (LR) and high resolution (HR) picture blocks. It deals with non-local
complementary and repeating data that is spatially and temporally distributed across nearby low-resolution
video frames. The VDCNN model is utilized for learning the LR–HR correlation mapping to improve
reconstruction speed while maintaining SR quality, and the resultant HR video frames are obtained effectively
and quickly. A thorough simulation analysis is performed to evaluate the improved SR video reconstruction
performance of the VDCNN-SS technique, and the findings are examined in terms of several evaluation factors.

2 Structure

Mur et al. [10] suggested a fast DL reconstructor that uses spatiotemporal information in a video. They
were particularly interested in convolution gated recurrent units, which have lower memory requirements.
These simulations show that the projected recurrent network improves reconstruction quality over static
approaches that recreate video frames separately. Yao et al. [11] proposed a new DR2-Net for
reconstructing the image from their CS measurement. The DR2-Net is based on two explanations: 1)
Residual learning can improve reconstruction quality further, and 2) linear mapping can reconstruct
higher quality primary pictures. As a result, DR2-Net has two modules: a residual network and a linear
mapping network. The FC layer of NN, in particular, performs the linear mapping network.

Sankaralingam et al. [12] take advantage of learning-based algorithms in video SR fields, proposing a
new video SR reconstruction approach based on Deep Convolutional Neural Networks and Spatio-Temporal
Convolutional Neural Network-Super Resolution. It is a DL technique for reconstructing video SR that
implies a mapping relationship between related HR and LR picture blocks, as well as redundant
information and spatio-temporal non-local complements among neighbouring LR video frames. Sundaram
et al. [13] presented a super-resolution (SR) reconstruction technique based on an effective subpixel
CNN, whereas the optical flow is provided in the DL network. In addition, a superpixel convolutional
layer is added after the DCN to improve the SR. Higham et al. [14] demonstrate the DL application
employing convolution AE networks for recovering real-world 128128-pixel video at thirty frames per
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second from single pixel camera sampling at a compression ratio of 2%. Furthermore, by training the
network on a large database of images, it optimizes the first layer of the convolution networks, which is
equivalent to optimizing the basis used to scan the image intensities. Prakash et al. [15] asserts that by
learning from an instance of a specific context, this method offers the possibility of HR for task-specific
adaptation, which has implications for applications in metrology, gas sensing, and 3D imaging.

Kong et al. [16] used two DL modules to improve the spatial resolution of temperature regions. In
MPSRC, the three pathways with and without pooling layers are targeted at fully reflecting the spatial
distribution feature of temperature. The appropriate HR temperature regions have been successfully and
accurately rebuilt. Judith et al. [17] investigate a new foveated reconstruction technique that makes use of
recent advances in generative adversarial NN. They rebuilt a believable peripheral video from a smaller
fraction of pixels that provided each frame. When it comes to providing a visual experience with no
evident quality deterioration, this technology outperforms advanced foveated rendering.

3 The Proposed Video Reconstruction Model

This study developed a new VDCNN-SS technique for digital twins that employs correlation mapping
between the outer correlative blocks and nonlocal paired and repetitive data in surrounding LR video frames
to get higher quality reconstruction results. During the learning method, the VDCNN-SS technique employs
the VDCNN model to get the reconstruction variables among the LR and HR picture blocks that increase the
SR speed. In addition, curvelet transform (CLT) and structural similarity (SSIM) are used to provide
spatiotemporal fuzzy registration and fusion across neighbouring frames at the subpixel level. At this
point, the VDCNN-SS approach is extremely responsive to a complex motion process and produces
robust results. The complete working process is represented in Fig. 2, which includes two primary
processes: correlation mapping learning and SSIM measurement.

Figure 2: Overall process of VDCNN-SS model
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3.1 Design of VDCNN Based Correlation Mapping Learning Model

Correlation mapping learning is a method for learning the relationships between HR and LR video
frames. Sparse coding refers to the removal of all patches from the training set in order to reduce the
burden of storage and computation. This approach comprises multiple parts, which are summarized
below: reconstruction, patch extraction, sparse representation, and correlation mapping.

