
Defending Adversarial Examples by a Clipped Residual U-Net Model

Kazim Ali1,*, Adnan N. Qureshi1, Muhammad Shahid Bhatti2, Abid Sohail2 and Mohammad Hijji3

1Department of Computer Science, Faculty of Information Technology, University of Central Punjab Lahore, 54000, Pakistan
2Department of Computer Science, COMSAT University Islamabad, Lahore Campus, Lahore, 54000, Pakistan

3Faculty of Computers and Information Technology, Computer Science Department, University of Tabuk, Tabuk, 47711,
Saudi Arabia

*Corresponding Author: Kazim Ali. Email: kazimravian2003@gmail.com
Received: 18 February 2022; Accepted: 29 March 2022

Abstract: Deep learning-based systems have succeeded in many computer vision
tasks. However, it is found that the latest study indicates that these systems are in
danger in the presence of adversarial attacks. These attacks can quickly spoil deep
learning models, e.g., different convolutional neural networks (CNNs), used in
various computer vision tasks from image classification to object detection. The
adversarial examples are carefully designed by injecting a slight perturbation into
the clean images. The proposed CRU-Net defense model is inspired by state-of-
the-art defense mechanisms such as MagNet defense, Generative Adversarial Net-
work Defense, Deep Regret Analytic Generative Adversarial Networks Defense,
Deep Denoising Sparse Autoencoder Defense, and Condtional Generattive
Adversarial Network Defense. We have experimentally proved that our approach
is better than previous defensive techniques. Our proposed CRU-Net model maps
the adversarial image examples into clean images by eliminating the adversarial
perturbation. The proposed defensive approach is based on residual and U-Net
learning. Many experiments are done on the datasets MNIST and CIFAR10 to
prove that our proposed CRU-Net defense model prevents adversarial example
attacks in WhiteBox and BlackBox settings and improves the robustness of the
deep learning algorithms especially in the computer vision field. We have also
reported similarity (SSIM and PSNR) between the original and restored clean
image examples by the proposed CRU-Net defense model.

Keywords: Adversarial examples; adversarial attacks; defense method; residual
learning; u-net; cgan; cru-et model

1 Introduction

Deep learning (DL) models transform linear data patterns into nonlinear ones [1] and efficiently extract
complex features from the data and information [2]. Deep learning solves many complex problems [3] that
are almost impossible in the past [4] or challenging to solve in machine learning (ML) [5]. These days, the
availability of massive data and high computational power [6] enable deep learning algorithms to make a
considerable contribution in different fields of machine learning. For example, in vision systems [7],
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linguistic communication process [8], edge computing [9], services computing [10] and spreads excellent
applications of artificial intelligence (AI) in the world of real-life [11].

Deep learning algorithms have gained excellent success in their outstanding achievement, and different
computing applications also raised questions on the interpretability of the deep learning field [12]. In such
circumstances, we cannot reasonably explain the way of prediction by a DL algorithm. Therefore, AI
applications based on DL-baed algorithms can face severe security threats [13]. These days, different
research studies have proven that DL algorithms are not secured in the environment of membership
logical thinking attack [14] and attribute logical thinking attack [15]. These days, the most dangerous
threats facing deep learning algorithms are adversarial (negative) examples that Szegedy developed in
2014 [16]. The adversarial examples can easily be crafted by adding a small amount of adversarial
perturbation into a clean example by fooling a deep learning model such as CNN in computer vision
applications. This perturbation is non-noticeable for humans. The methods used to produce adversarial
examples are called adversarial attacks. In the presence of these attacks, a high-performance DL
algorithm gives incorrect prediction results and degrades the overall prediction of the algorithm [17].
Finally, the adversarial attacks decrease the robustness of deep learning applications such as image
classification, face recognition, visual systems, self-driving vehicles, and many more [18].

