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Abstract: Internet of Things (IoT) is the most widespread and fastest growing
technology today. Due to the increasing of IoT devices connected to the Internet,
the IoT is the most technology under security attacks. The IoT devices are not
designed with security because they are resource constrained devices. Therefore,
having an accurate IoT security system to detect security attacks is challenging.
Intrusion Detection Systems (IDSs) using machine learning and deep learning
techniques can detect security attacks accurately. This paper develops an IDS
architecture based on Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) deep learning algorithms. We implement our model on
the UNSW-NB15 dataset which is a new network intrusion dataset that cate-
gorizes the network traffic into normal and attacks traffic. In this work, interpola-
tion data preprocessing is used to compute the missing values. Also, the
imbalanced data problem is solved using a synthetic data generation method.
Extensive experiments have been implemented to compare the performance
results of the proposed model (CNN+LSTM) with a basic model (CNN only)
using both balanced and imbalanced dataset. Also, with some state-of-the-art
machine learning classifiers (Decision Tree (DT) and Random Forest (RF)) using
both balanced and imbalanced dataset. The results proved the impact of the bal-
ancing technique. The proposed hybrid model with the balance technique can
classify the traffic into normal class and attack class with reasonable accuracy
(92.10%) compared with the basic CNN model (89.90%) and the machine learn-
ing (DT 88.57% and RF 90.85%) models. Moreover, comparing the proposed
model results with the most related works shows that the proposed model gives
good results compared with the related works that used the balance techniques.
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1 Introduction

In recent years, Internet of Things (IoT) has become one of the most important technologies. IoT is
defined as a set of technologies that make a wide range of devices and objects connect and interact with
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each other via machine-to-machine (M2M) communications [1]. These devices are embedded with sensors
and electronics connected with the internet to collect and exchange data [2]. There are many applications of
IoT, including (transportation, infrastructure management, healthcare and medical monitoring, home
automation, etc.) [3]. As shown in Fig. 1, the architecture of IoT is divided into four layers. The physical
layer contains sensing devices to sense and remotely monitor any physical phenomenon in the real world.
The network layer connects the sensors using access points such as Wi-Fi to the web service, datacenter,
or cloud for data transmission. The support layer provides a platform for IoT applications to analyze,
store, and handle transmitted data. The application layer includes user services and applications for IoT,
which can be accessed via the application layer interface [4].

The dramatic increase in data generation and transmission across heterogeneous and distributed
infrastructure and resource constrained devices makes security very challenging [5]. The IoT is the most
vulnerable to various types of attacks because of the spread of its gradual development of infrastructure
without providing measures to defend against security attacks [6,7]. Intrusion Detection Systems (IDSs)
are software applications used for network monitoring to detect malicious activity or policy violations [8].
There are two classes for IDS: signature-based and anomaly-based. Signature-based IDS uses specific
signatures already known to it, making it effective for detecting known attacks, but it cannot detect newly
introduced attacks. In contrast, anomaly-based IDS detects the unusual deviations by identifying the
abnormal behavior pattern in traffic, where a statistical model is built to define normal behavior.
Therefore, new attacks can be detected because that their statistical behavior differs from the behavior of

Figure 1: IoT architecture
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normal traffic. However, it is practically useless because it suffers from high false alarm rates where not every
anomaly is caused by an attack [9].

Many machine learning techniques have been proposed for IDS. These techniques rely on algorithms to
learn directly from the data without explicitly programming, which is helpful considering the great diversity
of the traffic [10]. However, despite these advantages, anomaly-based detection algorithms have a high false
positive rate which is the main reason for the lack of adoption of machine learning based-anomaly IDS. Also,
machine learning models learn the traffic of a dataset and not the traffic to be monitored [11]. Deep learning
methods can learn the highly complex and nonlinear functions required to predict different types of abnormal
behavior and thus can provide improved performance. Deep learning can automatically extract important
features and capture deep learning relationships automatically from raw data without manually identifying
features. This method can capture patterns of input data to produce a high detection rate [12].

Even though there are currently some proposed solutions to detect security attacks based on both
machine learning and deep learning algorithms in IoT, most of these solutions did not consider the
problem of imbalanced data. Imbalanced data is a classification problem that gives poor accuracy. This
paper aims to develop an IDS based on a hybrid deep learning algorithm to detect IoT attacks on
imbalanced datasets such as UNSW-NB15, a recent network intrusion dataset.

The paper objectives are given as follows.

� Develop an IDS based on a hybrid deep learning model that combines Convolutional Neural Network
(CNN) and Long-Short Term Memory (LSTM) algorithms.

� Solve the imbalanced data problem in the UNSW-NB15 dataset using a synthetic data generation
method.

� Validate the contribution of the proposed model by comparing its results with a basic CNN model
using both a balance and imbalance dataset.

� Validate the contribution of the proposed model by comparing its results with benchmark machine
learning models (Decision Tree (DT) and Random Forest (RF)) using both a balance and
imbalance dataset.

The paper is organized as follows. Section 2 describes the literature review. The methodology of the
work is described in Section 3. The experimental results and discussions of the proposed model
performance are presented in Section 4. Finally, the conclusion and future work is described in Section 5.

