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Abstract: Active learning methods which present selected examples from the cor-
pus for annotation provide more efficient learning of supervised relation extrac-
tion models, but they leave the developer in the unenviable role of a passive
informant. To restore the developer’s proper role as a partner with the system,
we must give the developer an ability to inspect the extraction model during
development. We propose to make this possible through a representation based
on lexicalized dependency paths (LDPs) coupled with an active learner for LDPs.
We apply LDPs to both simulated and real active learning with ACE as evaluation
and a year’s newswire for training and show that simulated active learning greatly
reduces annotation cost while maintaining similar performance level of supervised
learning, while real active learning yields comparable performance to the state-of-
the-art using a small number of annotations.
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1 Introduction

Relation extraction has seen a lot of development in recent years, with supervised learning methods
using neural network models making the most progress ([1–16]). This, however, requires lots of training
data, which limits the portability to new relations and domains.

Active learning methods which present selected examples from the corpus to the user for acceptance or
rejection (as instances of the relation) provide more efficient learning of these models ([17–24]). However,
they can be frustrating for developers because they do not afford any insight into or direct control of the
model under development; the developer becomes a passive informant. This makes for good papers but
not for useable systems.

This has led in practice to the continued use of manually-curated rule-based systems, which are more
inspectable and thus give the developer more control [25]. Our goal is to find a rule-based representation
that is transparent, intuitive and efficient, so that rules can be easily understood and a small set of rules
yields satisfactory performance.
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We utilize lexicalized dependency paths as the representation for our active learning system. Lexicalized
dependency path (LDP) was proposed in [26] and was shown to be a good fit for supervised relation
extraction while being more efficient and transparent than previous models. This makes active learning of
LDPs feasible. This approach, a type of active learning for relation extractors, is being implemented in
ICE [27].

2 Related Work

Reference [28] presented the Snowball system for bootstrapping relations from large text corpora,
presenting strategies for generating and evaluating extraction patterns. Reference [19] presented an active
learning model for pipelines including segmentation, entity recognition and relation extraction. Reference
[20] explored multi-task Active learning adding various constraints on the output. Reference [29]
combined semi-supervised learning with active learning for extraction in the biomedical domain.
Reference [30] used word clustering for semi-supervised extraction of relations. Reference [21] presented
an active learning system for relation extraction looking at both local and global views of relation
instances. Reference [31] used similarity of tree-kernels for domain adaptation of relation extraction.
Reference [22] presented an efficient active learning system that observed a big gain for small numbers of
annotations. They used a good balance of positive and negative samples and boosts efficiency by
interleaving self-training and co-testing. Reference [32] used partial and distant supervision for selecting
uncertain and informative examples. Reference [24] presented an active learning system for extracting
rules from log-linear and neural network models. References [33,34] presented active learning systems in
entity recognition for aiding relation extraction.

3 Active Learning

3.1 Lexicalized Dependency Path

LDP [26] is based on the dependency paths between two entities in a dependency tree and it specifies a
path between two entities (nodes) through a dependency tree; it has the form:

arg1type� deptype : lex :deptype : lex : ::: :deptype� arg2type:

The arg1type and arg2type are entity types of the two arguments of a relation (e.g., PERSON, GPE),
deptype specifies a type of dependency relation (e.g., nsubj, dobj), and lex is the base form of a lexical
item (e.g., work, from). If an arc of type X in the dependency tree is traversed from governor to
dependent, the path includes ‘X’; if the arc is traversed from dependent to governor, the path includes ‘X-
1’, e.g., nsubj-1 or dobj-1.

Extending dependency path this way has several advantages over predecessors. First, it creates a rule-
based system that is unified and easily understood and it allows a nature extension to other forms of learning
such as active learning. Second, this representation also means we can dissect a sentence into a number of
LDPs allowing for a supervised trainer to be used.

