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Abstract: In this paper, we consider the problem of minimizing the total tardiness in a deterministic two-machine permutation flowshop scheduling problem subject to release dates of jobs and known unavailability periods of machines. The theoretical and practical importance of minimizing tardiness in flowshop scheduling environment has motivated us to investigate and solve this interested two-machine scheduling problem. Methods that solve this important optimality criterion in flowshop environment are mainly heuristics. In fact, despite the 
NP
-hardness in the strong sense of the studied problem, to the best of our knowledge there are no approximate algorithms (constructive heuristics or metaheuristics) or an algorithm with worst case behavior bounds proposed to solve this problem. Thus, the design of new promising algorithms is desirable. We develop five metaheuristics for the problem under consideration. These metaheuristics are: the Particle Swarm Optimization (PSO), the Differential Evolution (DE), the Genetic Algorithm (GA), the Ant Colony Optimization (ACO) and the Imperialist Competitive Algorithm (ICA). All the proposed metaheuristics are population-based approaches. These metaheuristics have been improved by integrating different local search procedures in order to provide more satisfactory, especially in term of quality solutions. Computational experiments carried out on a large set of randomly generated instances provide evidence that the Imperialist Competitive Algorithm (ICA) records the best performances.
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Nomenclature



	Mi
	machine



	pij
	processing time



	rj
	release date



	dj
	due date



	hi
	non-availability periods



	Cj
	completion time



	Tj
	tardiness



	N
	population size (number of solutions)



	
Xit

	population member



	
Vit

	velocity of particle



	wt
	inertia weight



	σ
	partial sequence of scheduled jobs



	J
	job set



	πk
	position of job



	F
	mutant factor



	β
	decrement factor



	Ut
	trial population



	τ
	matrix of the pheromone density



	δ
	matrix of the distance



	κ
	pheromone decay coefficient



	Nimp
	number of imperialists



	Ncol
	number of colonies Ψ normalized power



	ϕ
	cost of the imperialist



	TCimp
	total cost of the empire



	f
	due date slack factor



	T
	tardiness factor



	R
	dispersion factor




1  Introduction

Scheduling has been often considered in the literature and has many practical issues in domains like manufacturing, computer processing, transportation, production planning, etc., In these domains, scheduling involves a decision-making process. It is concerned with allocating resources (machines) to tasks (jobs) throughout certain time periods with the goal of optimizing one or more objectives [1]. The resources can be machinery resources, human resources, CPU, Web server, etc. and referred to as “machines”. The tasks to be scheduled can be production operations, CPU tasks, timetabling activities, etc., and referred to as “jobs”. Basic scheduling problems consider that machines are available during the scheduling, or in practice all machines may be unavailable during several periods of time due to machine breakdown (known as stochastic) or a preventive maintenance (known as deterministic). In real-world scheduling problems, the total tardiness criterion is highly crucial, especially in industry, since failure to meet deadlines can harm company’s reputation and lead to a loss of confidence, increased costs, and customer loss.

This paper deals with the two-machine flowshop scheduling problem where the machines are subject to non-availability constraints and the jobs are subject to release dates. More precisely, we are given 
n
jobs 
(j=1,...,n)
to be scheduled in the same processing sequence on two machines 
M1
and 
M2
. Each job must be processed on machine 
M1
and on machine 
M2
during 
p1j
and 
p2j
time units, respectively. There exists a due date 
dj
associated with the completion of each job and each job can not start before a release date 
rj
. The aim is minimizing the total tardiness of jobs.

Moreover, the following assumptions are considered. Each machine 
Mi(i=1,2)
is unavailable during 
hi
periods of time (hole). The number of holes, their starting times and their finish times are known in advance. No two holes overlap on the same machine. The two machines can have the same holes. Zero, one or several holes can occur during the processing of one job. Job processing can be interrupted by a machine unavailability and resumed after.

Let 
Cj
be the completion time of job 
j
on machine 
M2
, the objective is to find a schedule which minimizes the total tardiness of the jobs 
∑j=1n⁡Tj
where 
Tj=max(0,Cj−dj)
. According to the notation specified by Pinedo 2012 [1] and Lee [2], this problem is denoted 
F2,hlo∣r−a,rj∣∑Tj
. It’s an extension of the 
F2∣∣∑Tj
problem and known to be 
NP
-hard in the strong sense [3].

The rest of this paper is organized as follows: A literature review is provided in Section 2. Section 3 discusses the five proposed metaheuristics. In Section 4, the experimental findings and the comparative analysis are discussed. Finally, conclusions are set out in Section 5.