2 Literature Review

Security of sensors and data collection and transmission over unsecured IoT networks is a critical issue.
As shown in Fig. 2, various attacks may be directed to the IoT system, and these attacks can be categorized
based on the IoT architecture layers [13]. The sensors are most vulnerable to physical attacks in the physical
layer due to their widespread in IoT environments such as node tempering and fake node [14]. The network
layer is characterized by having security measures, but it is not without some problems that may affect the
confidentiality of data. The possible attacks on the network layer include Denial of Service (DoS) and
Distributed Denial of Service (DDoS) [15]. The support layer provides powerful computing, data storage,
brokers, machine learning, etc. Therefore, this layer must be protected from attacks and security breaches
such as flooding in cloud, SQL injection, and signature wrapping [16]. Sharing data is one of the most
characteristics in the application layer, so it faces data theft and privacy problems. The attacks on the
application layer include data theft, DDoS, malicious X script, and reprogram attack [17].
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2.1 Related Works

Few works have been proposed to manage the issue of imbalanced data to improve the performance of
the classification. The following presents the most current studies that adopted machine learning and deep
learning to detect security attacks in IoT networks.

2.1.1 Machine Learning Solutions
Machine learning improves the system’s ability to learn automatically and improve from experience

without being explicitly programmed [18]. Two main categories in machine learning: supervised learning
includes (Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Artificial Neural Network
(ANN), Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN)).
Unsupervised learning includes (K-means and Hierarchical Clustering).

Bagui et al. [19] proposed an IDS based on the ANNmodel. The proposed model has been applied to the
KDD Cup 99 dataset [20], which is a popular dataset used in intrusion detection. They solved the imbalanced
data using an the Adaptive Synthetic Sampling (ADASYN) technique. The experiment indicates that if the
dataset is completely imbalanced, the oversampling method increases recall substantially, while there is no
high impact if the dataset is not completely imbalanced. The results achieved 61% accuracy, 96% recall, and
64% f-measure. Arif et al. [21] proposed a detection model on a State Grid Corporation of China (SGCC)
dataset [22]. They solve the imbalanced data using a hybrid resampling technique named synthetic
minority oversampling technique with a near miss. Three algorithms are used: DT, RF, and adaptive
boosting (AdaBoost) to train the model. They used the Bayesian optimizer to simplify the tuning process
of the algorithms. The results show that RF is better than DT and AdaBoost where it achieved 92%
accuracy compared with DT 87% and AdaBoost 91%.

Shankar Komathi Maathavan et al. [23] employed different machine learning models to find the best
classification to avoid data breaches in electronic healthcare data. They used a real dataset from the KSM

Figure 2: IoT security attacks
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blood bank [24]. The experiment is done based on two tests: two features and four feature analyses. For two
feature analyses, the DT, RF, and Gradient Boosting (GB) classifiers outperform the SVM and KNN in terms
of accuracy, 100%. For four feature analysis, the KNN outperforms the rest of the models. Pajouh et al. [25]
proposed an IDS model based on two-layer dimension reduction and a two-tier classification module. The
model uses factor evaluation and linear discriminate evaluation of dimension reduction module to spate
the excessive dimensional dataset to a decreased one with lesser features. For two-tier classification, they
used NB and K-mean. The model was applied to the NSL-KDD dataset [26] and improved the
imbalanced dataset version of the KDD Cup 99 dataset. From the results, the NB achieved 84% accuracy,
84.82% detection rate, and 5.5 false alarm rate while, K-mean achieved 83% accuracy, 83.24% detection
rate, and 4.8 false alarm rate.

2.1.2 Deep Learning Solutions
Deep learning is a subset of machine learning known as a hierarchical learning technique because the

algorithms are stacked in a hierarchical level of ANN to carry out the machine learning process. The
ANN works like the human brain in its classification accuracy for complex tasks. Also, deep learning is
classified into two main categories: supervised learning includes (Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN)) and unsupervised learning includes (Recurrent Neural Network
(RNN), Auto-Encoder (AE), and Restricted Boltzmann Machine (RBM)) [27].

Hodo et al. [28] proposed an IDS based on the MLP algorithm. The attack source is from an external user
and targets the server node only. They applied the experimental results on the KDD Cup 99 dataset, proving
the effectiveness of the proposed system where it achieves 99% accuracy. Teyou et al. [29] built a CNN
model to detect intrusions in the cyber-physical system. They used the NSL-KDD dataset, and the
model’s performance is compared with the state of the art. The results give 80.07% accuracy, 80% recall,
and 85% precision for binary classification. Adil et al. [30] proposed a detection model using the LSTM
technique to detect normal and attack traffic in the power system. They implemented the model using the
SGCC dataset. The imbalanced data was addressed using the under-sampling boosting (RUSBoost)
technique. The proposed model achieved 87% accuracy, 96% f-measure, 88% precision, 91% recall, and
87% Area Under Curve (AUC).