To combine coarse and fine semantic classes, we differentiate LDPs formed between pairs of entity type
arguments and all of its subtype arguments. Given a sentence with a pair of entity mentions, we can proceed
in three ways: we can create a type LDP from the types of the entity mentions; we can create a subtype LDP
from the subtypes of the entity mentions; or we can create both type and subtype LDPs. In the last case, a test
LDP may have two matches against the model: one matching types, one matching subtypes. In that case the
subtype match takes precedence. This makes it possible to have general rules and more specific exceptions.
Supervised learning of LDPs is shown to be effective in [26] and we describe the extension to active learning
next.
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3.2 Setup

Active learning (AL) involves a tight coupling of developer and machine. At each cycle of the learning
process, the machine selects from an unlabeled training set one or more items and the developer labels them.
The selection criteria vary, but basically try to maximize the expected value of the improvement of the
accuracy of the model being trained. In our case the items are LDPs and the labels are the relation types
or “no relation”.

We perform both simulated and real active learning. Real active learning involves a real developer as an
integral part of the customization process, an expensive process but an essential one to ensure that we are not
overlooking some potential problem with the learning process. In simulated active learning, we simulate the
judgment of the developer by consulting an annotated training corpus. This makes it possible to make many
runs with different parameters at reasonable cost, but is limited by the availability of annotated corpora.

Experiments in active learning require a small set of seeds, a large unlabeled corpus for training (the
‘source corpus’), and a small labeled corpus for evaluation (the ‘target corpus’). In real active learning,
ACE [35] is used as the target domain and we used the Los Angeles Times from 2006 to serve as the
source domain. This corpus, part of the Linguistic Data Consortium’s Gigaword collection, has
approximately 41,000 documents with 30 million words. Approximately 800,000 LDPs are generated.

ICE [27] converts the seed phrases to LDPs and uses a shared argument pairs metric to identify the LDPs
most similar to the seeds, which are returned as a ranked list to the user. A shared argument pairs metric
counts the number of pairs of arguments which two LDPs have in common. This is a simple selection
strategy based only on positive evidence, but relying on positive evidence has proven effective in active
learning of extraction engines when there are few labeled examples [23].

Apart from the shared argument ranker, we also tried the maximum entropy and smallest margin rankers.
In terms of entropy, given unlabeled example x and output class Y , the uncertainty can be calculated via the
following:

S xð Þ ¼
Xn

y2Y
P yjxð ÞlogPðyjxÞ

The smallest margin can be calculated as follows given the two most likely classes y1; y2:

S xð Þ ¼ P y1jxð Þ � P y2jxð Þj j
The user can then accept some of these LDPs and reject others. This process is repeated for several

iterations. The selected LDPs are then scored on the target domain. Simulated active learning splits the
ACE corpus the same way as supervised learning (bn+nw as training, and each of bc, cts, un and wl as
test). The ACE training data is used to provide relation labels for a LDP, and the resulting LDPs are
scored on the test.

4 Experimental Results

The ACE 2005 corpus [35] is used to evaluate our active learning model. ACE has approximately
600 documents with a total of 300,000 words, annotated for entities, relations, and events. 6 relation
classes are annotated: ORG-AFF (Organization-Affiliation), PART-WHOLE, PHYS (Physical), GEN-AFF
(General-Affiliation), PER-SOC (Person-Social), and ART (Artifact). We also use the NR class to
indicate ‘no relation’. 7 entity types are annotated in ACE 2005: PERSON, GPE (Geo-Political Entity),
ORGANIZATION, LOCATION, FACILITY, WEA (Weapon), and VEH (Vehicle).
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4.1 Simulated Active Learning

The source domain of LA Times contains over 800 k LDPs to sample from, and a portion of selected
LDPs won’t have a match in ACE, therefore we choose a relatively large batch size of 100. 90% of ACE
is used as the oracle, and the remaining 10% as the target domain for active learning (AL), where we
picked a train/test split on ACE that produced a F1 close to the supervised mean of 59.14% after 20 runs
to reduce the random variations. We use several starting seeds for each relation class, some of which
shared with other classes (e.g., the seeds ‘Person of GPE’ and ‘GPE Person’ are used for ORG-AFF,
GEN-AFF and PHYS).