FiðY Þ ¼ maxð0; Wi�Fi�1ðY Þ þ BiÞ (1)

Whereas fW; Bg ¼ fW1; W2; W3; B1; B2; B3g denoted the filter and the bias attained during the
training procedure. The index i denotes the NN layer in the reconstruction procedure, and if i = 0, F0( Y)
signifies the input image which could be simply noted as X. Besides, the filter consist of 4 dimensional
matrices and the bias consists of vector. In additional explanations, c is presented for denoting the
channel of frame. fi and ni utilized for denoting the size and number of the filters in i layer, respectively.
Later, they could utilize these functions for representing the succeeding 3 phases:

1) Patch extraction and sparse depiction. The filter W1 dentoes the matrix of size c × f1 × f1 × n1 and bias
B1 indicates an n1-dimension vector, whereas f1 & n1 denotes the size and amount of the filters in the
initial layer. Eq. (1) could be considered as implementing n1 convolution on input frame X using a
kernel sized c × f1 × f2 and output an n1-dimension vector.

2) Correlation mapping. Here, the size of W2 is n1 × f2 × f2 × n2 and B2 denotes an n2-dimension vector,
afterward implementing n2 convolution to F1(Y), they could map n1-dimension LR image block to n2-
dimension HR image block.

3) Reconstruction. Here, the size of W3 is n2 × f3 × f3 × c, B3 implies the c-dimensional vector and the
output F3(Y) denotes a c-dimensional vector, that has the pixel value in the target area. Therefore,
the HR frame is reconstructed using a VDCNN.

The VDCNN is an adaptive framework for identifying text processes that was designed to provide
different depth levels (9, 17, 29, and 49). The network begins with a lookup table, which generates
embeddings for the input text and stores them in a two-dimensional tensor of size (f0, s). The number of
input characters (s) is set to 1,024 and the embedded dimensional (f0) is set to sixteen. The following
layer (three, Temp Convolution, 64) employs sixty-four sixty-four temporal convolutions of kernel size
three, resulting in a size sixty-four s output tensor. It is a significant function for fitting the lookup table
output with adaptive network segment input gathered by convolution blocks. All of the preceding blocks
are a series of two temporal convolution layers, all of which are achieved by a temporal batch
normalization layer [18] and a ReLU activation. Furthermore, different network depths are achieved by
varying the number of convolution blocks. For example, the depth seventeen architecture contains two
convolution blocks for each level of feature map, resulting in four convolution layers for all levels. The
following rule is used to reduce the network's memory footprint: Previously, each convolution block
doubled the number of feature maps, and the pooling layer split the temporal dimensions. Furthermore,
the VDCNN network features shortcut links for each convolution block that is run using 1 1 convolution.
The architecture of the VDCNN model is seen in Fig. 3.

They used another VDCNN for learning this parameter because the pair of biases and filters is critical in
the reconstruction procedure. Smaller filter sizes, deeper layers, and extra filters could improve DL efficiency.
The Media Source Extensions, as derived by Eq., is the cost function used at this stage (2). For minimizing
the cost function, they utilized regular BP technique integrated by the arbitrary gradient decent technique for
obtaining the optimum variables {W, B}.
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LðW ; BÞ ¼ 1

n

Xn
i¼1

kFðYi; Wi; Bi; Þ � Xik2 (2)

The variable pairs {W, B} was initiated with the help of Gaussian function using the distribution
Nð0; 0:001Þ. The filter upgrade task is displayed in Eq. (3), and the upgrade of bias is equivalent to filters.
Wl

iþ1 ¼ Wl
i þ Diþ1 (3)

Diþ1 ¼ 0:94þ g
@L

@Wl
i

Whereas i and l denoted the iteration time and layer correspondingly, and four denotes the increase in the
layer i. Since the variable pairs {W, B} attained in the training procedure could substantially enhance the
reconstruction performance and speed, in this work, they selected this technique for studying the mapping
relations among LR and HR frames and create an intermediate estimate frame.

3.2 Design of Curvelet Transform and SSIM

The intermediate video frames obtained from the LRHR relation mapping technique considered the
relationship between the LR and HR picture blocks in a single frame, which does not use the whole
spatio-temporal relation data between the nearby video frames. This data, on the other hand, could help
to maintain the video's temporal dependability. Conventional fuzzy registration is based on the
relationship between pixels in the neighbouring and target frames, which is typically defined as the
weighted average of each adjacent pixel [19]. Whereas a single measurement would not be able to adapt
well to the changing platform, in this work, they integrate the CLT and the SSIM for adjusting to local
motion, rotation, and other minor changes in the dynamic scene.