Azizjon et al. [31] proposed IDS using a one-dimensional CNN combination with the LSTM model.
They used the UNSW-NB15 dataset [32], a modern network intrusion dataset. The imbalanced dataset is
solved using a random over-sampling technique. They compare the proposed model with 1D CNN, RF,
and SVM. For the imbalanced dataset, the results show that the RF is outperformed the other models in
terms of accuracy, where it achieved 87.82% while the proposed model achieved 85.11%, 1D CNN
achieved 83.19%, and SVM achieved 68%. For the balanced dataset, the results show that the 1 D CNN
with three layers is outperformed the other models in terms of accuracy where it achieved 91% while the
proposed model achieved 89.93%, RF achieved 87.39%, and SVM achieved 61.69%. Praveen
Ramalingam et al. [33] presented a hybrid IDS that combines fuzzy and RNN algorithms. This
combination gives better classification and precision compared with machine learning classifiers. They
implemented the proposed IDS on the NSL-KDD dataset. The imbalance data issue is not addressed in
this work. The proposed IDS gives 83.94% accuracy, which is the highest compared with NB, RF, MLP,
and SVM classifiers.

The literature indicates that the current solutions based on machine learning algorithms have shown
reasonable results. However, they suffer from a high false positive rate. The solutions based on deep
learning have proven their effectiveness to improve the detection rate, accuracy, and false positive rate.
Deep learning can capture input data’s behavior due to its ability to extract complex patterns and learn
from the huge data. Even though there are currently some proposed solutions to detect different types of
attacks based on both machine learning and deep learning algorithms in IoT, most of the current solutions
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do not consider the problem of imbalanced data. Tab. 1 displays the comparison between machine learning
and deep learning methods to detect security attacks in IoT.

3 Methodology

In this work, an IDS is developed based on a hybrid deep learning model for security attacks detection in
the IoT environment. Fig. 3 illustrates the flowchart of the IDS for network traffic classification using
different techniques.

Table 1: Comparison between machine/deep learning methods for attack detection

Ref
(Year)

Learning Model Dataset Resampling
technique

Classification
type

Results

Machine Learning

[19]
(2021)

Supervised ANN KDD
Cup99

ADASYN
technique

Multi-class
classification

ACU: 61, Recall: 96,
F1: 64

[21]
(2021)

Supervised DT, RF,
and
AdaBoost

SGCC Hybrid
SMOTE
technique

Binary
classification

ACU: 87, 92, 91,
Precision: 57, 71, 61,
Recall: 57, 51, 53, F1:
57, 51, 53

[23]
(2022)

Supervised KNN,
DT, RF,
GB,
SVM

KSM blood
bank dataset

Not
addressed

Binary
classification

AUC: 100, 95, 95, 90,
85

[25]
(2019)

Supervised/
unsupervised

NB and
K-mean

NSL-KDD Not
addressed

Multi-class
classification

ACU: 84, 83, DR:
84.82, 83.24, FAR: 5.5,
4.8

Deep Learning

[28]
(2016)

Supervised MLP KDD Cup99 Not
addressed

Binary
classification

ACU: 99.4, FPR: 0.6,
TPR: 0.6

[29]
(2019)

Supervised CNN NSL-KDD Not
addressed

Binary
classification

ACU: 80.07, Recall:
80.07, Precision: 85

[30]
(2020)

Unsupervised LSTM SGCC RUSBoost
technique

Binary
classification

ACU: 87, Precision: 88,
F1: 96, Recall: 91

[31]
(2020)

Hybrid CNN-
LSTM

UNSW-NB15 Random
Over-
sampling
technique

Binary
classification

ACU: 89.93, Precision:
86.15, F1: 90.43

[33]
(2022)

Hybrid Fuzzy-
RNN

NSL-KDD Not
addressed

Multi-class
classification

ACU: 83

Note: • (ACU) for Accuracy in (%), (F1) for F-measure in (%), (DR) for Detection Rate in (%), (FPR) for False Positive Rate, (TPR) for True Positive
Rate, (FAR) for False Alarm Rate, (AUC) for Area Under the Curve in (%).
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3.1 Dataset Description

A new network intrusion dataset is selected named UNSW-NB15, where the network traffics and raw
packets were monitored and recorded via the modern network infrastructure. The UNSW-NB15 was
created using an IXIA PerfectStorm tool in the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) in 2015 [34]. There are nine security attacks in the UNSW-NB15, including Fuzzers,
Analysis, Backdoor, DoS, Exploit, Generic, Reconnaissance, Shellcode, and Worm. The UNSW-
NB15 contains 44 features without the class label, as shown in Tab. 2. The features include packet-based
and flow-based features in different data types such as nominal, float, integer, and binary. The packet-
based features assist the inspection of the payload with the headers of the packets. The flow-based
features are based on a direction, inter-arrival time, and an inter-packet length. The dataset is labeled the
normal flow to “0” and the attack flow to “1”. The dataset is partitioned into a training set with
175341 records (56000 for normal flow and 119341 for attack flow) and a testing set with 82332 records
(37000 for normal flow and 45332 for attack flow).

3.2 Data Preprocessing

In data preprocessing, we divide the task into two steps. First, compute the missing value using a linear
interpolation method. Second, normalize the data using a Min-Max scaling method.