2  Literature Review

This problem has been studied only once before, despite its theoretical and practical importance. Indeed, Berrais et al. [4] proposed a mixed-integer formulation as well as some constructive heuristics for the problem under consideration.

The 
m
-machine flowshop (
F∣∣∑Tj
) has been widely studied in the literature. Kim [5] developed a branch-and-bound algorithm using some proposed lower bounds and a dominance rule. A tabu search algorithm with diversification, intensification, and neighborhood restriction were proposed by Armentano et al. [6] to solve the same problem. Hasija et al. [7] proposed a simulated annealing (SA) algorithm. Chung et al. [8] proposed an exact method based on a branch-and-bound algorithm. Ghassemi Tari et al. [9] proposed four heuristics based on cost over time and more after Ghassemi Tari et al. [10] proposed seven heuristic algorithms, based on shortest processing time (SPT) and earliest due date (EDD) rules and then modified and combined to develop others algorithms. Chung et al. [11] developed a genetic algorithm. Liu et al. [12] proposed five dispatching rules, and a constructive heuristic for the 
m
-machine no-wait flowshop with total tardiness criterion (
Fm∣no−wait∣∑Tj
). Ghassemi Tari et al. [13] proposed some heuristic procedures for tardiness problem with intermediate due dates. Fernandez-Viagas et al. [14] as well as Karabulut [15] proposed some iterated-greedy-based algorithms for the 
F∣∣∑Tj
.

Sen et al. [16] considered the two-machine problem (
F2∣∣∑Tj
) and developed a branch-and-bound procedure in many presented cases. Koulamas [17] developed a heuristic denoted by guaranteed accuracy shifting bottleneck algorithm. Schaller [18] treated the same problem and proposed three dominance conditions to improve some previously proposed ones, and then proposed a new dominance rule as well as a branch-and-bound algorithm. Kharbeche et al. [19] proposed an exact method based on mixed-integer programming models.

Schmidt [20] and Ma et al. [21] proposed good descriptions and details about availability constraints. Blazewicz et al. [22] proposed three heuristic methods as well as a simulated annealing algorithm for minimizing the makespan in the resumable case (
F2,hij∣r−a∣Cmax
). Ben Chihaoui et al. [23] proposed several lower and upper bounds and used them in a branch-and-bound algorithm to solve the two-machine no-wait problem subject to release dates under the non-resumable case (
F2,h1j∣nr−a,rj∣Cmax
) with only 
hole considered on each machine. Under the assumption of the non-availability on the first machine, Lee et al. [24] proposed a branch-and-bound algorithm with some dominance properties and lower bounds as well as heuristic algorithm. For the parallel machine problem, Lee et al. [25] proposed some dominance properties and lower bounds as well as a branch-and-bound algorithm for minimizing the total tardiness where the machines need preventive maintenance.

3  Evolutionary Algorithms

In this section, five evolutionary algorithms are described. These algorithms are combined with several local search procedures to take the advantages of rapid exploitation and global optimization.

3.1 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm is an evolutionary meta-heuristic proposed by Kennedy et al. [26]. PSO is similar to genetic algorithms but it hasn’t neither crossover nor mutation operators. Instead, it uses randomness of real numbers and the global communication among the swarm particles. Since its introduction, PSO algorithm has been improved with different techniques and proposed for various problems [27–30].

A PSO algorithm consists of a population 
[X1t,X2t,...,XNt]
of 
N
particles. Each particle 
Xit(i=1,...,N)
at iteration 
t
of the algorithm is denoted 
Xit=[xi1t,xi2t,....,xint]
corresponding to its position in the swarm. The quality of position is represented by a fitness (objective function value). At each iteration 
t
, the velocity 
Vit=[vi1t,vi2t,...,vint]
and the position of each particle 
Xit=[xi1t,xi2t,....,xint]
are updated toward its current best position 
(Xi∗=[xi1∗,xi2∗,....,xin∗])
and the global best position 
(G∗=[g1∗,g2∗,....,gn∗])
in the swarm. So, at each step and for each particle, a new velocity value is calculated based on its current one. This new value is used to compute the next position of the particle in the swarm. This process is repeated until a termination condition is reached.

The inertia weight 
wt
determines the impact of a particle’s previous velocity to its current one. A large weight directs the algorithm to a global search while a small weight implies a local search. According to Bansal et al. [31], good results can be found when inertia weight is from 
0.9
down to 
0.4
. This latter is updated at each iteration as 
wt=wt−1β
, where 
β
is a decrement factor 
(β=0.975)
.