SR films frequently contain objects with a variety of characteristics. This characteristic has edges that
might be discontinuous or continuous. These edge-based discontinuities could be examined and tracked
using CLT. In this method, separate objects with their associated edge data are labelled as curvelets, which
can be seen via a multiscale directional transform. CLT is implemented in both continuous and discrete
domains. The interpretations and turns of U polar wedge filter characterise the continuous CLT and is
determined for 2−j scale in Eq. (6). Eq. (7) denotes the coarse curvelet filter where jEN calculates the detail
coefficient, for coarse and scale limit, the curvelet coefficient with translation xj;lk is displayed in Eq. (6).

Figure 3: Architecture of VDCNN
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[j ðr; �Þ ¼ 2
�3j
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CCA (4)

[j ðwÞ ¼ 2�j0W0ð2�j0 jwjÞ (5)

’j;k;lðxÞ ¼ ’jðRlðx� xðj;lÞk ÞÞ (6)

’j0;kðxÞ ¼ ’j0ðx� 2�j0kÞ
The curvelet is determined in Eq. (7) for the function 0f 0 that belong to R2 by curvelet coefficient as inner

product of ‘f’.

cðj; l; kÞ ¼ hf ; ’j;l;ki ¼
Z
R2

f ðxÞ’j;l;kðxÞdx (7)

whereas, w: Cartesian form parameter, r, Θ: polar form parameters, r ≥ 0, �e½0; 2pÞ, j0: window function,
j0 ≤ jEN, W: radial window function, V : angular window function through 2π period, R: Rotatel, φj,k,l(x):
spatial mother curvelet function, x: spatial space parameter vector, l: rotational variable, lEN0, and k:
translation variable, kEZ2.

Depending upon the orientation and scale, the curvelet coefficient is collected to different sub bands and
curvelet coefficients are calculated for all the sub bands. Afterward calculating the curvelet coefficient, the
normalized directional energy Ei (Ei the energy of ith subband) is calculated for all the curvelet subbands by
L1 norm displayed in Eq. (9). The last curvelet feature vector is denoted by:

fCT ¼ ½E1 E2 E3 E4 E5 E6 . . . Ens� (8)

Whereas ns denotes the overall amount of curvelet sub bands.

Ei ¼ 1

m� n

Xm
x¼1

Xn
y¼1

ciðx; yÞ (9)

Whereas Ei denotes the energy of ith subband coefficient and ci indicates the curvelet coefficient of sub
band i with dimension m × n.

For SSIM, assume 2 areas placed in pixels (i, j) & (k, l), and noted as Rij & Rkl, correspondingly, they
calculated their mean μ & standard deviation σ and covariance among these 2 regions as cov(i, j, k, l)
Depending upon these predetermined values, they could attain the SSIM as displayed in Eq. (10),
whereas e1 & e2 denotes constant.

SRSSðRij; RklÞ ¼ ð2lðk; lÞlði; jÞ þ e1Þð2covðk; l; i; jÞ þ e2Þ
ðlðk; lÞ2 þ lði; jÞ2 þ e1Þðrðk; lÞ2 þ rði; jÞ2 þ e2Þ

(10)

For all the search regions centered in (k, l) is reconstructed frame, noted as Rkl, they traversed their
nearby pixel points (i, j) in local window mark as R with predefined size and calculated the SSIM among
2 areas. Using a predetermined threshold, the area that is not equivalent to Rkl would be filtered out.
Therefore, the CLT SCLTðRij; RklÞ was considered as the core indicator and SSIM SRSSðRij; RklÞ was
used for fine tuning this similarity with a smaller weight λ, that would be fixed as 0.000 2 in last
research. Mark the nearby areas that must be selected from an adjacent frame and single frame.
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xðk; l; i; jÞ ¼ 1

Cðk; lÞ SZFSðRij; RklÞð1� kSRSS ðRij; RklÞÞ (11)

where (i, j) represents the searched pixels in a nonlocal search region, C(k, l) represents the normalized
constant determined by Eq. (12), and the variable e is utilized to control the weight decay rate.