Figure 3: IDS flowchart
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Table 2: The features discerption of UNSW-NB15

Feature
no

Feature Description Feature
no

Feature Description

1 id Record id 23 dtcpb Base sequence number for
destination TCP

2 dur Record total
duration

24 dwin Window advertisement value for
destination TCP

3 proto Transaction
protocol

25 dcprtt TCP connection setup

4 service http, ftp, smtp, ssh,
dns, ftp-data

26 synack Time between the SYN and the
SYN_ACK packets

5 state Protocol state 27 ackdat Time between the SYN_ACK and
the ACK packets

6 spkts Packet count from
source to
destination

28 smean Packet size mean transmitted by the
source

7 dpkts Packet count from
destination to
source

29 dmean Packet size mean transmitted by the
destination

8 sbytes Source to
destination
transaction bytes

30 trans_depth Pipelined depth

9 dbytes Destination to
destination
transaction bytes

31 response_body_len Actual uncompressed content size

10 rate Ethernet data rates
transmitted and
received

32 ct_srv_src No. of records that contain the same
service

11 sttl Time from source
to destination

33 ct_state_ttl No. for each state according to
specific range of values

12 dttl Time from
destination to
Source

34 ct_dst_ltm No. of records of the same dstip

13 sload Bits per second for
source

35 ct_src_dport_ltm No of records of the same srcip and
the dsport

14 dload Destination bits
per second

36 ct_src_sport_ltm No of records of the same dstip and
the sport

15 sloss Retransmitted
source packets

37 ct_dst_src_ltm No of records of the same srcip and
the dstip

16 dloss Retransmitted
destination packets

38 is_ftp_login If the ftp session is accessed by
user, then 1 else 0

17 sinpkt Source interpacket
arrival time (mSec)

39 ct_ftp_cmd ftp session flows

(Continued)
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3.2.1 Computing the Missing Value
A real-time dataset always consists of many missing values, resulting from data failure or corruption

during its recording, unreliable data transmission, and system maintenance and storage issues. The
missing value is calculated using a linear interpolation method as

F xið Þ ¼
Pi þ 5

k ¼ i � 5
PkUk � Averagelocal if xi 2 NaN

xi if xi =2 NaN

8<: (1)

The Averagelocal computed as

Averagelocal ¼ 1

10
�
Xi þ 5

i �5
f xið Þ (2)

where xi represents the value in the data i, if xi is a null or non-numeric value, it is described as NaN . The Pk
is the imputed data point between 0 and 1, and it is chosen to be 0.10 because the smallest value gives better
performance. The Uk represents a binary value based on the threshold value of k. The threshold value is
computed

Uk ¼ 0 if xk < Averagelocal
1 if xk � Averagelocal

�
(3)

3.2.2 Data Normalization
Normalization is a scaling method that converts all data features into a common scale. The minimum and

maximum values range of the continuous feature in UNSW-NB 15 are significantly different. A Min-Max
scaling method is used to facilitate the arithmetic processing, and the range of values of each feature is
uniformly linearly mapped in the range 0 and 1. The Min-Max scaling method can be defined as

Table 2 (continued)

Feature
no

Feature Description Feature
no

Feature Description

18 dinpkt Destination
interpacket arrival
time

40 ct_flw_http_mthd Get and Post flows in http service

19 sjit Source jitter 41 ct_src_ltm No. of records of the same dstip

20 djit Destination jitter 42 ct_srv_dst No. of records that contain the same
service

21 swin Window
advertisement
value for source
TCP

43 is_sm_ips_ports If srcip equals to dstip and sport
equals to dsport, this variable
assigns to 1 otherwise, 0

22 stcpb Window
advertisement
value for
destination TCP

44 attack_cat The attack category

IASC, 2023, vol.35, no.1 305



Xscal ¼ X � Xmin

Xmax � Xmin
(4)

Xscal represents the scaling data point, Xmin and Xmax represent the minimum and maximum value of the
input feature X.

3.3 Data Balancing

The UNSW-NB15 dataset is not perfectly balanced, where one class is lower than the other class. In the
following figure, the x-axis represents the class (0 for normal and 1 for attack), and the y-axis represents the
count of the class. In Fig. 4a, the distribution of classes shows that the normal class is lower than the attack
class which caused a classification problem known as an imbalanced dataset which makes the model biased
to the direction of the majority. The imbalanced dataset problem can be handled based on two approaches: a
cost function-based approach or a sampling-based approach. In this paper, we chose the sampling-based
approach. There are two types of sampling-based approaches: an under-sampling and an over-sampling
approach for disparity reducing between two classes. The under-sampling technique reduces the size of
the dataset by randomly selecting the examples from the majority class and deleting them from the
dataset. This random deletion may cause important data to be deleted, resulting in less accuracy [35]. The
over-sampling technique randomly duplicates examples in the minority class. Although this technique
does not cause data loss, it may be subject to overfitting due to the redundancy of data points. This paper
uses a Synthetic Minority Over-sampling Technique (SMOTE) to avoid the overfitting problem. SMOTE
is an over-sampling technique that allows the generation of synthetic samples for the minority categories.
The idea of SMOTE depends on the KNN algorithm, where it takes a sample from a dataset and
considers its nearest neighbors in the feature space [36]. If x1;x2ð Þ is an example of a minority class and
if its nearest neighbor is chosen as ð �x1 ; �x2 Þ; then the data point is synthesized

X1; X2ð Þ ¼ x1; x2ð Þ þ random 0; 1ð Þ � D (5)

where D ¼ f �x1 � x1ð Þ; �x2 � x2ð Þg and random ð0; 1Þ represent a random value between 0 and 1.
Fig. 4b shows the dataset distribution after SMOTE. The algorithm of SMOTE technique is described in
Algorithm 1.