When we carefully study the area of adversarial example attacks and defense methods, the following
trends: The speed of developing various methods to create adversarial examples are increasing rapidly. It
is found that there are two types of attacks from a classification point of view in computer vision, such as
targeted attack and non-target attack. In a targeted adversarial attack, the attacker tries to misclassify a
model to a specific class, e.g., enforce a model to classify a dog as a horse. These attacks are JSMA [19],
EAD [20], and C&W [21]. In non-targeted Attacks, the aim of the attacker, a classifier to misclassify a
class other than its actual class or ground truth class, e.g., classify a dog as any other class in the ground
truth list. BIM [22], FGSM [23], PGD [24], and DeepFool [25] are some examples of non-targeted attacks.

Since the robustness of creating negative (adversarial) examples increases, detecting and defending
these examples is challenging. The computation cost of building an adversarial attack also decreases due
to the active area of research. The transferability property of negative examples makes it a significant
challenge to defend adversarial examples. Transferability means the adversarial examples created for one
model also fool another [26]. Reinforcement and recurrent learning models are also easily made fooled
by adversarial examples. Therefore, these attacks are not limited to computer vision. The adversarial
examples are also a serious security issue in text processing [27] and speech-related applications [28].
That is why developing a proper defense method against adversarial attacks is vital, but we are limited to
defending adversarial examples in the computer vision field in this research study.

Usually, there are two types of defense approaches are reported in recent literature; First, the defense
systems strengthen the neural network during the training process by adjusting learnable parameters
(weights and biases) such as adversarial training [29] and distillation network defense technique [30].
Second, the defensive approaches to protect neural networks from removing adversarial perturbation or
features from the adversarial examples and restore into clean examples. These approaches are used after
training target neural networks and adversarial attacks. For example, LID [31], Defense-GAN [32],
MagNet [33], ComDefend [34], DRAGAN-Defense [35], DDSA-Defense [36], and cGan-Defense [37].

However, each defense technique has some limitations. First, defensive distillation prevents attacks based
on the gradient of the target model but fails against the CWA attack. Second, adversarial training is
computational hard because it is needed to retrain the model for adversarial attacks again and again. Third,
the adversarial perturbation is imperceptible, and it is challenging to differentiate adversarial examples from
clean (original) examples. Hence, it is hard for defensive approaches to remove adversarial noise from
adversarial examples to map into clean examples. Finally, we have proposed a novel defense framework to
restore adversarial examples into clean examples by eliminating the adversarial noise.
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This research work will propose a defense framework based on residual network (ResNet) and the U-Net
model. We mix the structures and properties of ResNet and U-Net to develop a defense system named as
CRU-Net (Clipped-Residual-U-Net) defense model. The proposed CRU-Net model maps the adversarial
examples into clean examples (original images) by removing adversarial perturbation or noise and
restoring the original input features. The uncluttered images are now correctly classified by the target
image classifier. After a successful adversarial attack, we add our proposed CRU-Net model as a
preprocessor block between the adversarial attack (attacker) and the target model. The overall working of
our defense system is shown in Fig. 1. We describe our contribution as follows:

� Our primary goal is to develop a defense system responsible for removing adversarial features from
adversarial examples before feeding the target model.

� Our proposed defense system is inspired by state-of-the-art methods such as MagNet-Defense,
Defense-GAN, DRAGAN-Defense, DDSA-Defense, and cGan-Defense and improved their results.
These defense methods remove adversarial noise from negative examples to protect target model.

� Our CRU-Net defense system is model-independent, which means there is no need to know about the
structure of the target model. Therefore, the target model will remain independent, and there is no
need to change its internal structure.

The remaining paper is organized as follows; Section 2 will describe the related or background study
about the adversarial examples and defense frameworks. Section 3 will present the residual and U-Net
learning theories because our proposed method is based on them. Section 4 will consist of our proposed
defense method and its detail. Finally, Section 5 will present the experimental results, which we will
drive during this research study, and Sections 6 and 7 will present the discussion and conclusion.

Figure 1: Represents the whole process of our proposed CRU-Net defense system against adversarial attack
examples. For example, suppose the adversary has successfully attacked the target model and created an
adversarial image example. In that case, the adversarial image examples are passed to our proposed CRU-
Net Defense Model (substituted between the attacks and target model) to regenerate the adversarial
examples into clean examples by removing adversarial features and feeding them to the target model for
correct prediction
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2 Related Works

This section will discuss some related work about adversarial attacks and defense methods.