We ran experiments using type only LDPs first and then added subtypes. The AL curves of using type
only LDPs and type + subtype LDPs along with a direct comparison of F1 between the two are shown in
Fig. 1. Using the seeds, we get a F1 of 33.66% for type LDPs and 34.21% for type + subtype. Type +
subtype clearly outperforms type LDPs, beating it by over 3% after 10 iterations. This is the result of
smaller precision drops at the later iterations and a steady increase in recall across all iterations. In the
initial iterations, a much bigger F1 increase is observed for both graphs, where for type + subtype the
F1 increase in the first 2 iterations is similar to the increase for the latter 8 iterations combined, showing
active learning using LDPs is able to achieve good performance using only a small number of labels.

Figure 1: Simulated active learning performances for type LDP (top left) and type + subtype LDP (top right)
on all relation classes. Direct comparison of F1 scores is also shown (bottom)
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In terms of labeling reduction, after 10 iterations, the LDPs selected from ICE matched a total of
439 LDPs from ACE (274 type and 165 subtype). The training split of ACE contains a total of
5782 LDPs (2524 type and 3258 subtype). Therefore, for type LDP, we only labeled 10.86% of the
training LDPs and is able to achieve 91.01% of supervised scores, reducing labeling effort on the new
domain by 89.1%. For type + subtype LDPs, we used 7.59% of training LDPs and achieved 93.95% of
supervised scores, reducing labeling effort on the new domain by 92.4%.

4.2 Real Active Learning

The source domain for real active learning (AL) is the same as simulated AL but the target domain is
now the entire ACE corpus. For LDPs selected by ICE, we ask the developer to provide relation labels.
In the case of relation label conflicts, the developer is asked to resolve it and select just one label. We ran
experiments on both type and type + subtype LDPs; scores for 10 iterations are shown in Fig. 2. Several
seeds for each relation class are used and iterations have a batch size of 100. Using the seeds, type and
type + subtype LDPs respectively gets a F1 of 34.38% and 34.98% on ACE, and after 10 iterations, the
F1 are respectively 53.02% and 57.55%. Type + subtype still outperforms type LDPs by a large margin
(4.5%), consistent with results from supervised training and simulated AL, which further shows the
advantage of combining fine and coarse semantic classes.

Figure 2: Real Active learning performances for type LDP (top left) and type + subtype LDP (top right) on
all relation classes. Direct comparisons of F1 scores for simulated and real AL are also shown (bottom)
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Comparing simulated AL with real AL in Fig. 2, it shows that real AL outperforms simulated AL for
both type and type + subtype LDPs (2% for type + subtype). This might seem surprising at first as real
AL introduces human labeling error. But the result is also expected because real AL doesn’t rely on the
training split of ACE to provide labels for selected examples: it has an unlabeled pool of over 800 k
LDPs to choose from. If the ranking of unlabeled LDPs on the source domain is further optimized, real
AL could potentially outperform supervised LDP scores. Considering human error in labeling and
relation classification left to the developer, the increase in performance of real AL against simulated AL
shows that by giving the developer the ability to inspect the extraction model during development, as we
have using the LDP representation, we are able to achieve a better learning performance.