The velocity 
Vit=[vi1t,vi2t,...,vint]
of each particle is updated according to:


vijt=wt−1vijt−1+c1r1(xij∗−xijt−1)+c2r2(gj∗−xijt−1);∀j=1,…,n
(1)

where 
c1,c2
are the acceleration coefficients and 
r1,r2
two randomly generated constant drawn on 
[0..1].
Usually 
c1+c2≤4.
In this algorithm, 
c1+c2=4
(empirically chosen values).

The position of each particle 
Xit=[xi1t,xi2t,….,xint]
is updated as follows:


xijt=xijt−1+vijt;∀j=1,…,n
(2)

Since real numbers are used in the particle representation, real numbers are transformed to a feasible solution (permutation). Two approaches are used in our algorithm:

The Smallest Position Value (SPV): It consists of transforming the real values 
Xit=[xi1t,xi2t,....,xint]
to a permutation by sorting these values in ascending order. Example: 
X=[x1=0.24,x2=−0.12,x3=1.21,x4=−1.25]
with 
π=(1,2,3,4)
. After sorting, 
X=[x4=−1.25,x2=−0.12,x1=0.24,x3=1.21]
so 
π=(4,2,1,3)
.

The Biggest Position Value (BPV) have the same principle as SPV but the positions are sorted in descending order.

3.1.1 Particles Initialization

The population is initialized by generating randomly the initial position and velocity vectors for each particle. The initial position values 
Xi0=[xi10,xi20,...,xin0]
are drawn uniformally on 
[xmin,xmax]=[−4.0,4.0]
. The velocity 
Vi0=[vi10,vi20,...,vin0]
of each particle 
Xi0
is generated randomly, namely 
vijt=[vmin,vmax]=[−4.0,4.0]
.

In order to obtain a heterogeneous population, most of the particles are randomly generated while some particles are generated using five constructive heuristics 
Hi(i=1,2,3,4,5)
developed by Berrais et al. [4].

3.1.2 Local Search Hybridization

In order to produce high-quality solutions, a local search (LS) procedure is integrated to the PSO algorithm. The proposed local search is based on the Nawaz et al. (NEH) algorithm [32].

Let 
σ
be a partial sequence of scheduled jobs and 
J¯
be the set of unscheduled jobs, this procedure can be described as follows:
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3.1.3 Pseudo-code of the proposed PSO algorithm

An outline of the proposed PSO is the following:

[image: images]

3.2 Differential Evolution Algorithm

Differential Evolution (DE) is an evolutionary algorithm firstly proposed by Storn et al. [33] for minimizing non differentiable continuous space functions. Like PSO, a DE algorithm is a population-based search meta-heuristic. It is one of the most powerful stochastic algorithms and it has been widely and successfully applied in many areas. DE algorithms were firstly designed to work with continuous variables. Then different strategies have been proposed to adapt the DE algorithm to optimize integer variables. Lampinen et al. [34] used a simple function to convert real numbers to integers. Onwubolu et al. [35] developed two strategies known as Forward Transformation (FT) and Backward Transformation (BT). Tasgetiren et al. [36] used the Smallest Position Value (SPV) rule inspired from random key representation encoding scheme of Beans [37].

In DE algorithm the first population is called target population. It consists of 
N
randomly chosen chromosomes (solutions). Each solution 
Xi=[xi1,xi2,...,xin]
is represented by a random floating-point numbers vector. As a mutation operator, two solutions are randomly chosen and the weighted difference between them is added to a third solution to generate a new population (called mutant population). After that, the crossover operator was applied. In this step, the mutated solutions obtained in the previous process are combined with the target population to generate a new one (known as trial population). Finally, the fitness value of the target and trial populations were compared using a selection operator to determine who can survive for the next generation. An outline of our proposed DE algorithm is the following:

[image: images]

3.2.1 Target Population

Our DE starts with the initialization of the target population 
Pt=[X1t,X2t,..,XNt]
of 
N
members. Each member 
Xit=[xi1t,xi2t,...,xint]
at the iteration 
t
is a vector of continuous random number 
xijt
, where 
n
is the number of jobs and 
xij0=xmin+(xmax−xmin)⋅rdj
with 
r∈[0,1],xmin=−1
and 
xmax=1.

To find the corresponding permutation, 
H1,H2,H3,H4
and 
H5
are applied in order to generate the five first solutions and the best solution between the Smallest Position Value (SPV) and Biggest Position Value (BPV) for the remaining solutions. Then each member 
Xit
in the target population is evaluated by computing the total tardiness.