2.1 Adversarial Attacks

In recent literature, there are two types of adversarial attacks are investigated, which are given as under:

� White-box Attacks: The attacks where the attacker has complete knowledge about the target model,
like the internal structure of the target model.

� Black-box Attacks: The attacker does not know the model structure in these attacks. The adversary has
only known the information of the output of the model.

FGSM (Fast Gradient Sign Method) [23] is a single step (need no iteration) white-box adversarial attack,
developed by Goodfellow et al. in 2014. The following relation gives the mathematical form of FGSM:

I 0 ¼ I þ e:signðrILðh; I ; yÞ (1)

where I is the original image, ɛ is the small constant which controls the magnitude of the adversarial
perturbation, signðrILðh; I ; yÞ is the sign of the gradient of the loss of the target model w.r.t I, θ
represents the parameters (weights and biases) of the target model, y is the actual label and I′, shows the
required adversarial example.

R-FGSM (Random Fast Gradient Sign Method) [38] is an advanced variant of FGSM [23], which
decreases the robustness of the adversarial training (AT) defense technique [27] by adding some random
noise in the input image. The following relation gives the R-FGSM:

I^ ¼ I þ[:signðX Þ (2)

where[ represents a constant and X shows a vector taken from multivariate Gaussian Distribution and then
applying Eq. (1) of FGSM as under:

I 0 ¼ I^ þ ðE�[ÞrI^ LðI^ yÞ; with [, e (3)

PGD (Projected Gradient Descent) is proposed by Madry et al. [24]. In a PGD attack, the process of
creating adversaries is taken as a bounded optimization problem and optimizing the following relation:

minh qðhÞ; with qðhÞ ¼ EðI ; yÞ � D½maxd E SLhðI þ d; yÞ� (4)

where E represents an objective function, and δ represents the adversarial noise.

DFA (Deep Fool Attack) [25] was launched by Moosavi-Dezfooli et al. as a repetition attack based on l2
distance metric. The closest distance from the original input to the decision limit is determined in DFA.
Decision limits distinguish the different classes on a hyperplane made by a classifier. Adversarial
perturbation is created in a way that suppresses the negative pattern (adversarial example) outside the
boundary, resulting in being classified as any other category or class.

CWA (Carlini and Wanger Attack) [21] has proposed producing negative examples surpassing many
defense systems, especially the distillation defensive technique. CWA approach sees the target model as
flexible and fulfills two conditions to create adversarial examples. (1) to decrease the distance (difference)
between the adversarial sample and the original sample, (2) the adversarial sample should increase the
error rate of the decision boundary of the target model. The authors have developed three types of attacks
to minimize l0, l1, and l2 distance metrics between original and adversarial examples.

SPA(Spatially Transformed Attack ) [39] produces adversarial examples by transforming the original
image around x and y coordinates in its frame of reference. This attack change location of the pixels
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instead of changing the value. The SPA creates an adversarial example by optimizing the following relation,
which is given by

Lflowðf Þ þ a:Ladvðxt þ tÞ (5)

where α is the weight constant, Ladv(x
t + t) is the prediction loss of the model, and Lflow(.) is the variant loss

required to produce adversarial perturbation for creating transformed adversarial examples.

2.2 Defense Method Against Adversarial Attacks

Now we will describe the defense systems against adversarial attacks such as Adversarial Training (AT)
defense, MagNet-Defense, Defense-Gan, DRAGAN-Defense, DDSA-Defense, and cGAN-Defense.

AT (Adversarial Training) [29], the adversarial examples created due to different adversarial attacks are
mixed in the original dataset and then retraining the classifier. In this way, the target model is trained on both
actual and adversarial samples and predicts correct results on adversarial examples. The cost function of AT
is given by Eq. (6):

aJðx; yÞ þ ð1� aÞLðx0; yÞ (6)

Mag-Net [33] is a security system against adversarial example attacks that enhances the robustness of a
model by using two encoders. One is a detector, and the other is a re-constructor or reformer. The first auto-
encoder is trained to detect the adversarial examples, and the second auto-encoder is trained for cleaning the
adversarial perturbation from adversarial examples. The output of the Mag-Net system is a clean image
without adversarial noise.