We compare our active learning results to other state-of-the-arts methods in Tab. 1. Precision (P), Recall
(R), and F1-score (F) are shown. The F1-score is the standard metric for comparing the overall performance
of models. They can be calculated as follows:

P ¼ relevat relationsf g \ retrieved relationsf gj j
retrieved relationsf gj j

R ¼ relevat relationsf g \ retrieved relationsf gj j
relevant relationsf gj j

F ¼ 2PR

P þ R

In terms of other methods that we compare with in Tab. 1, [22] randomly selected 80% of ACE 2004 as
source domain for sampling and the rest 20% as target domain for testing. Reference [21] also uses ACE
2004 as both the source and target domain. Our source domain is approximately 100 times larger than
ACE 2004 and 2005, therefore in order to directly compare our number of labeled instances to theirs, we
use the number of instances from the source that are also in ACE 2005: after 10 iterations, the LDPs
selected from the source domain matched 206 LDPs from ACE 2005 so the performance using the
closest number of labels, 150 for [22] and 200 for [21], are compared. Relation types are also different
between ACE 2004 and 2005 and for direct comparison, EMP-ORG relation of ACE 2004 is compared
with ORG-AFF of ACE 2005, GPE-AFF of 2004 is compared with GEN-AFF of 2005, and

Table 1: Active learning performance of our system using type + subtype LDPs on ACE 2005 after
10 iterations compared with state-of-the-arts on ACE 2004 using a similar number of labeled instances

Relation Type + Subtype LDP B + N + S + G LGCo-Testing

P R F F F

ORG-AFF 74.25 57.93 65.08 71.52 66.20

GEN-AFF 55.74 46.17 50.51 43.01 44.50

PART-WHOLE 62.12 50.78 55.88 N/A N/A

PHYS 52.49 42.61 47.04 41.16 39.90

PER-SOC 71.32 66.18 68.65 68.87 70.80

ART 73.26 46.82 57.13 43.33 65.40

ALL 63.98 52.29 57.55 52.98 N/A
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PART-WHOLE of 2005 is not compared as the relation class did not exist before. Results of our type +
subtype LDP model with the best systems B+N+S+G of [22] after 150 instances and LGCo-Testing of
[21] after 200 labels are shown in Tab. 1. Overall, our real active learning system using type + subtype
LDPs outperforms theirs despite having to adapt from a vastly different source, which further shows the
advantage of having an inspectable development model.

4.3 Discussion

Our LDP model is inspectable and so can provide insights to understand system failures and errors much
more easily than feature-based and neural network based models. The supervised LDP model on average
misses about 40% of ACE relations. Many of these can be recovered by a kNN classifier or soft match in
place of exact match for LDPs and readily explained.

Some errors reflect choices made regarding the dependency structure. For example, some parsers
generate rather flat noun groups, thus missing some ‘true’ dependency relations. The noun phrase ‘GM
chief Rick…’ has the LDP ORGANIZATION–nn-1–PERSON which doesn’t contain the crucial word
chief on its path that can easily identify the ORG-AFF relation. These prenominal modifiers that serve to
identify the relation class would not be on the path. Another example is ‘William, brother Harry…’

which has the LDP PERSON–appos–PERSON and doesn’t contain the word brother which identifies a
PER-SOC relation. Reference [36] addressed this problem by introducing ‘syntactico-semantic structures’
for analyzing relations within noun groups; we aim to adopt a similar strategy in future works.

5 Future Work

We aim to improve the ranking of unlabeled LDPs. In addition to the shared argument ranker used in
these experiments, we have implemented a ranker based on word embeddings and plan to try rankers
which more directly capture uncertainty. We plan to test on additional entity and relation types, such as
SemEval, and to provide a more general hierarchy extending the type-subtype pairs of ACE.

6 Conclusion

We proposed an active learner utilizing lexicalized dependency path (LDP) as the representation to
provide the developer with more control over the extraction model. We applied our LDP model to
simulated and real active learning and found that combining fine and coarse semantic classes in our use
of type + subtype LDPs achieved F1 improvement of 4.5% over just coarse classes. Simulated active
learning experiments using LDPs reduced the labeling effort on ACE by over 92% and maintained close
to supervised scores. Real active learning experiments of LDPs outperformed simulated by 2% due to
having a much bigger pool of unlabeled examples to select from and achieved a better overall
performance to the state-of-the-art, showing the advantage of collaborative involvement of the developer
in the extraction model.
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