Cðk; lÞ ¼
X

ði;jÞ2Rsrðk;lÞ
e
kZkl�Zijk22

e2 ð1� kSRSSðRij; RklÞÞ (12)

Whereas Rsr(k, l) represents the searching region. Afterward calculating the similarity among the video
frames, they can attain the weight of subregions based on Eq. (11), with appropriate regions that could be
chosen. Later, this area has been merged iteratively for obtaining a frame closer to original. In order to
pixel (k, l) that exists super-resolved, they would restructure it by the SR estimate energy function by:

x̂ðk; lÞ ¼ arg min kxðk; lÞ �
XT2

T¼T1

X
ði;jÞ2Rsrðk;lÞ

xðk; l; i; j; TÞxði; jÞk22 (13)

Whereas x(k, l) represents the older energy value in pixel (k, l) and x̂ðk; lÞ denotes the target value. Now,
they presented the variable T as frame amount of the traversed pixel (i, j) to represents the relation among
distinct frames. ½T1; T2� denotes the frame amount of range the searching image handled by the search
amount N generally, it could be expressed as [T0 −N, T0 + N]. Afterward minimalizing this function, they
can proceed with a closed form solution by:

x̂ðk; lÞ ¼
P

ðk;lÞ2�
P

T2½T1T2�
P

ði;jÞ2Rsrðk;lÞxðk; l; i; j; TÞxði; j; TÞP
ðk;lÞ2�

P
T2½T1T2�

P
ði;jÞ2R1ðklÞxðk; l; i; j; TÞ

(14)

3.3 Model Representation in Digital Twins

Grieves established the Digital Twin model and notion because the conceptual module underpins
Product Lifecycle Management [20]. Despite the fact that the phrase was not used previously, the main
components of each Digital Twin have been defined: virtual space, physical space, and the data flow
between them. The fundamental enablers of Digital Twins: Closed Captioning, Artificial Intelligence,
Internet of Things (IoT), Big Data, and sensor technologies have grown at an astonishing rate. Currently,
NASA defines a Digital Twin as a multiscale, Multiphysics, ultra-fidelity simulation, probabilistic that
allows real-world reproduction of the state of a physical object in cyberspace based on real-world sensor
and historical data. Tao et al. expanded the module and proposed that Digital Twin modelling must
comprise the following elements: virtual modelling, physical modelling, data modelling, service
modelling, and connection modelling.

Innovative technologies are paving the way for smart cities, in which every physical object would have
communication capabilities and embedded computing, allowing them to detect the platform and interact with
one another to provide services. Machine-to-Machine Communication/IoT is another term for intelligent
interoperability and linkages [21]. A smart city must have a smart home, smart energy, smart
manufacturing, and a smart transportation system. Data capture becomes comparably simple due to the
availability and affordability of actuators and sensors. One of the challenging tasks is diagnosing and
monitoring manufacturing machinery via the Internet. The merging of the virtual and physical worlds of
manufacturing is a major issue in the field of Cyber-Physical Systems (CPS) that demands additional
research.
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The concept of a “digital twin” is the creation of a module of a physical asset for the purpose of
forecasting maintenance. Using real-world sensory data, this method would usually be used to anticipate
the forthcoming of relevant physical resources in the operation/environment. It might discover and
monitor potential threats posed by its physical counterpart. It is divided into three sections: I virtual
products in virtual space, (ii) physical items in actual space, and (iii) a combination of virtual and real
products. As a result, evaluating and collecting a massive amount of manufacturing data in order to
uncover the data and relationship becomes critical for smart manufacturing. General Electric has begun
their digital transformation path, which is centred on Digital Twin, by building critical jet engine modules
that forecast the business results associated to the residual life of these modules. In this study, a new
video reconstruction technique for digital twins is devised, which aids in real-time performance.

The concept engaged in the extensive reference approach is to broaden and hand over the conceptual
model while conveying the scientific fundamentals of video reconstruction standards to the aspect of
digital twins. The proposed concept is focused on “twinning” between the physical and virtual spheres.
As a result, a digital twin model may be created using an abstract technique that includes all of the traits
and completely explains the physical twin at a conceptual level. Thought simulations are performed based
on the abstract model, allowing for the capture and understanding of the physical twin at an abstract level.

3.4 Steps Involved in Proposed Model

Based on the aforementioned procedures, the projected method is given below. Now, this technique is
separated into 2 phases: reconstruction and training processes.