3.2.2 Mutant Population Generation

A weighted difference between two randomly chosen members from the target population 
Xat
and 
Xbt
is added to a third one 
Xct
(a≠b≠c∈[1,N])
to obtain the mutant population 
Vt=[V1t,V2t,...,VNt]
where 
Vit=[vi1t,vi2t,...,vint]
denotes a mutant individual. 
vijt
is computed as in Onwubolu et al. [35]. Indeed, they have proved that is the best strategy for the total tardiness criterion. So, in our DE procedure 
Vit=Xat+F⋅(Xbt−Xct)
as a mutant factor that controls the differential variation amplification 
(Xbt−Xct)
. In our implementation 
F=0.5.

3.2.3 Trial Population Generation

Let 
Ut
denotes the trial population with 
Ut=[U1t,U2t,...,UNt].
The 
Uit
is the member of the trial population with 
Uit=[ui1t,ui1t,...,uint].
To generate this population, a crossover operator is applied as follows:

Let 
λ∈[1,n]
be a random integer number, 
r∈[0,1]
be a uniform random number, 
C∈[0,1]
be a user-defined crossover constant, each element of 
Uit=[ui1t,ui1t,...,uint]
is generated according the following equation:


uijt={uijtifr≤Corj=λxit−1otherwise
(3)

The SPV rule is used to obtain the permutation and then evaluate each member 
Uit
in the trial population by computing its total tardiness. In our implementation, 
λ
is fixed at 
0.05.

3.2.4 Selection

To make selection and determine the members who will survive for the next generation, the fitness of the member 
Xit
is compared with the fitness of the member 
Uit:


Xit={Uitiff(π(Uit))<f(πit)Xit−1otherwise 
(4)

3.2.5 Local Search Hybridization

A hybridization of our DE algorithm is proposed by integrating some local search procedures, in order to enhance its performance. Ten local search schemes are proposed and, in each iteration, only one is used according to a probability 
P
. Given a permutation 
Π=(π(1),π(2),…,π(n))
, these procedures are the following:
•   Random_Exchange_LS: Generate two random positions 
i,j∈[1,n]
with 
i≠j
and then exchange 
π(i)
and 
π(j).

•   Exchange_All_LS: Generate a random position 
i∈[1,n]
and exchange 
π(i)
with all 
k
positions in the sequence 
Π
with 
k∈[1,n],
and 
k≠i
.

•   Bloc_Exchange_LS: Decompose the sequence 
Π
in 
n
div 
blocs and exchange each job 
π(i)
with its symmetric position 
s
in the bloc sequence.

•   Symmetric_Exchange_LS: Exchange each job 
π(i)
with its symmetric position 
(n−i+1)
in the job permutation 
Π
.

•   Intensive_Exchange_LS: Generate two random positions 
i
and 
j
with 
(i<j)
and exchange each job 
π(k)
in the sub-sequence 
(π(i),…,π(j))
with all the remaining jobs.

•   Insertion_LS: Remove a randomly chosen job 
π(i)
and insert it at a new position 
j
(i≠j)
.

•   Circular_Insertion_LS: Place the job in the first position 
π(1)
at the last position 
n
and then shift the remaining jobs. This step is repeated 
(n−1)
times.

•   Adjacent_Swap_LS: Starts from a randomly chosen position 
k
and exchange 
π(k)
with the job 
π(k+1)
and then increment 
k
by 
(k=k+2)
. These steps are repeated until 
k=n−1
.

•   Bloc_Swap_LS: Decomposing the sequence in 
n
div 
blocs and then exchange two adjacent jobs in the same bloc 
π(k)
with the job 
π(k+1)
.

•   NEH_Based_LS.

3.3 Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO) is an evolutionary algorithm based on the behavior of ants. In order to mark some shortest path between ant nest and food that should be followed by other colony ants, these ants deposit a chemical substance called pheromone.

ACO algorithm has been proposed in the early nineties by Dorigo et al. [38]. This meta-heuristic belongs to ant colony algorithm family introduced by Dorigo [39] to solve the Travel Salesman Problem. Several variants of ACO algorithms have since been proposed to solve various optimization problems.

The outline of our ACO algorithm is as follows:
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All the steps of our ACO are described as follows.

3.3.1 Pheromone Trails Initialization

The ACO algorithm starts by initializing the pheromone trails. Let 
N
be the number of ants (population size), so initially 
N
ants are randomly generated. Let 
Xit
denotes the 
ith
member in the population at the generation 
t
with 
Xit=[xi1t,xi2t,...,xint]
, 
n
is the number of jobs and 
xijt
is a continuous random number 
xij0=xmin+(xmax−xmin)⋅r
with 
r∈[0,1],xmin=−1
and 
xmax=1.
It is worth noting that for finding permutation the same method as our DE is used.