Figure 4: Data distribution (a) before SMOTE (b) after SMOTE in UNSW-NB15
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Algorithm 1: SMOTE Technique

Input: original training set (X), Percentage of oversampling (N), and KNN numbers (K).

Output: oversampled training set.

n ¼ #observation; m ¼ #attributes; nmin¼ minobservation

if N < 100; then

Stop: warning (N must be greater than 100)

end if

N ¼ intð N

100
Þ

S n�Nð Þ�m is an empty array for synesthetic samples

for i 1 to nmin do

Compute KNN for i and save the indices in the nnarray

newindex 1

while N 6¼ 0 do

Kc¼ random number in range 1 and K

for j 1 to m do

diff  ¼ X nnarray Kc½ �½ � j½ ��X½i�½j�
gap uniform ð0; 1Þ
synthetic newindex½ � j½ �  X i½ � j½ �þgap� diff

end for

newindex ¼ newindexþ 1

N ¼ N� 1

end while

end for

return X

3.4 Proposed Model

The proposed IDS is based on a hybrid deep learning model which combines the Convolutional Neural
Network (CNN) and Long Short-TermMemory (LSTM) algorithms. This aggregation combines their feature
extraction, memory retention, and classification abilities, giving better accuracy than the single models. As
shown in Fig. 5, the proposed model architecture consists of three layers: CNN, LSTM, and dense layers.

3.4.1 Convolutional Neural Network Layer
CNN is designed to detect objects, and it can detect unknown attacks. CNN extracts features

automatically and performs a difficult operation on hidden layers to minimize the sharing of the
parameters and weights. CNN contains multiple convolutional layers, pooling layers, and fully connected
layers [37]. The architecture of our CNN layer consists of four convolutional (Conv) layers. Each group
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of two convolutional layers is followed by one pooling layer. The input features are formed into a 1D matrix
with 44 input features. Conv 1 and Conv 2 operated with (convolution filters = 32, filter size = 3 , and output
shape = 32 × 64 feature matrix). Conv 3 and Conv 4 operated with (convolution filters =64, filter size = 3, and
output shape = 16 × 128 feature matrix). Each filter generates an activation map with padding value 1. The
Relu (Rectified Linear Unit) activation function is used in the convolution layers. It is defined as

lt ¼ Relu xt � wt þ btð Þ (6)

where lt represents the result for the convolutional layer, xt is the input data, wt represents the weight value,
and bt is the bias value of the convolutional layer.

The pooling layer is another building block of CNN. It minimizes the dimensionality of the features map
and thus minimizes overfitting and training time. There are two common pooling methods, which are
average-pooling and max-pooling. Max-pooling has been utilized in this model. It calculates the
maximum value in each feature map. The output of convolutions is directed to the max-pooling layer. We
use two max-pooling layers with (pooling size = 2 and stride = 1). The formula of the max-pooling layer
is calculated as

X t¼ fmaxpooling Relu xt � wt þ btð Þf g (7)

where X t represents the output value after the max-pooling layer and fmaxpooling represents the max-pooling
operation. After the CNN layer, we add a flatten layer to convert the data into a 1D array to input it into the
next layer.

3.4.2 Long Short-Term Memory Layer
Long Short-Term Memory (LSTM) is a special type of RNN designed to solve the short-term memory

problem of RNN, where it aims to handle time-series data. The hybrid CNN+LSTM model combines both
convolutional layers to extract features and LSTM units for sequence prediction supporting across time. The
output of CNN is directed into LSTM units to model the signal in time and train the weights. The LSTM units
consist of three gates: forget, input, and output gates. These gates control how the information in a data
sequence comes, stores in, and leaves the network. The first step is to determine whether the previous
information from the previous timestamp should be kept or forgotten. The forget gate takes the output
value of the last timestamp and the input value of the current timestamp to generate output between 0 and
1. The output of the forget gate is calculated as

f t ¼ s Wf � ht � 1; Xt½ � þ bfð Þ (8)

Figure 5: Proposed model architecture
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where f t is in range (0, 1). If f t is 0, this means to forget the previous information, and if f t is 1, this
means to keep the previous information. Wf is the weight of the forget gate, ht � 1 is the bias value of the
forget gate, Xt is the output value at the current timestamp, and bf is the input value at the last timestamp.

Now, the forget gate determines what information is added in the cell state. It takes the last output and
input values at the current timestamp to the input gate. Then, it calculates it to obtain the output value and the
candidate cell state of the input gate. The output is calculated as

it ¼ s Wi � ht � 1; Xt½ � þ bið Þ (9)fC t¼ tanh Wc � ht � 1; Xt½ � þ bcð Þ (10)

where it is in range (0, 1), Wi is the input gates weight, bi is the input gates bias, Wc is the candidate input
gates weight, and bc is the candidate input gates bias. With the output of forget gate and input gate, the current
unit status must be updated. This update is done as

Ct ¼ f t � Ct � 1 þ it � eCt (11)

where Ct is in range (0, 1).

Then, the output gate accepts the output and input as the input value at timestamp t and obtains the
output of the output gate. The final output value is obtained by calculating the output of the outputs and
the state of the cell. The final output is calculated as

ot ¼ s Wo � ht � 1; Xt½ � þ boð Þ (12)

ht ¼ ot � tanh Ctð Þ (13)

where ot is in range (0, 1), Wo is the output gate weight, and bo is the output gate bias.