Defense-GAN [32] is similar to Mag-Net, but this defense technique uses a Generative Adversarial
Network (GAN) instead of the traditional auto-encoder. Defense-GAN trains WGAN (Wasserstein's loss)
on uninterrupted images and re-creates adversarial images before allowing the classifier to conflicting de-
noising examples.

DRAGAN-Defense (Deep Regret Analytic Generative Adversarial Network) [35] is inspired by
Defense-GAN [32] and claims to improve its results. DRAGAN is an updated version of GAN that offers
fast and stable training and the chance to overcome mode collapse. Mode collapse occurs when the GAN
produces the same output or small group of outputs repeatedly.

DDSA-Defense (Deep De-noising Sparse Auto-encoder) [36], in this technique, the authors first
retrained the target model with adversarial examples produced by PGD [24] attack. They then used a pre-
trained sparse auto-encoder as a preprocessing block to remove adversarial perturbation. Sparse means
they apply a constraint on selecting features from the latent space of the encoder. Features with high-level
pieces of information are selected, and others are skipped.

The conditional GAN-Defense (cGAN) [37] approach uses the power of a conditional GAN, unlike the
old-fashioned GAN. This approach attempts to minimize adversarial features from negative examples and
provides reconstructed images to the target identifier, aiming to restore the predicted accuracy of the
target model.

3 Residual and U-Net Learning

This section introduces the residual learning (ResNet model) and U-Net learning used in the proposed
CRU-Net defense model shown in Fig. 2.
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The residual neural networks (ResNets) are proposed by He et al. [40] to deal with network damage as
the depth of the network increases. The ResNet learning network developed by Microsoft can quickly solve
the vanishing gradient problem. Residual learning reuse maps of each feature generated as inputs from
subsequent combinations within the same block, and this model structure is an artistic image
classification method. Therefore we will use the residual learning concept in our CRU-Net defense
model, which will be used to remove adversarial perturbation from adversarial examples.

The U-Net [41] architecture was designed mainly for image segmentation, especially in medical imaging
science. However, the U-Net model is now widely used in image encoding and decoding. The encoding
phase contains several combinations of convolutional layers and many varieties of the max-pooling layer
that reduce the size of the feature maps at each level while doubling the number of feature maps. The
decoding section restores the size of the feature maps and keeps symmetric forms concerning the
encoding section. In addition, the U-Net model enables the feature maps to concatenate simultaneously
and reduces the loss of information during the encoding process.

In the proposed CRU-Net defense model, we use U-Net for the encoding and decoding process and
finally make a clipped residual network block of input, and output obtained from the U-Net decoding
process as shown in Fig. 2.

4 The Proposed CRU-Net Defense System

The proposed CRU-Net defense model is a defense system against adversarial example attacks. We have
briefly described adversarial attacks in the related work Section 2.1. The process of the CRU-Net defense is
to restore adversarial examples into clean examples to increase the robustness of the target or attacked models
against adversarial attacks. It takes an adversarial image example as input and gives us a clean image example
without adversarial noise, as shown in Fig. 2.

The proposed CRU-Net defense is based on U-Net and residual learning (ResNet model). Suppose that I
is an original image and δ is the adversarial perturbation, then the adversarial example is created by the
following Eq. (7)

Figure 2: The structure of the CRU-Net model is to restore adversarial examples into clean examples. The
restored adversarial example is cleaned from adversarial perturbation, and the target model gives the correct
classification result on the restored clean example
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I 0 ¼ I þ d (7)

Then the restoring process of the adversarial example I′ into the clean image is approximating the
following parametric function, which is given as under:

Ir ¼ FðI 0; hÞ (8)

where Ir is the restored image, and θ represents the training parameters of the proposed CRU-Net model. To
minimize trainable parameters θ, we solve the following optimization problem:

h� ¼ arg minh
1
N

XN

i

LðFðI 0i ; hÞ; IiÞ (9)

where ðI 0i ; IiÞ is the training set mapped from I 0i to Ii by the proposed CRU-Net. L( . ) is the loss function
which is given by Eq. (10):

L ¼ 1
N

XN

i

ðIi � Iri Þ2 (10)