After that, three matrices are initialized:
•   The 
τ
matrix of the pheromone density for each ant, where 
τij
is the density of pheromone between two jobs 
i
and 
j
. All 
τij=τ0
where 
τ0
is the initial rate of pheromone, and 
τ0=1(1−r0)⋅Tbest
where 
r0
is a random chosen constant and 
Tbest
is the best fitness value found.

•   The 
δ
matrix of the distance for each ant, where 
δij
is the distance between two jobs 
i
and 
j
, and 
δij=p1j+p2j.

•   The 
η
matrix of heuristic value for each ant, where 
ηij=1δij
is the inverse of the distance between two jobs 
i
and 
j
.

3.3.2 The State Transition Rule

To move from job 
i
to job 
j
, the ants use a decision rule known as State Transition Rule (STR) or Pseudo-random Proportional Rule (PPR). The probability 
Pijt
for an ant to move from job 
i
to job 
j
depends on a random variable 
q
uniformly distributed over 
[0,1]
, and a parameter 
q0
:


j={argmax(j∈πit){[τij]α[ηij]β}ifq≤q0PijtotherwisewithPijt={[τij]α[ηij]β∑j∈πit⁡[τij]α[ηij]βifj∈πit0otherwise 
(5)


α
and 
β
are parameters controlling the relative importance of the pheromone vs. 
ηij=1/δij
.

3.3.3 The Local Updating Rule

Local updating rule favors the exploration of other solutions to avoid premature convergence. This rule is performed after each step by all the ants as follows:


τij=(1−κ)⋅τij+κ⋅τ0 
(6)

where 
κ∈[0,1]
and 
τ0
are the decay coefficient and the initial value of the pheromone, respectively. Then for each ant Intensive_Exchange_LS is applied as local search procedure.

3.3.4 The Global Updating Rule

At the end of each tour, a global updating rule is applied only by the ant finding the shortest way as follows:


τij=(1−ρ)τij+ρ⋅Δτij 
(7)

where 
Δτij=1Tbest
if 
(i,j)∈π∗
with 
π∗
is the global best sequence, 
Tbest
is the best fitness found, and 
ρ∈[0,1]
is a pheromone evaporating parameter.

3.4 Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm introduced by Atashpaz-Gargari et al. [40]. It’s a population-based algorithm inspired by the imperialistic competition. The imperialism consists of expanding the powerful of a country (known as imperialist) by dominating others countries (called colonies) to take control of their resources. So, several imperialists compete for taking possession of colonies of each other. Each individual in the population is called country and can be imperialist or colony. All these colonies are divided among the imperialists according to their power to form empires. Then each colony start moving toward their relevant imperialist country. The total power of an empire depends mainly on the power of the imperialist country and has a negligible effect by the power of the colonies. After that the imperialistic competition between these empires starts and some empires increase their power. However, the powerless ones can’t increase their power and will be eliminated from the competition.

Our proposed ICA algorithm follows these steps:
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3.4.1 Initial Empires Generation

The ICA begins by generating the initial empires. Let 
N
be the number of empires (the population size), and 
Nimp
be the number of imperialists and 
Ncol
be the number of colonies with 
N=Nimp+Ncol
. So initially, 
N
countries are randomly generated. Let 
C
be a country is the set of 
N
members with 
Ci=[X1i,X2i,..,XNi].
Let 
Xgi
denotes the 
ith
member in the population at the generation 
t
with 
Xit=[xi1t,xi2,t...,xint]
, 
n
is the number of jobs and 
xijt
is a continuous random number where 
xij0=xmin+(xmax−xmin)⋅r
with 
r∈[0,1],xmin=−1
and 
xmax=1.
To find permutation the same approach as in our DE is used.

Then the 
Nimp
most powerful countries are selected as imperialists and the remaining 
Ncol
countries as colonies. To generate the initial empires, the colonies among imperialists are divided based on their power. So, the initial number of colonies of each empire must be proportionate to its power. Then the normalized cost 
Φimp
of an imperialist 
imp
is defined by 
Φimp=φimp−max{φi}
where 
φimp
is the cost of the imperialist 
imp
and 
Φimp
its normalized cost, respectively.

Therefore, the normalized power 
Ψ
of each imperialist presents the approximate number of colonies that should be possessed by that imperialist and is defined by:


Ψimp=|Φimp∑i=1Nimp⁡φi| 
(8)

Also, the initial number of colonies of an empire 
imp
is: 
Nimp=round{Ψimp⋅Ncol}
. So, for each empire 
Nimp
colonies are randomly selected.

3.4.2 Local Search Procedures

For each imperialist, one of the three previously defined local search procedures are applied randomly: Insertion_Suppression_LS, Intensive_LS and NEH_Based_LS.