3.4.3 Dense Layer
The output in the dense layer is directed when the LSTM units model the signal to learn higher-order

feature representations suitable for separating the output into two classes: normal and attack. At the end
of the architecture, we add three fully connected (FC) layers and two dropout layers. The FC layer is
added with the sigmoid function, which is used for classification based on low-level features after the
LSTM units. The sigmoid activation is described as

s lð Þ¼ 1

1þe�z (14)

The dropout regularization method is used after the first and second FC layers to avoid the overfitting
problem during the training. Tab. 3 describes the summary of the proposed model configuration.

The time complexity is applied to training time and testing time. Only convolutional layers are included
in the computation where pooling, LSTM, and FC layers always take 10% to 15% computational time. The
time complexity of the proposed model can be calculated as

O
Xd
l¼1

nl�1�s2l�nl�m2
l

 !
(15)

where l is the convolutional layer index, d represents the depth (number of convolutional layers), nl is the
width (number of filters) of layer l, nl�1 is number of input channels of layer l, s1 is the filter length, m1

is the filter length of the output feature map.
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4 Experiments and Results Discussion

In this section, First, describes the settings of the experiments. Next, it presents the performance matrices
that are used to evaluate the performance of the model. Finally, it provides performance comparison under
different experimental scenarios.

4.1 Experiments Setting

The proposed model uses Python 3.6 with two deep learning libraries such as TensorFlow 1.15 and
Keras libraries. The experiments environment that is used to develop the model is Jupyter Notebook. In
addition, various libraries are used, such as Pandas for data analysis, NumPy to support the multi-
dimensional array and matrix data structures, and Matplotlib for data visualization and graphical plotting.
There is a relationship between the size of the dataset and the model performance, where more data
results in better performance. The dataset size is chosen to be 80% for training and 20% for testing.

Tab. 4 shows the best values of the hyperparameters used in implementations. The hyperparameters
values are chosen after trying different values. The value of the learning rate is usually between 0.0 and
0.1. It affects the model performance significantly, as the small learning rates increase the epochs size
because the updates of the weights will be small. On the other hand, high learning rates attract few
epochs size due to high speed.

Table 3: Summary of the proposed model configuration

Layer Architecture details

Conv1D_1 No. of filters = 32; filter size = 3; activation = Relu

Conv1D_2 No. of filters = 32; filter size = 3; activation = Relu

Maxpooling1D_1 Pooling size = 2; stride = 1

Conv1D_3 No. of filters = 64; filter size = 3; activation = Relu

Conv1D_4 No. of filters = 64; filter size = 3; activation = Relu

Maxpooling1D_2 Pooling size = 2; stride = 1

Flatten –

LSTM Nodes = 70; return sequence = true

FC_1 No. of units = 10; activation = sigmoid

Dropout_1 Rate = 0.5

FC_2 No. of units = 2; activation = sigmoid

Dropout_2 Rate = 0.5

FC_3 No. of units = 1; activation = sigmoid

Table 4: Hyperparameters of the proposed model and CNN model

Parameter Value

Batch Size 128

Epoch Size 50

Optimization Function Adam

Learning Rate 0.001
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4.2 Performance Metrics

The proposed model was evaluated using six performance metrics: Accuracy, Loss Error, ROC curve,
Precision, Recall, and F-measure. These evaluation metrics are defined as follows.

a. Accuracy: the ratio between correctly predicted outcomes and the sum of all predictions. It is
calculated as

ACU ¼ TP þ TN

TP þ TN þ FP þ FN
(16)

b. Loss Error: loss error measures the model’s success by predicting the expected outcome. A log loss
function is the most popular loss function used for predicted probability ðpÞ increasing from the actual label
ðyÞ. It is calculated as

L p; yð Þ ¼ � ylog pð Þð Þ þ 1 � yð Þ logð1 � pÞÞ (17)

c. ROC Curve: Receiver Operating Characteristic (ROC) curve is a graph to illustrate the model's
classification based on TPR or sensitivity and FPR or specificity. Area Under the Curve (AUC) measures
the two-dimensional area under the ROC curve. The ROC curve is calculated as

TPR ðsensitivityÞ ¼ TP

TP þ FN
(18)

FPR ðspecifitciyÞ ¼ FP

FP þ TN
(19)

d. Precision: the number of true positives divided by the total number of elements labeled as belonging
to the positive class. It is calculated as

Precision ¼ TP

TP þ FP
(20)

e. Recall: Recall or sensitivity is the number of correct results divided by the number of results that
should have been returned. It is calculated as

Recall ¼ TP

TP þ FN
(21)

f. F-measure: the Precision and Recall weighted average. It is calculated as

F1 ¼ 2 � Recall � Precision

Recall þ Precision
(22)

4.3 Performance Comparison

The experimental results depend on four different scenarios. First, a comparative experiment comparing
the proposed model with a basic CNN model without solving the imbalanced dataset problem. Second, a
comparative experiment comparing the proposed model with a basic CNN model with solving the
imbalanced dataset problem. Third, a comparative experiment comparing the proposed model with state-
of-the-art machine learning classifiers. Fourth, a comparative experiment comparing the proposed model
with the most related works. The results of these experiments are described in the following sections.
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4.3.1 Experiment 1: Performance Comparison of the Proposed Model and CNN Model Without Data