Input LR video sequence fXt; tgTt¼1, SR factor s, HR training data THR, LR trained data TLR, the amount
of NN layers L, the filter size f, and the filter amount n, for all the layers. The nearby searching frame N,
weight control variable e, and the round number K.

Outcome HR video sequence fYt; tgTt¼1:

Training procedure Input the training sets THR & TLR into the VDCNN and utilize BP for obtaining an
optimum fW ; Bg variable pairs.

SR Reconstruction Procedure

Step 1 Utilize the bi-cubic method for obtaining an early estimation of LR video sequence, mark as
fX 0

t ; tgTt¼1:

Step 2 For fX 0
t ; tgTt¼1; plug the variable pairs fW ; Bg attained from the training procedure for getting

the in-between outcomes fY 0
t ; tgTt¼1 by VDCNN.

Step 3 Enlarge the edge of frame y0t and its nearby frames, and note the enlarged frames as fyEs gtþN
t�N :

Step 4 Traverse the reconstructed frame y0t and attain the reconstructed block Rkl.

Step 5 Traverse the nearby region of Rkl in fyEs gtþN
t�N and attain the blocks that should be merged, mark

this block as fRijgði;jÞ2Rsrðk;lÞ:

Step 6 Calculate the SSIM among Rkl & Rij and evaluate when Rij is equivalent to the reconstructed
block. When this region is not equivalent as recommended, proceed to Step-8 for getting the subsequent
block, otherwise note the similar regions as Rî̂j:

Step 7 For Rkl, upgrade its weight.

Step 8 When there exist other blocks in fRijgði;jÞ2Rsrðk;lÞ; proceed to Step 5 for getting the subsequent
block, otherwise, proceed to Step 10.

Step 9 Merge the group of equivalent areas Rî̂j to attain the target block R�
kl:
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Step 10 When other blocks are existed in the reconstructed frames, proceed to Step 4 for getting the
subsequent blocks, otherwise the target frame fYt; tgTt¼1 is attained.

Step 11 Update repetitively: when the round amount k is lesser compared to present maximal K,
continue to Steps 3 & 4; or else, stop the process.

4 Performance Validation

The proposed VDCNN-SS technique's SR video reconstruction performance is examined in terms of
several factors. Tab. 1 compares the Peak signal-to-noise ratio (PSNR) and SSIM of the VDCNN-SS
technique to other known algorithms on four datasets.

Fig. 4 compares the performance of the VDCNN-SS technique to other strategies in terms of PSNR on
four test movies. The figure shows that the VDCNN-SS technique achieved an effective result by providing
maximum PSNR values on the used videos. For example, on the applied lady video, the VDCNN-SS
technique achieved a greater PSNR of 36.28 dB, but the Bicubic, SelfExSR, SRCNN, VSRnet, sub-pixel
motion compensation (SPMC), and Deep Fusion- Enhanced Super-Resolution (DF-ESR) procedures
achieved lower PSNRs of 32.75, 34.21, 34.09, 34.67, 33.73, and 34.39 dB, respectively. Furthermore, on
the used Sign video, the VDCNN-SS technique produced a superior PSNR of 46.91 dB, whereas the
Bicubic, SelfExSR, SRCNN, VSRnet, SPMC, and DF-ESR methods achieved a minimum PSNR of
35.28, 41.90, 40.29, 41.59, 34.69, and 42.30 dB, respectively. Finally, on the used bird video, the
VDCNN-SS technique obtained a maximum PSNR of 44.21 dB, whereas the Bicubic, SelfExSR,
SRCNN, VSRnet, SPMC, and DF-ESR methods obtained lower PSNRs of 39.85, 41.38, 41.37, 41.63,
40.26, and 41.63 dB, respectively. Furthermore, on the applied beach video, the VDCNN-SS approach
achieved a greater PSNR of 38.72 dB, whereas the Bicubic, SelfExSR, SRCNN, VSRnet, SPMC, and
DF-ESR techniques achieved a minimal PSNR of 31.56, 33.17, 32.92, 33.34, 32.08, and 33.46 dB,
respectively.