3.4.3 Assimilation

The aim of this step is to move the colonies of an empire toward the imperialist. A procedure of perturbation (NEH_Based_L_S) is applied to the job permutation of the colony. If the colony’s cost is less than the imperialist’s cost then we exchange the position of this colony with the relative imperialist.

3.4.4 Total Cost Computing

After that the total cost of an empire is computed as follows. Let 
TCimp
be the total cost of the 
impth
empire and 
ξ
be a positive number 
ξ∈[0,1]
, the total cost is computed as follows:


TCimp=Cost(imperialistimp)+ξ⋅mean(Cost(Coloniesimp)) 
(9)

So, the value of the total cost depends on the power of imperialist, and the power of the colony can weakly affect this value if 
ξ
have a large amount and can’t affect this value if 
ξ
have a small amount.

3.4.5 Competition

In this step, each empire tries to possess and control the colonies of other empires. As a result of this competition, the colonies of powerless empires will be divided among other imperialists and will not necessarily be possessed by the most powerful empires. To model this competition, first each empire’s ownership likelihood is calculated according to its total cost.

Let 
NTCimp
be the normalized total cost of the 
impth
empire, 
TCimp
its total cost, and 
Pimp
be the possession probability of each empire, then 
NTCimp=TCimp−max{TCi},i={1,2,...,Nimp}
and 
Pimp=|NTCimp∑i=1Nimp⁡NTCi|
.

Then the vector 
P=[P1,P2,...,PNimp]
, the vector 
R=[r1,r2,...,rNimp]
with 
ri∈[0,1]
, and the vector 
D=P−R[P1−r1,P2−r2,...,PNimp−rNimp]
are computed. So, the empire with the maximum value of 
Di
will take the colonies. If after some iterations, the powerless empires lose all their colonies so they will be eliminated.

3.5 Genetic Algorithm

Genetic Algorithm (GA) is an evolutionary algorithm that have been successfully applied to different complex combinatorial optimization problems such as scheduling problems, knapsack problems, traveling salesman problem, etc. The GAs were introduced by Holland [41] and are inspired from Darwin’s theory of evolution. So, GA approach is based on natural evolution techniques, such as selection, crossover and mutation.

GA is a population-based algorithm, so each member in the population is called chromosome or solution. Starting from an initial population, the goal is to create new populations with better solutions after some iterations (called generation). In each generation, the fitness of every chromosome in the population is computed by an evaluation function to select the most fitted individuals from the current population. Then some genetic operators such as crossover and mutation are applied to these selected chromosomes. This process is repeated until the satisfaction of a termination condition.

To solve our problem, a GA hybridized with local search procedures (known as genetic local search GLS) is used. This algorithm has been developed initially for the two-machine flowshop problem where the objective is to minimize the total completion time [42].

We recall here the pseudo-code of the GLS algorithm.
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We The above procedure is adapted as follows. The initial population consists of 
M
solutions. 
M−1
solutions are randomly generated while a single one is generated using 
H5
developed by Berrais et al. [4]. 
M
is referred to as the population size. The fitness function consists on computing the total tardiness of a given solution.

4  Experimental Results

In order to evaluate the empirical performance of the proposed algorithms, a large set of computational tests have been undertaken. All these procedures were implemented in C and run on an Intel Core i5 PC (3.60 GHz) with 8 GB RAM.

4.1 Test Problems

Our proposed algorithms were tested on 
different problem sizes 
n∈{10,20,30,40,50,60,70,80,
90,100,200,300}
. The processing times and the release dates are uniformly distributed on 
[1,100]
and 
[0,∑j=1n⁡p1j2]
, respectively. The due dates 
dj
are generated using the scheme of [43] as follows: 
dj=rj+⌊f⋅(p1j+p2j)2⌋
where the due date slack factor 
f
where generated from a discrete uniform distribution on 
[1−T−R2,1−T+R2]
, and 
T
and 
R
are the tardiness factors of jobs 
T∈{1.5,2.5,3.5}
, and the dispersion factor of due dates 
R∈{0.2,0.4,0.6}
, respectively. By varying 
T
and 
R
, 
problem classes are obtained. For each class, 
instances were randomly generated for a total of 
test problems. Moreover, to consider the non-availability of machines, 
holes are randomly generated on each machine.