Balancing
In this experiment, the proposed model is evaluated and compared with the basic CNN model without

SMOTE technique. Figs. 6a and 6b show the relationship between the training log loss error and the testing
log loss error, and the epochs size. The results show that increasing the epoch size decreases the log loss error.
Epoch’s size equal to 50 produce the smallest log loss error, which indicates that the epoch parameter setting
of the model structure design is reasonable and can meet the detection requirements. The results also show
that the proposed model outperformed the CNN model, which scored 0.14 and 0.16 compared with the CNN
model, which scored 0.28 and 0.29 in the model training and model testing. In terms of accuracy, the
accuracy increased when the size of epochs increased. The proposed model achieved 91.98% and 91.86%
accuracy scores, where the CNN model achieved an accuracy score of 84.95% and 84.79% in the model
training and model testing, as shown in Figs. 7a and 7b.

The confusion matrix is described in Tab. 5, used to evaluate the binary classification on the test set for
the imbalanced dataset. For the CNN model, the results show that 4762 attack flows are misclassified among
51244 attack flows which mean that less than 6% of the entire attacks are misclassified. On the other hand,
5900 of 46801 normal flows are misclassified as attacks, indicating less than 8% false alarm rate. For the

Figure 6: Loss error for (a) CNN model, (b) proposed model without SMOTE

Figure 7: Accuracy for (a) CNN model, (b) proposed model without SMOTE
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proposed model, the results show that 3334 attack flows are misclassified among 49500 attack flows which
means that less than 4% of the entire attacks are misclassified. On the other hand, 5233 of 40556 normal
flows are misclassified as attacks which indicates less than a 5% false alarm rate.

Fig. 8 represents the ROC curve for the results. The ROC curve measures the model validation to detect
the attack. The y-axis represents the sensitivity for detecting attacks and normal traffic. The x-axis represents
the specificity for detecting attacks only. The confusion matrix and ROC curve proved the effectiveness of
the proposed model to detect attacks on the imbalanced dataset. In general, the proposed model outperformed
the basic CNN model in the imbalance dataset in the performance metrics.

4.3.2 Experiment 2: Performance Comparison of the Proposed Model and CNNModel with Data Balancing
In this experiment, the proposed model and CNN model are evaluated and compared with the SMOTE

technique. Figs. 9 and 10 show the log error loss and accuracy for the balanced dataset. The value of the log
error loss for the proposed model is the same with and without data balancing in the model training, but it is
decreased in the model testing, which scored 0.15. Also, the proposed model outperformed the CNN model,
which scored 0.25 and 0.26 in the model training and model testing, respectively. Although the accuracy is
close with SMOTE and without SMOTE in the proposed model, the model without SMOTE does not
perform good classification in the test data because of the imbalanced dataset. The proposed model
achieved 91.9% and 92.1% accuracy scores, whereas the CNN model achieved 89.8% and 89.9% in
model training and testing, respectively.

Table 5: Confusion matrix on imbalanced UNSW-NB15 dataset

Model Predicted/Actual Normal Attack

CNN Normal 46801 5900

Attack 4762 51244

Proposed Model Normal 40556 5233

Attack 3334 49500

Figure 8: ROC curve for (a) CNN model, (b) proposed model without SMOTE
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The confusion matrix is described in Tab. 6, used to evaluate the binary classification on the test set for
the balanced dataset. For the CNN model, the results show that 2762 attack flows are misclassified among
52244 attack flows which means that less than 4% of the entire attacks are misclassified. On the other hand,
2103 of 42556 normal flows are misclassified as attacks, indicating a less than 6% false alarm rate. For the
proposed model, the results show that 1134 attack flows are misclassified among 52200 attack flows,
meaning less than 2% of the entire attacks are misclassified. On the other hand, 3900 of 48301 normal
flows are misclassified as attacks, indicating less than a 3% false alarm rate. The applied models were
also evaluated using the ROC curve metrics, as shown in Fig. 11. The confusion matrix and ROC curve
proved the effectiveness of our model to detect attacks on the balanced dataset.

Figure 9: Loss error for (a) CNN model, (b) proposed model with SMOTE

Figure 10: Accuracy for (a) CNN model, (b) proposed model with SMOTE

Table 6: Confusion matrix on balanced UNSW-NB15 dataset

Model Predicted/Actual Normal Attack

CNN Normal 42556 2103

Attack 2762 52244

Proposed Model Normal 48301 3900

Attack 1134 52200
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The performance metrics values are shown in Tab. 7 to assess the performance of the models with and
without data balancing on the model testing. The results indicate that the proposed model outperformed the
CNN model with and without data balancing. Therefore, combining CNN and LSTM improved the
classification results. The CNN model is the best for extracting the important features through the
condensing of the input data to find the inherent structures and representations in the data. With adding
LSTM, the sequence prediction is supported across time, giving us the appropriate classification. Also,
the SMOTE technique helps to avoid overfitting problem and enhance the accuracy.

4.3.3 Experiment 3: Performance Comparison of the Proposed Model with the Machine Learning

benchmark Classifiers
This experiment compares the proposed model with two machine learning classifiers on the balanced

dataset. Same data preprocessing, balancing, and performance evaluation of the proposed model are
applied to machine learning classifiers. We choose DT and RF classifiers in this experiment, and it is
implemented using Scikits Learn (Sklearn) machine learning library. Tab. 8 represents the
hyperparameters of the DT and RF classifiers.