Fig. 5 compares the performance of the VDCNN-SS method to other approaches in terms of SSIM on
four test movies. According to the graph, the VDCNN-SS method achieved an effective outcome by
providing maximum SSIM values on the applied videos. For example, on the applied lady video, the
VDCNN-SS method obtained an improved SSIM of 95, whilst the Bicubic, SelfExSR, SRCNN, VSRnet,
SPMC, and DF-ESR approaches obtained a minimal SSIM of 88, 90, 90, 91, 91, and 91, respectively.
Following that, on the applied Sign video, the VDCNN-SS approach produced a higher SSIM of 99.45,
but the Bicubic, SelfExSR, SRCNN, VSRnet, SPMC, and DF-ESR strategies obtained a lower SSIM of

Table 1: Result analysis of various models with respect to PSNR and SSIM for four videos samples

Methods Woman Sign Bird Beach

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 32.75 88.00 35.28 96.00 39.85 96.00 31.56 87.00

SelfExSR 34.21 90.00 41.90 99.00 41.38 97.00 33.17 90.00

SRCNN 34.09 90.00 40.29 98.00 41.37 97.00 32.92 89.00

VSRnet 34.67 91.00 41.59 98.00 41.63 97.00 33.34 90.00

SPMC 33.73 91.00 34.69 97.00 40.26 97.00 32.08 89.00

DF-ESR 34.39 91.00 42.30 98.00 41.63 97.00 33.46 90.00

VDCNN-SS 36.28 95.00 46.91 99.45 44.21 98.00 38..72 96.00
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96, 99, 98, 97, and 98, respectively. Furthermore, on the applied bird video, the VDCNN-SS methodology
produced a superior SSIM of 98, whereas the Bicubic, SelfExSR, SRCNN, VSRnet, SPMC, and DF-ESR
methods obtained a minimal SSIM of 96, 97, 97, 97, and 97, respectively. Finally, on the applied beach
video, the VDCNN-SS methodology obtained a superior SSIM of 96, whilst the Bicubic, SelfExSR,
SRCNN, VSRnet, SPMC, and DF-ESR algorithms obtained a minimum SSIM of 87, 90, 89, 90, 89, and
90, respectively.

A series of simulations are run on a benchmark video dataset to further ensure the increased performance
of the proposed technique. Fig. 6 depicts an example set of video frames from the used David dataset.

Tab. 2 and Fig. 7 show a detailed PSNR comparison of the VDCNN-SS technique with existing
techniques over a range of frame counts. The collected findings show that the VDCNN-SS technique
achieved superior performance with the highest PSNR value. For example, under 10 frames, the
VDCNN-SS technique yielded a better result with a PSNR of 35.98 dB, but the SPMC and DF-ESR
procedures yielded lower results with PSNRs of 32.23 and 33.66 dB, respectively. Furthermore, under
30 frames, the VDCNN-SS method surpassed increased results with a PSNR of 35.12 dB, whilst the

Figure 4: Result analysis of VDCNN-SS model in terms of PSNR

Figure 5: Result analysis of VDCNN-SS model in terms of SSIM
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SPMC and DF-ESR methods fared poorly with PSNRs of 30.50 and 32.71 dB, respectively. Similarly, under
50 frames, the VDCNN-SS approach achieves the best results with a PSNR of 40.14 dB, while the SPMC
and DF-ESR procedures achieve poorer results with PSNRs of 36.40 and 38.99 dB, respectively.

Figure 6: Sample images (David dataset)

Table 2: Result analysis of various methods on complex david dataset in terms of PSNR values

No. of frames SPMC DF-ESR VDCNN-SS

1 32.23 33.66 35.98

10 31.02 32.48 34.94

20 32.00 34.26 35.84

30 30.50 32.71 35.12

40 36.20 38.30 39.42

50 36.40 38.99 40.14

60 36.00 37.25 38.47

70 30.42 32.96 34.15

80 32.60 34.87 37.26

90 33.01 34.55 36.14

100 33.20 35.40 37.00

110 33.12 34.57 36.10

120 32.70 34.21 36.56

130 31.62 33.79 35.23

140 31.24 32.60 33.84

150 31.80 33.06 35.53
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Simultaneously, under 70 frames, the VDCNN-SS methodology performed better with a PSNR of 34.15
dB, while the SPMC and DF-ESR methods fared worse with PSNRs of 30.42 and 32.96 dB, respectively.
Concurrently, under 100 frames, the VDCNN-SS approach yielded a better result with a PSNR of 37 dB,
whilst the SPMC and DF-ESR algorithms yielded the worst results with PSNRs of 33.20 and 35.40 dB,
respectively. Under 130 frames, the VDCNN-SS method yielded a greater result with a PSNR of 35.23
dB, but the SPMC and DF-ESR procedures yielded lower results with PSNRs of 31.62 and 33.79 dB,
respectively. Finally, within 150 frames, the VDCNN-SS technique achieves the best results with a PSNR
of 35.53 dB, while the SPMC and DF-ESR algorithms achieve the worst results with PSNRs of
31.80 and 33.06 dB, respectively.