The final output residual block of the CRU-Net model, which is our required cleaned example, is
written as:

I r ¼ ClipðFðI 0; hÞ þ I 0; 0; 1 or 0; 255Þ (11)

where Clip(.) is a function that controls the intensities of the restored clean examples from 0 to 1 or 0 to 255,
and the model has consisted of three de-noising blocks at each level according to the size of the images, e.g.,
28 × 28 × 1 in our case in Fig. 2. These blocks show three consecutive convolution layers with the number of
filters increased at each level by factor 2, the kernel size is 3 × 3, having the same padding, and stride is 1.
Two blocks are used in the encoding and decoding phase at each level. The output of each block in the
encoding phase is downscaled by 2 with the help of the convolution layer with stride two instead of max
pooling. The number of feature maps is doubled on every downscaling to decrease the loss of
information due to downscaling. The up-scaling is done using a transpose convolution layer in the
decoding process. The shortcuts are managed in the encoding and decoding phases by using the
concatenation of the same level. After upscaling and concatenating the same level blocks, a 3 ×
3 convolution is performed to smooth and restore important information in the decoding process. We
have used LeakyReLU() as an activation function in each layer of the CRU-Net model. This activation
function is more flexible and gives good accuracy for our model than other activation functions such as
ReLu(). The de-noising blocks are based on ResNet50 and reuse the feature maps.

In de-noising blocks, first, we perform a 3 × 3 convolution operation to decrease the feature maps by
half, and after this, two 3 × 3 convolution operations are performed. In the end, a 3 × 3 convolution block
combines all the feature maps of the first and last blocks. Then we reduce the output depth of the last
concatenated blocks by 28 × 28 × 1. Now, this block is used globally residual learning, which means to
add the input and the output of the CRU-Net model. Finally, we clipped the residual function to
regularize the intensities of our restored clean image from 0 to 1 or 0 to 255. Therefore we have named
this proposed method as the Clipped Residul U-Net model (CRU-Net). The restoration loss of the CRU-
net model during the restoration process of adversarial examples into clean examples is shown in Figs. 3–5.
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Figure 3: (a) The restoration loss of the CRU-Net model to restoring adversarial examples into clean
examples was created due to the FGSM attack (b) the restoration loss of the CRU-net model to restoring
adversarial examples into clean examples was created due to the R-FGSM attack

Figure 4: (a) The restoration loss of the CRU-Net model to restoring adversarial examples into clean
examples was created due to the PGD attack (b) the restoration loss of the CRU-Net model to restoring
adversarial examples into clean examples was created due to the DFA attack

Figure 5: (a) The restoration loss of the CRU-Net model to restoring adversarial examples into clean
examples was created due to the CWA attack (b) the restoration loss of the CRU-Net model to restoring
adversarial examples into clean examples was created due to the SPA attack
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The CRU-Net defense method is worked as a preprocessor block between the adversarial attack and
target model. When the attacker successfully creates an adversarial example, it is fed into the model to
restore the adversarial example into the clean example. The CRU-Net model is already trained to map
adversarial examples into clean examples, and the structure of the model is shown in Fig. 2 for cleaning
adversarial examples created from the MNIST dataset. Similarly, we develop this structure for different
datasets of images of different sizes, e.g., CIFAR10. This model is beneficial when substituting between
the adversary and the target model. The restoring loss is much slight during the training of the model on
adversarial examples after each epoch, and the evidence of slight loss can be shown in Figs. 3–5 for
different adversarial example attacks. The restoration loss is slight; therefore, the images generated by the
model are almost identical to the original images shown in Figs. 6 and 7. So the target model has no
issue predicting the generated clean images correctly.

5 Experiments and Results

This section will evaluate how to defend our defense system against adversarial example attacks. Finally,
we will use two datasets, MNIST and CIFAR10, for all our experiments.