Figure 11: ROC curve for (a) CNN model, (b) proposed model with SMOTE

Table 7: Balanced and imbalanced performance evaluation

Imbalanced UNSW-NB15

Model\Metrics ACU (%) Loss error AUC Precision (%) Recall (%) F1
(%)

CNN 84.79 0.29 0.85 84.70 83.45 84.55

Proposed Model 91.86 0.16 0.91 91.80 90.91 91.70

Balanced UNSW-NB15

Model\Metrics ACU
(%)

Loss Error AUC Precision (%) Recall (%) F1
(%)

CNN 89.90 0.26 0.89 89.88 88.50 87.42

Proposed Model 92.10 0.15 0.92 92.85 91.75 90.11
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A. Decision Tree (DT)

Decision Tree (DT) is a supervised machine learning algorithm. DT is a tree structural model where the
features are represented as leaves and branches. Each branch represents the classification outcomes, and each
leaf represents the class labels. Root node is the first node in the tree. Tree classification of the input feature is
performed by passing it over a tree starting from the root and ending in the leaf. The DT can handle the
numerical and categorical data, multioutput problem, and validate a model using statistical tests.

B. Random Forest (RF)

Random Forest (RF) is a supervised machine learning algorithm. RF consists of individual decision trees
that work as a group. The RF takes the prediction from each decision tree and takes the best prediction
through voting. The RF is well working due to multiple relatively uncorrelated trees operating in a group
that will outperform any individual constituent trees. It gives better results because the trees protect each
other from their errors. Therefore, the trees that work as a group make the correct decision.

The performance evaluation is performed using the same performance metrics in previous experiments.
For DT, we use DecisionTreeClassifier from the Sklearn library. For RF, we use RandomForestClassifier
from the Sklearn library. As shown in Fig. 12, the experiment showed that the DT achieved an accuracy
of 88.69% and 88.57% in the model training and testing, respectively. In the case of RF, it achieved
90.69% and 90.85% accuracy in the model training and testing, respectively. The applied models were
also evaluated using the ROC curve metrics, as shown in Fig. 13.

Table 8: Hyperparameters of DT and RF

Parameter Model

DT RF

Max_depth 10 22

Min_sample_leaf 9 –

Epochs 50 50

Batch Size 128 128

Figure 12: Accuracy for (a) DT model, (b) RF model
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In summary, we evaluate the performance of DT, RF, CNN, and the proposed model on a balanced
dataset. In the CNN and the proposed model experiment, we trained the models with and without data
balancing. The models give us better performance on data balancing, where the proposed model achieved
better classification with 92.10% accuracy. In the third experiment, RF achieved better performance than
DT with 90.85% accuracy. As shown in Fig. 14, when we compare the proposed model with CNN, DT,
RF, it is the best in accuracy, loss error, AUC, precision, recall, and f-measure. Tab. 9 summarizes the
proposed model results against the other models on the balanced UNSW-NB15 dataset.

4.3.4 Experiment 4: Performance Comparison of the Proposed Model with the Most Related Works
In this experiment, the performance of the proposed model and the related works that solve the

imbalanced problem are compared. Different resampling techniques are used on different datasets. When
we compare our results with the results that used the UNSW-NB15 dataset, we observe that the proposed

Figure 13: ROC curve for (a) DT model, (b) RF model
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Figure 14: Models performance on balanced data

Table 9: Models performance comparison on balanced UNSW-NB15 dataset

Model\Metrics ACU (%) Loss error AUC Precision (%) Recall (%) F1
(%)

DT 88.57 0.19 0.88 88.90 86.75 86.55

RF 90.85 0.16 0.90 90.85 87.30 87.10

CNN 89.90 0.26 0.89 89.88 88.50 87.42

Proposed Model 92.10 0.15 0.92 92.85 91.75 90.11

IASC, 2023, vol.35, no.1 317



model outperformed the model in [31] in terms of accuracy and precision. Also, the proposed model gives
reasonable results compared to the rest of the related works. The comparison is presented in Tab. 10.

5 Conclusion and Future Work

An Intrusion Detection System (IDS) architecture is developed in this paper based on a combination of a
Convolutional Neural Network (CNN) and a Long Short-TermMemory (LSTM) model to detect the security
attacks in IoT using the UNSW-NB15 dataset. The missing values in the dataset are removed based on the
interpolation method. Additionally, the Synthetic Minority Over-sampling Technique (SMOTE) is
implemented to handle the imbalanced dataset to improve the classification. The performance of the
proposed model is evaluated based on four experiments: First, we compare the proposed model with the
CNN model on an imbalanced dataset. Second, we compare the proposed model with the CNN model on
a balanced dataset. Third, we compare the proposed model with DT and RF machine learning classifiers
on a balanced dataset. Finally, we compare the proposed model with the most related works. The
proposed model achieved 92.10% accuracy, higher than CNN, DT, and RF on the balanced dataset.
Moreover, the proposed model gives reasonable results compared to most related works. As future work,
we aim to extend the current work to implement deep learning models for multi-class classification on
different new network intrusion datasets to validate the proposed model performance.
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