A series of simulations on benchmark video datasets are performed to further ensure the improved
performance of the current technique. Fig. 8 depicts a sample set of video frames from the applied girl
dataset [22].

Tab. 3 and Fig. 9 show a complete PSNR analysis of the VDCNN-SS method with existing techniques
over a range of frame counts. The obtained results show that the VDCNN-SS approach achieved improved
performance with the highest possible PSNR value. Under 100 frames, the VDCNN-SS method produced a
better result with a PSNR of 42.76 dB, but the SPMC and DF-ESR methods produced a lower result with
PSNRs of 36.13 and 39.27 dB, respectively. Also, under 300 frames, the VDCNN-SS technique
performed better with a PSNR of 43.73 dB, but the SPMC and DF-ESR algorithms performed worse with
PSNRs of 37.12 and 40.62 dB, respectively. Similarly, under 500 frames, the VDCNN-SS method
yielded a higher result with a PSNR of 38.64 dB, but the SPMC and DF-ESR procedures yielded lower
results with PSNRs of 34.97 and 37.33 dB, respectively.

At the same time, under 700 frames, the VDCNN-SS strategy performed better with a PSNR of 42.30
dB, whilst the SPMC and DF-ESR strategies performed worse with PSNRs of 39.56 and 41.09 dB,
respectively. Simultaneously, under 1000 frames, the VDCNN-SS approach yielded a better result with a
PSNR of 47.55 dB, whilst the SPMC and DF-ESR procedures yielded lower results with PSNRs of
41.76 and 44.22 dB, respectively. Following that, under 1300 frames, the VDCNN-SS technique
performed better with a PSNR of 48.42 dB, whilst the SPMC and DF-ESR approaches performed worse
with PSNRs of 45.65 and 47.05 dB, respectively. Finally, under 1500 frames, the VDCNN-SS method
fared better with a PSNR of 48.87 dB, while the SPMC and DF-ESR methods performed worse with
PSNRs of 42.55 and 45.69 dB, respectively.

Figure 7: PNSR analysis of VDCNN-SS model on david dataset
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Figure 8: Sample images (Girl dataset)

Table 3: Result analysis of various methods on complex girl dataset in terms of PSNR values

No. of frames SPMC DF-ESR VDCNN-SS

1 38.02 41.33 43.61

100 36.13 39.27 42.76

200 35.62 38.95 42.28

300 37.12 40.62 43.73

400 37.02 40.32 43.61

500 34.97 37.33 38.64

600 34.99 36.45 39.88

700 39.56 41.09 42.30

800 39.23 42.40 45.51

900 40.68 41.83 45.16

1000 41.76 44.22 47.55

1100 42.51 43.86 45.16

1200 44.02 47.50 48.84

1300 45.65 47.05 48.42

1400 45.95 47.24 50.84

1500 42.55 45.69 48.87

1584 IASC, 2022, vol.34, no.3



5 Conclusion

This research provided a novel VDCNN-SS technique for successful SR video reconstruction. The
VDCNN-SS technique primarily employs the VDCNN model to acquire the reconstruction variables
among the LR and HR picture blocks that increase the SR speed. Additionally, the use of CLT and SSIM
occurs. The intermediate video frames obtained from the LRHR relation mapping technique considered
the relationship between the LR and HR picture blocks in a single frame, which does not use the whole
spatio-temporal relation data between the nearby video frames. A comprehensive simulation analysis is
performed to examine the improved SR video reconstruction performance of the VDCNN-SS technique,
and the findings are analysed in terms of several evaluation factors. The testing results demonstrated the
superiority of the VDCNN-SS technique over the more modern techniques. The pretrained rebuilt
coefficient can be used to speed up the SR video reconstruction process in the future. Furthermore, the
reconstruction results can be improved by employing the optimization technique using SS.
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