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Abstract: Eye state classification acts as a vital part of the biomedical sector, for
instance, smart home device control, drowsy driving recognition, and so on. The
modifications in the cognitive levels can be reflected via transforming the electro-
encephalogram (EEG) signals. The deep learning (DL) models automated extract
the features and often showcased improved outcomes over the conventional clas-
sification model in the recognition processes. This paper presents an Ensemble
Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-
cation (EDLCOA-ESC). The proposed EDLCOA-ESC technique involves min-
max normalization approach as a pre-processing step. Besides, wavelet packet
decomposition (WPD) technique is employed for the extraction of useful features
from the EEG signals. In addition, an ensemble of deep sparse autoencoder
(DSAE) and kernel ridge regression (KRR) models are employed for EEG Eye
State classification. Finally, hyperparameters tuning of the DSAE model takes
place using COA and thereby boost the classification results to a maximum
extent. An extensive range of simulation analysis on the benchmark dataset is car-
ried out and the results reported the promising performance of the EDLCOA-ESC
technique over the recent approaches with maximum accuracy of 98.50%.

Keywords: EEG eye state; data classification; deep learning; medical data
analysis; chimp optimization algorithm

1 Introduction

At present, the electroencephalography (EEG) eye state category is the most important research field. In
several analyses on EEG signal was executed. The outcomes in these analyses are essential and helpful to
human cognitive state types that aren't only vital for clinical care along with important to any daily
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routine task [1]. For instance, EEG eye state type was effectively implemented from the regions of infant
sleep-waking state recognition, drive drowsiness recognition, epileptic seizure recognition, type of bipolar
mood disorder (BMD) and attention deficit hyperactivity disorder (ADHD) patient, stress feature
recognition, human eye blinking recognition, etc. These situations specify the significance of researches
on EEG eye state signal study [2]. In a typical cases, the data describe EEG eye state relates to the
constant category of time-series data. The amount of machine learning (ML) and statistical methods that
are utilized for resolving the classifier issues with this time-series data. In addition, preceding researches
have confirmed that EEG eye state signal was effectively examined by any ML or statistical techniques [3].

A major problem with EEG based system is the interruption of artefacts from the signal. Artefacts are
maximum frequency signals that deal with non-cerebral sources and is dramatically change the recorded
signals [4]. The artefacts are separated as to 2 groups as internal as well as external. The external
artefacts were created in the environments or power equipment. The internal artefacts are muscle, eye
blink, respiratory artefacts, and eye movement [5]. In the EEG experimentally processes, the issues could
not control spontaneous eye movement or blinking [6]. These artefacts are nearly every case is extremely
distorted brain activities. So, this occurrence establishes the significance of researches on EEG eye state
signal study. In recent times, the area of deep learning (DL) was appealing to widespread concern by
creating extraordinary researches from nearly all the aspects of artificial intelligence (AI). Distant from
obtaining empirical success from the huge amount of practical applications, it can be offered recent
efficiency from natural language processing (NLP), speech detection, object detection, and several other
domains [7]. DL has developed most important parts of ML family. It can be dependent upon the group
of techniques which try to learn hierarchical, non-linear representation of information.

Zeng et al. [8] present for utilizing deep convolutional neural network (DCNN) and deep reinforcement
learning (DRL) for predicting the mental state of driver in EEG signal. Therefore, it can be established
2 mental state classifier techniques named as EEG-Conv and EEG-Conv-R. Testing on intra-and inter-
subject, the outcomes depict that combined techniques demonstrate the classical long short term memory
(LSTM) and support vector machine (SVM) based techniques. The main outcomes contain (i) Together
EEG-Conv and EEG-Conv-R yields great classifier efficiency to mental condition forecast; (ii) EEG-
Conv-R has further appropriate to inter-subject mental condition forecast; (iii) EEG-Conv-R converge
further faster than EEG-Conv. Zhu et al. [9] examine a content based ensemble method (CBEM) for
promoting depression recognition accuracy, combining static as well as dynamic CBEM are explained.
During the presented technique, an EEG dataset was separated as to subset with the context of
experimental, afterward, the most vote approach has been utilized for determining the subject label. The
validation of technique was testified on 2 datasets that contained free observing eye track and resting
state EEG, and these 2 datasets contain 36, 34 subjects correspondingly.