The MNIST dataset contains 70000 handwritten digits, and we will use 60000 images as training set and
10000 images at test set. It is publicly available at http://yann.lecun.Com/exdb/mnist/. We have trained two
models for the MNIST dataset; their structures and names (A-net and B-net) are the same as described in
cGAN-Defense [37], which is one of our baseline techniques. The structures of A-net and B-net are
described in Tab. 1. The accuracies of models A-net and B-net are 99.35% and 99.39%, respectively. The
CIFAR10 contains 60000 RGB images of 10 categories, where we will use 50000 images for training
purposes and 10000 images for testing purposes. It can be publicly found at https://www.cs.toronto.edu/
∼kriz/cifar.html. In addition, we have used pre-trained DenseNet and MobileNet models for the
CIFAR10 dataset named D-net and M-net. The models D-net and M-net achieve an accuracy of 83.3%
and 82.3% on the CIFAR10 dataset, respectively.

Figure 6: The first row shows the original images of the MNIST dataset. The second row represents the
adversarial perturbations produced by the adversarial attacks (FGSM, R-FGSM, PGD, DFA, CWA, and
SPA ). The third row shows the adversarial examples, two for each attack. Finally, the fourth row
demonstrates the restored clean examples generated by the proposed CRU-Net defense model
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5.1 Performance Metrics for CRU-Net Defense

The performance of the proposed CRU-Net defense model is evaluated through the following metrics.

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(12)

Figure 7: The first row shows the original images of the CIFAR10 dataset. The second row represents the
adversarial perturbations produced by the adversarial attacks (FGSM, R-FGSM, PGD, DFA, CWA, and SPA
). The third row shows the adversarial examples, two for each attack. Finally, the fourth row demonstrates the
restored clean examples generated by the proposed CRU-Net model

Table 1: The structures of the target model A-net and B-net for MNIST Dataset

A-net B-net

Conv(64, 5 × 5, 1) + ReLu Conv(64, 3 × 3, 1) + ReLu

Conv(64, 3 × 3, 2) + ReLu Conv(64, 3 × 3, 1) + ReLu

DropOut(0.5) MaxPoling2D()

FC(10) + Relu Conv(64, 3 × 3, 1) + ReLu

Softmax Conv(64, 3 × 3, 1) + ReLu

MaxPoling2D()

FC(200) + ReLu

DropOut(0.5)

FC(200) + ReLu

DropOut(0.5)

FC(10) + Relu
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restored acc ¼ correctly classified restored images
a total number of images

(13)

success rate ¼ restored acc
accuracy

(14)

The Eq. (11) is used to determine the accuracy of A-net and B-net for MNIST, similarly D-Net and M-
Net for CIFAR10 datasets, respectively. Eq. (12) evaluates the accuracy of the target models (A-net, B-net,
D-net, M-net) on restored adversarial examples by the proposed CRU-Net model. Eq. (13) shows the success
rate of CRU-Net, which is used when we compare our CRU-Net results with other state-of-the-art defense
systems in comparison Section 5.5.

We have measured similarity between the original image and clean image examples by the CRU-Net
model by using Eqs. (14) and (15):

SSIMðI; IresÞ ¼ ð2lIlIres þ C1Þð2rIrIres þ C2 Þ
ðl2I þ l2Ires þ C1Þðr2I þ r2Ires þ C2Þ (15)

where μI and mIres compare the luminance, s2
I and s2

Ires measures the contrast, and
sIsIres

s2
I þ s2

Ires
shows the

structural similarity of images I and Ires, respectively.

PSNR ¼ 10 log10
ðL� 1Þ2
MSE

(16)

Where MSE ¼ 1

mn

Xm�1

i¼0

Xn�1

j¼0

ðIði; jÞ � I resði;jÞÞ2

Here L is the maximum number of intensity levels in an image (in the case of image number of intensity
levels are 256, ranging from 0 − 255), m and n represent the number of rows and columns in image matrix
respectively, I(i, j) and Iresði;jÞ are the corresponding intensity value of the original and restored clean image by
our proposed defense methods.

5.2 Implementation Details

We have used fool-box [42], a library to check the robustness of a model. We have developed six types
of adversarial attacks using the fool-box library, e.g., FGSM, R-FGSM, PGD, DFA, CWA, and SPA.We have
used different values of ε for developing above various adversarial attacks. We have developed our proposed
CRU-Net model for restoring original images with the help of the TensorFlow, Keras, and NumPy libraries.