After an experimental study of the different parameters of our proposed algorithms, the following settings have been used to achieve high-quality solutions:
- PSO: 
N=20,c1=2,c2=2,vmin=−4,vmax=4,xmin=−4,xmax=4,β=0.975,w=0.9

- DE: 
N=20,xmin=−1,xmax=1,F=0.5,λ=0.05

- ACO: 
N=20,xmin=−1,xmax=1,α=0.1,β=0.1,φ=0.1,ρ=0.1

- GLS: The same parameters as in [42]

- ICA: 
N=150,Nimp=10,Ncol=140,ξ=0.05

For all algorithms, the maximum number of iterations is fixed experimentally according to the size of the problem (
n×50
).

4.2 Performance of the Proposed Algorithms

To compare our algorithms’ performance, the average relative percentage deviation (ARPD) from the best-known solution is used. This percentage deviation is defined as 
ARPD=[UB−UB∗UB∗]×100
, where 
UB
is the solution provided by PSO, DE, ACO, GLS or ICA and 
UB∗=min(UBi);(i=1,...,5)
.

Tabs. 1 and 2 summarize the results of the computational experiments.

The analysis with respect to the problem size in Tab. 1 clearly reveals that the best results among all tested algorithms are found by the proposed ICA algorithm. In fact, in comparison to the remaining meta-heuristics this algorithm provides lower values of ARPD, for all problem sizes. Among the 
tested problems, ICA gives the best solutions for 
instances. It can solve very large instances with up to 
jobs within a moderate CPU time. The average time in all instances of 
jobs was 
1628.9
s. It can see that the average CPU time grew significantly as the number of jobs increased, especially for the ICA and GLS algorithms. This is due to the fact that the number of jobs directly increases the number of iterations of the algorithms and thereby increasing the computation time.

[image: images]

Regarding the computational results of the GLS algorithm, we observe that it gives very good results for large size problems (
n>90
). In fact, the performance of GLS algorithm draws near significantly from the ICA algorithm for 
n>200
. Unfortunately, it shows the worst results for small size problems (
n≤30
). For 
n=10
, all the proposed algorithms, except the GLS, present the best performances in term of ARPD and the DE algorithm shows the best CPU time (
0.005
s). Furthermore, the DE algorithm shows better results than GLS for small and medium size instances (
n≤90
). Also, we observe that in term of ARPD no significant differences between the PSO and ACO algorithms were found, particularly for large size instances (
n≥200
).

Tab. 2 shows the ARPD of the proposed algorithms with respect to the combinations for the values of 
T
and 
R
. Our computational experience shows that the performance of the algorithms was affected considerably by the tardiness factor 
T
. In fact, we observe that the ARPD increases when the tardiness factor 
T
increases. The proposed algorithms were able to provide a lower ARPD for the instances which present lower tardiness factor (
T=1.5
).

[image: images]

Regarding the due date range factor 
R
, the results reveals that the ARPD of the proposed algorithms was slightly affected. Also, we observe the same remark for the CPU time except for the GLS algorithm. In fact, for this meta-heuristic the computation time increases considerably in particular for the (
T=2.5,R=0.2
) and (
T=2.5,R=0.6
) problem classes.

5  Conclusions

In this paper, we have proposed five evolutionary algorithms developed to minimize the total tardiness in a two-machine flowshop scheduling problem where the machines and jobs are subject to non-availability constraints and unequal release dates, respectively. To avoid the rapid convergence of these algorithms and in order to derive high-quality solutions, we proposed a hybridization of our algorithms with several local search procedures. Computational tests provide strong evidence, on the tested instances, that the Imperialist Competitive Algorithm (ICA) outperforms all the proposed population-based approaches.
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Table 1: Performance of the proposed evolutionary algorithms

n PSO GLS DE ICA ACO
ARPD  Time ARPD Time ARPD  Time ARPD Time ARPD  Time
10 0.000 0.0 0.197 0.1 0.000 0.0 0.000 0.2 0.002 0.0
20 0.025 0.0 0.126 0.3 0.002 0.0 0.000 1.0 0.034 0.1
30 0.060 0.0 0.113 1.0 0.013 0.0 0.000 2.9 0.068 04
40 0.070 0.1 0.057 2.4 0.020 0.0 0.000 6.3 0.070 0.7
50 0.076 0.1 0.053 5.3 0.024 0.1 0.000 114 0.071 1.5
60 0.091 0.2 0.059 10.6 0.037 0.1 0.000 20.9 0.080 2.6
70 0.081 0.3 0.047  20.1 0.033 0.1 0.000 353 0.067 4.2
80 0.073 0.3 0.034  31.5 0.033 0.2 0.000 484 0.068 6.2
90 0.068 0.5 0.037 4029 0.031 0.2 0.000 793 0.060 8.6
100 0.073 0.7 0.025 724 0.037 0.3 0.000 935 0.067 11.3
200 0.046 5.2 0.014 1117.2 0.025 1.5 0.001 542.0 0.045 864
300 0.042 17.0 0.011 6733.4 0.028 4.2 0.004 1628.0 0.042 3022
Average 0.059 2.0 0.064  699.8 0.024 0.6 0.000 205.8 0.056 354
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Algorithm 1. NEH Based LS