In Hu et al. [10], for catching the vital features of EEG signal, 4 kinds of entropies (dependent upon EEG
signals of single channel) are estimated as feature sets containing instance entropy, fuzzy entropy, estimated
entropy, and spectral entropy. Every feature set was utilized as input of gradient boosting decision tree
(GBDT), quick and extremely accurate boosting ensemble technique. The resultant of GBDT defined that
drivers from fatigue state or not dependent upon its EEG signal. In 3 recent techniques are k-nearest neighbor
(KNN), SVM, and neural network (NN) are also utilized. Durongbhan et al. [11] purposes for exploring a
routine for gaining as biomarker utilizing the quantitative analysis of electroencephalography (QEEG). It can
present a supervised classifier structure that utilizes EEG signals for classifying healthy controls (HC) and
Alzheimer's disease (AD) participants. The structure has KNN, data augmentation, quantitative evaluation,
feature extraction, and topographic visualization. The presented structure is efficiently classified HC as well as
AD participants with maximum accuracy, in the meantime present identification and localization of important
QEEG feature. These vital finding and the presented classifier structure was utilized to the progress of
biomarker to the analysis and observing of disease development from AD.
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In Woon et al. [12], it is examined the classification of EEG eye state data utilizing statistical and common
spatial pattern (CSP) filter approaches. The statistical feature was implemented from EEG signal classification
of eye-as well as eye-open situations however the accuracy was stated that lesser than 78%. The CSP filters
have famous techniques to classifier of motor imagery EEG from the brain computer interface (BCI) field
however if executed to EEG eye state classifier. So, this work purposes for developing technique utilizing
statistical-CSP feature to eye state classifier in EEG signals. The benefit on the discriminative feature given
by combined approaches, statistical as well as CSP filters that is estimated for increasing the accuracy of
eye state classifier technique. In Yasoda et al. [13], a new technique of independent component analysis
(WICA) utilizing fuzzy kernel SVM (FKSVM) was presented to eliminate as well as categorize the EEG
artefacts automatically. The presented technique is an effectual and robust model for adopting the robotic
classifier and artefact calculation in EEG signals without obviously offering the cut-off value. Also, the
target artefacts were distant effectively from integrating with WICA as well as FKSVM.

This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State
Classification (EDLCOA-ESC). The proposed EDLCOA-ESC technique involves min-max normalization
approach as a pre-processing step. Besides, wavelet packet decomposition (WPD) technique is employed
for the extraction of useful features from the EEG signals. In addition, an ensemble of deep sparse
autoencoder (DSAE) and kernel ridge regression (KRR) models are employed for EEG Eye State
classification. Finally, hyperparameters tuning of the DSAE model takes place using COA and thereby
boost the classification results to a maximum extent. An extensive range of simulation analyses on the
benchmark dataset is carried out.

2 The Proposed Model

In this study, a new EDLCOA-ESC technique has been developed for EEG Eye State Classification. The
proposed EDLCOA-ESC technique involves min-max normalization based pre-processing step, WPD based
feature extraction, ensemble classification, and COA based hyperparameter tuning. Also, an ensemble of
DSAE and KRR methods are employed for EEG Eye State classification. At last, hyperparameters tuning
of the DSAE model take place using COA and thereby boost the classification results to a maximum
extent. Fig. 1 depicts the overall process of EDLCOA-ESC technique.

Figure 1: Overall process of EDLCOA-ESC technique
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2.1 Pre-processing

The scaling represents altering data which are various scales for obtaining off biases because of the
occurrence of outliers. The most commonly used approach of feature scaling was Mini-Maxi normalized.
Mini-Maxi normalized changes the signal values of some range as to zero and one. The common
equation of Mini-Maxi normalized was written as:

m0 ¼ m�miniðmÞ
maxiðmÞ �miniðmÞ (1)

At this point m and m′ are novel and normalization values correspondingly.

2.2 Feature Extraction

WPD based method was established for extracting features of EEG signal. The co-efficient of WPD and
wavelet packet energy of special subbands were obtained as the novel feature. Noticeable during the
presented technique defining appropriate wavelet and the amount of decomposition levels are serious.
Especially, distinct kinds of wavelets were generally utilized from tests for finding the wavelet with
maximal performance to specific applications. The smoothing feature of daubechies 4 (db4) wavelet is
further appropriate to detect modifies of EEG signal. Therefore, it can be utilized this approach for
computing the wavelet coefficient.

2.3 Ensemble of DL Based Classification

At this stage, an ensemble of DSAE and KRR models are employed for EEG Eye State classification
process is carried out. DSAE can resolve the issue of trivial identity maps by implementing sparsity
constraints. Autoencoder (AE) execute sparsity regularized constraint to hidden unit is named as DSAEs.
The neuron was noticing that when its outcome values are closer to 1 and it can be deemed that inactive
when its outcome values are closer to 0. It desires for adding constraints that output is nearby 0 normally.
Assume the average activation of hidden layer j as:

q̂ ¼ 1

k

Xk
i¼1

hj: (2)

It desires to be estimated q̂j ¼ q where ρ refers the sparsity proportion parameters that is a smaller
positive number around equivalent to 0 [14]. For imposing these constraints, it can add a penalty term

dependent upon Kullback-Leibler (KL) divergence that is expressed as
Pk
j¼1

KLðqjjq̂Þ whereas

KLðqjjq̂jÞ ¼ q log
q
q̂j

þ ð1� qÞlog 1� q
1� q̂j

(3)

is the KL divergence. With adding KL divergence terms its cost function develops as:

JSAE ¼ 1

2

XN
i¼1

kxi � ẑk2 þ k
2
ðkWk2 þ kW 0k2Þ þ b

XN
j¼1

KLðqkq̂jÞ (4)

where β denotes the weight of sparsity regularized term. With minimized this cost function, it is optimizing
parameters W ; W 0; b , and b′.

A typical RR [15], the part of hidden state is for mapping the input state neuron to hidden state neuron
that is hidden state neuron of RR are mapped data in the data space to any high dimension space, in which all
dimensions relates to hidden neurons. Therefore, the efficacy of RR is commonly dependent upon the hidden
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state neuron and it can be application particular. For avoiding the oversaid hidden neurons selective issue a
KRR was utilized for classifying every microarray clinical data set. In KRR, a positive regularize co-efficient
C was established for making it further generalization and stability. The resultant weight β is

b ¼ HTð1
c
þ HHT Þ�1T (5)

At this point H refers the hidden state resultant matrix, C signifies the regulation co-efficient and T
implies the resultant matrix. The resultant function of KRR develops

f ðxÞ ¼ hðxÞHTð1
c
þ HHT Þ�1T (6)

At this time, before significant, the hidden state feature map, h(x), their equivalent kðu; vÞ was
calculated. The absence of L that is hidden state neuron from KRR more simplifies KRR calculation
method [16]. The kernel matrix of process dependent upon Mercer's form was determined as

hRR ¼ HHT : hRRij ¼ hðxiÞ � hðxjÞ ¼ kðxi; xjÞ (7)

So the resultant of kernel ridge regression is expressed as:

f ðxÞ ¼ hðxÞHT 1

c
þ HHT

� �
T ; T ¼

kðx; x1Þ
:
:

kðx; xN Þ

2
664

3
775
T

1

c
þ hRR

� �
(8)

where θRR =HHT and kðxi; xjÞ defines the kernel function of hidden neurons of the single layer feedforward
neural network (SLFN). Between the distinct kernel function sufficient Mercer's forms accessible under the
works the wavelet KRR (WKRR) and radial basis function KRR (RKRR). Conversely, the complex wavelet
kernel function utilizes vector that is ½d; e; f � as parameter. According to the data sets, proper decision of
kernel function and correct tuning of parameters were extremely needed for obtaining optimum outcomes.

� Radial basis kernel

kðx; yÞ ¼ eð�akx�ykÞ (9)

� Wavelet kernel

kðx; yÞ ¼ cos d
kx� yk

e

� �
e �kx� yk2

f

 !
(10)

KRR is useful in comparison to RR as there is no condition of significant the hidden state feature map
and set the amount of hidden state neuron L. It gets optimum generalized, most stable related to RR, and is
over SVM.

2.4 COA Based Hyperparameter Optimization

Lastly, the hyperparameters tuning of the DSAE model takes place using COA and thereby boost the
classification results to a maximum extent. COA is a mathematical process which is dependent upon
intelligent diversity [17]. Drive, chase, block, and attack were accomplished by 4 distinct kinds of chimps
that are able by attacker, driver, obstacle, and chaser. The 4 hunting stages were ended in 2 phases. The
primary phase was exploration step, and secondary phase was exploitation step. The exploration step
contains driving, blocking, and chasing the prey.
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During the exploitation step, it has for attacking the prey whereas, the drive and chase were
demonstrated in Eqs. (11) and (12).

d ¼ jc � xpreyðtÞ � m � xchimpðtÞj (11)

xchimpðt þ 1Þ ¼ xpreyðtÞ � a � d (12)

where Xprey implies the vector of prey place, xchimp refers the vector of chimp place, t signifies the amount of
existing iterations, a; c; m stands for thee co-efficient vector and it could be attained with Eqs. (13)–(15).

a ¼ 2 � f � r1 � f (13)

c ¼ 2 � r2 (14)

m ¼ chaotic�value (15)

where f non-linearly decayed in 2.5 to 0; r1 and r2 refers the arbitrary number amongst zero and one, and m
has the chaotic vector. The dynamic co-efficient f is chosen to distinct curves and slopes, so the chimps are
utilized various capabilities for searching the prey [18].