Step 1: LetIT = (n(1),7(2),...,n(n)) be a sequence. Select among the partial sequences ¢ = 7(1), 7(2)
and ¢ = 7(2), n(1) the one having the minimum partial total tardiness. SetJ = J\{n(1),n(2)} and k = 2

Step 2: Insert the job n(k) to the £ + 1 possible position of ¢. Select the sequence o with the minimum
partial total tardiness among k + 1 sequences. Set J = J\{=(k)}

Step 3: Repeat Step 2 until J = &
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Algorithm 6. GLS

Step 0. Parameters 1nitialization

Step 1. Population generation/initialization

Step 2. Selection

Step 3. Crossover

Step 4. Mutation

Step 5. Local search

Step 6. Goto Step 2 Until the maximum number of iterations 1s reached.
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Algorithm 4. ACO

Step 0: Initialize pheromone trails, f = 0
Step 1:

Repeat

. Apply Exchange All LS for all ants

. Apply ants state transition rules

. Apply local updating rule

. Apply Exchange All LS for all ants

. Apply global updating rule

. Apply Insertion_LS for the best ants
t=t+1

Until (the maximum number of iterations 1s reached)
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Algorithm 2. PSO

Step 1: Initialize the population by generating randomly N (N = 20) particles. Set ¢ = 0.
For each X(i=1,...,N) Do

. Set the initial position vector X = [xJ,...,x)]
. Set the initial velocity vector V7 = [V,... )]
. Set the current best Xy and the global best G*
End For

. Apply NEH_Based LS to G*

t=t+1

Step 2:

Repeat

Foreach...(i=1,...,N) Do

. Update inertia weight: w' = w'~1 8
. Update velocity v;- = wz‘_lvifi_1 + c1rq (xz; — xgjfl) + o1y (g]’-‘ — x;-_l)
. Update position x}, = x/7' +1/,

. Apply SPV rule to generate the permutation n corresponding to X/
. Update the current best X;* if (I7 (n!) < IT (n!™'))

. Apply NEH_Based_LS to = associated to the current best X"
End For

. Update the global best G*

. Apply NEH_Based_ LS to ©* associated to the global best G*

. Update the iteration counter t = ¢ + 1

Until (the maximum number of iterations 1s reached)
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Algorithm 5. ICA

Step 0. Generate the initial empires, ¢ = 0
Step 1. Apply local search for all imperialists
Step 2. Assimilation

Step 3. Compute the total cost of each empire
Step 4. Competition

Step 5. The powerless empires elimination
Step 6. Apply local search for all imperialists

Step 7. f = t + 1 and Goto Step 1 Until all colonies are under the control of the most powerful empire, or
the maximum number of iterations 1is reached.
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Table 2: Performance of the proposed algorithms with respect to the due dates’ factors

Class PSO GLS DE ICA ACO
ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time
T'=15 R=0.2 0050 25 0.058 5452 0.021 0.5 0.002 227.1 0.047 36.2
T=15R=04 0049 1.8 0.057 688.5 0.021 0.5 0.000 2143 0.046 34.1
T=15R=06 0049 1.8 0.057 681.6 0.020 0.5 0.000 189.8 0.046 34.0
IT'=25R=0.2 0058 25 0.063 12132 0.024 0.5 0.000 200.3 0.054 34.0
IT'=25R=04 0057 1.8 0.063 5547 0.023 0.5 0.000 205.1 0.054 34.0
IT'=25R=0.6 0057 1.8 0.063 8474 0.022 0.5 0.000 208.9 0.054 34.0
=35 R=02 0071 2.0 0.073 681.1 0.027 0.6 0.000 197.1 0.068 36.1
IT'=35R=04 0070 2.0 0.074 528.1 0.027 0.6 0.000 201.1 0.068 36.9
IT'=35R=0.6 0069 20 0.074 5583 0.026 0.6 0.001 208.1 0.067 39.0
Average 0.059 2.0 0.064 699.8 0.024 0.6 0.000 205.8 0.056 354
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Algorithm 3. DE

Step 0:

. Initialize target population

. Evaluate target population

. Apply NEH_Based_LS to the best solution
Step 1:

Repeat

. Generate mutant population

. Generate trial population

. Selection

. Apply local search for each selected member of the trial population
t=t+1

Until (Termination condition)
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