The chimps are upgraded their places dependent upon the other chimps, and this mathematical process is
signified in Eqs. (16) and (18).

dAttack ¼ jc1xAttack � m1xj
dBarrier ¼ jc2xBarrier � m2xj
dChase ¼ jc3xChase � m3xj
dDrive ¼ jc4xDrive � m4xj

(16)

x1 ¼ xAttack � a1ðdAttackÞ
x2 ¼ xBarrier � a2ðdBarrierÞ
x3 ¼ xChase � a3ðdChaseÞ
x4 ¼ xDrive � a4ðdDriveÞ

(17)

xðt þ 1Þ ¼ x1 þ x2 þ x3 þ x4
4

(18)

3 Experimental Validation

The experimental result analysis of the EDLCOA-ESC technique is tested using the benchmark dataset
from UCI repository (available at https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State). The dataset holds
14980 instances, with two classes namely eye closed with 6723 instances (class 1) and eye open (class 0)
with 8257 instances.

Fig. 2 shows the correlation matrix generated for the benchmark EEG Eye state dataset.

Fig. 3 demonstrates the confusion matrices created by the EDLCOA-ESC technique under ten distinct
runs. The results demonstrated that the EDLCOA-ESC technique has effectually identified proper class
labels. For instance, with run-1, the EDLCOA-ESC technique has recognized 6624 instances under class
1 and 8143 instances under class 0. Meanwhile, with run-4, the EDLCOA-ESC approach has recognized
6614 instances under class 1 and 8145 instances under class 0. Eventually, with run-6, the EDLCOA-
ESC method has recognized 6609 instances under class 1 and 8154 instances under class 0. Concurrently,
with run-8, the EDLCOA-ESC approach has recognized 6593 instances under class 1 and 8166 instances
under class 0. Simultaneously, with run-10, the EDLCOA-ESC system has recognized 6616 instances
under class 1 and 8147 instances under class 0.
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Tab. 1 and Fig. 4 illustrate the overall classifier results analysis of the EDLCOA-ESC technique under
distinct runs. The table values indicated that the EDLCOA-ESC technique has resulted in enhanced classifier
results under every run. For instance, with run-1, the EDLCOA-ESC technique has obtained positive
predictive value (PPV) of 98.31%, true positive rate (TPR) of 98.53%, accuy of 98.58%, F1score of
98.42%, and kappa coefficient of 98.22%. In addition, with run-4, the EDLCOA-ESC methodology has
reached PPV of 98.33%, TPR of 98.38%, accuy of 98.52%, F1score of 98.36%, and kappa coefficient of
98.15%. Also, with run-6, the EDLCOA-ESC approach has gained PPV of 98.47%, TPR of 98.3%, accuy
of 98.55%, F1score of 98.38%, and kappa coefficient of 98.19%. Along with that, with run-8, the
EDLCOA-ESC system has achieved PPV of 98.64%, TPR of 98.07%, accuy of 98.52%, F1score of
98.35%, and kappa coefficient of 98.16%. Moreover, with run-9, the EDLCOA-ESC approach has
attained PPV of 98.22%, TPR of 98.54%, accuy of 98.54%, F1score of 98.38%, and kappa coefficient of
98.18%. Lastly, with run-10, the EDLCOA-ESC methodology has obtained PPV of 98.36%, TPR of
98.41%, accuy of 98.55%, F1score of 98.39%, and kappa coefficient of 98.19%.

Fig. 5 illustrates the overall average EEG Eye State classification result analysis of the EDLCOA-ESC
technique. The figure reported the enhanced performance of the EDLCOA-ESC technique with the PPVof
98.32%, TPR of 98.35%, accuy of 98.50%, F1score of 98.34%, and kappa coefficient of 98.13%.

The accuracy outcome analysis of the EDLCOA-ESC technique on the test data is demonstrated in
Fig. 6. The results exhibited that the EDLCOA-ESC system has accomplished enhanced validation
accuracy compared to training accuracy. It is also observable that the accuracy values get saturated with
the epoch count of 1000.

The loss outcome analysis of the EDLCOA-ESC approach on the test data is exhibited in Fig. 7. The
figure described that the EDLCOA-ESC method has denoted the lower validation loss over the training
loss. It is additionally clear that the loss values get saturated with the epoch count of 1000.

Figure 2: Correlation matrix of EDLCOA-ESC technique

IASC, 2023, vol.35, no.2 1649



Figure 3: Confusion matrix of EDLCOA-ESC technique under different runs

Table 1: Result analysis of EDLCOA-ESC technique with different measures

No. of runs PPV TPR Accuracy F1-score Kappa coefficient

R-1 98.31 98.53 98.58 98.42 98.22

R-2 98.18 98.13 98.34 98.16 97.93

R-3 98.21 98.57 98.55 98.39 98.18

R-4 98.33 98.38 98.52 98.36 98.15

R-5 98.42 98.16 98.46 98.29 98.08

R-6 98.47 98.3 98.55 98.38 98.19

1650 IASC, 2023, vol.35, no.2



Table 1 (continued)

No. of runs PPV TPR Accuracy F1-score Kappa coefficient

R-7 98.09 98.39 98.42 98.24 98.02

R-8 98.64 98.07 98.52 98.35 98.16

R-9 98.22 98.54 98.54 98.38 98.18

R-10 98.36 98.41 98.55 98.39 98.19

Average 98.32 98.35 98.50 98.34 98.13

Figure 4: Result analysis of EDLCOA-ESC technique with distinct measures
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Figure 5: Average analysis of EDLCOA-ESC technique

Figure 6: Accuracy graph analysis of EDLCOA-ESC technique

Figure 7: Loss graph analysis of EDLCOA-ESC technique
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The comparative result analysis of the EDLCOA-ESC technique with recent methods is provided in
Tab. 2 [19].

Fig. 8 demonstrates the comparison study of the EDLCOA-ESC technique with existing ones interms of
accuy. The results showed that the Naïve Bayes, Bayes Net, KNN, decision tree (DT), and Bagging
techniques have attained ineffective outcomes with the accuy of 73.52%, 75.26%, 74.38%, 72.84%, and
76.95% respectively, In line with, the multilayer perceptron (MLP) and SVM models have resulted in
moderately improved outcome with the accuy of 78.36% and 79.24% respectively. Though the RF model
has attained near optimal outcome with accuy of 87.58%, the proposed EDLCOA-ESC technique has
outperformed the other methods with the higher accuy of 98.50%.

Fig. 9 depicts the comparison study of the EDLCOA-ESC approach with existing ones with respect to
error rate (ER). The outcomes demonstrated that the Naïve Bayes, Bayes Net, KNN, DT, and Bagging
techniques have attained ineffective outcomes with the ER of 26.48%, 24.74%, 25.62%, 27.16%, and
23.05% correspondingly. Also, the MLP and SVM methodologies have resulted in moderately improved
outcomes with the ER of 21.64% and 20.76% correspondingly. Eventually, the RF approach has gained

Table 2: Comparative analysis of EDLCOA-ESC technique with existing methods

Methods Accuracy (%) Error rate (%)

Naive Bayes Model 73.52 26.48

Bayes Net Model 75.26 24.74

KNN Model 74.38 25.62

MLP Algorithm 78.36 21.64

SVM Algorithm 79.24 20.76

DT Model 72.84 27.16

Bagging Model 76.95 23.05

Random Forest Model 87.68 12.32

EDLCOA-ESC 98.50 01.50

Figure 8: Accuracy analysis of EDLCOA-ESC technique with recent methods
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near optimal outcome with ER of 12.32%, the presented EDLCOA-ESC system has demonstrated the other
techniques with the lower ER of 1.50%.

By looking into the above mentioned tables and figures, the proposed EDLCOA-ESC technique has
accomplished better performance over the other existing techniques.

4 Conclusion

In this study, a new EDLCOA-ESC technique has been developed for EEG Eye State Classification. The
proposed EDLCOA-ESC technique involves min-max normalization based pre-processing step, WPD based
feature extraction, ensemble classification, and COA based hyperparameter tuning. In addition, an ensemble
of DSAE and KRRmodels are employed for EEG Eye State classification. At last, hyperparameters tuning of
the DSAE model take place using COA and thereby boost the classification results to a maximum extent. An
extensive range of simulation analysis on the benchmark dataset is carried out and the results reported the
promising performance of the EDLCOA-ESC technique over the recent approaches with the higher accuy
of 98.50%. In future, hybrid DL models can be utilized instead of DSAE model to enhance the
classification results.
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