5.3 Results of CRU-Net Defense Model in White-Box and Black-Box Setting

As discussed previously, an attacker fully knows the target model in the white-box attack setting. To
confirm the effectiveness of the CRU-Net model in the white-box attack setting, we have validated results
on two datasets, MNIST and CIFAR10. We have trained two CRU-Net models for each dataset to restore
adversarial examples. In addition, we are made adversarial examples from the test set data. We send
adversarial examples to a pre-trained CRU-Net model to generate clean examples in our defense system.
Then we feed the restored clean examples to the target model for classification, as shown in Fig. 1. Some
visual results or restored clean examples by the CRU-Net defense model are shown in Figs. 6 and 7.

The results of the CRU-Net defense model are shown in Tab. 2 and Fig. 8 on the MNIST dataset. Tab. 3
and Fig. 9 represent the results of the CRU-Net defense model on the dataset CIFAR10. In the Black-Box
setting, the attacker does not know about the structure of the target model. The results of the CRU-Net
defense model in the Black-Box settings are shown in Tabs. 4 and 5, Figs. 10 and 11.
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Tabs. 4 and 5 describe the performance of CRU-Net in the BlackBox attacks setting. It is also called the
transferability property of a defense system. A-net/B-net means that the adversarial examples are generated
from the target model A-net and restored by using CRU-Net trained for B-net.

Table 2: Our Proposed Defense Framework CRU-NET results on the MNIST dataset in a WHITE-BOX
setting

Attacks Target models No attack No defense CRU-net defense

FGSM A-Net 0.9935 0.2244 0.9935

B-Net 0.9939 0.1844 0.9939

R-FGSM A-Net 0.9935 0.1315 0.9937

B-Net 0.9939 0.1011 0.9940

PGD A-Net 0.9935 0.1264 0.9933

B-Net 0.9939 0.1378 0.9937

DFA A-Net 0.9935 0.4297 0.9934

B-Net 0.9939 0.4097 0.9938

CWA A-Net 0.9935 0.5050 0.9930

B-Net 0.9939 0.5050 0.9935

SPA A-Net 0.9935 0.0512 0.9931

B-Net 0.9939 0.0732 0.9939

Figure 8: (a) The degraded adversarial accuracy (red bar) due to adversarial attacks and restored accuracy
(blue bar) of the target model A-net after applying CRU-Net Defense model (b) The degraded adversarial
accuracy (red bar) due to adversarial attacks and restored accuracy (blue bar) of the target model B-net
after applying CRU-Net Defense model
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5.4 Similarity Between the Original Image Examples and Restored Image Examples by the CRU-Net

Defense Model

The primary purpose of our proposed CRU-Net defense method is to restore adversarial examples into
clean examples. Therefore, the similarity (SSIM and PSNR) between clean examples restored by our method
and the original examples are described in Tabs. 6 and 7 for target models A-Net, B-Net on the MNIST, and
D-Net, M-Net on the CIFAR10 dataset, respectively. We have used two similarity metrics, SSIM and PSNR,
to check whether the restored adversarial examples are near to the original examples or not.

Table 3: Our proposed defense framework CRU-NET results on the MNIST dataset in a white-box setting

Attacks Target models No attack No defense CRU-net defense

FGSM D-Net 0.8330 0.1370 0.8310

M-Net 0.8230 0.1820 0.8170

R-FGSM D-Net 0.8330 0.1520 0.8360

M-Net 0.8230 0.3360 0.7970

PGD D-Net 0.8330 0.1260 0.7990

M-Net 0.8230 0.4200 0.7990

DFA D-Net 0.8330 0.2610 0.8340

M-Net 0.8230 0.2310 0.8100

CWA D-Net 0.8330 0.5470 0.8100

M-Net 0.8230 0.6500 0.7880

SPA D-Net 0.8330 0.0720 0.8230

M-Net 0.8230 0.0540 0.8040

Figure 9: (a) The degraded adversarial accuracy (red bar) due to adversarial attacks and restored accuracy
(blue bar) of the target model D-net after applying CRU-Net Defense model (b) The degraded adversarial
accuracy (red bar) due to adversarial attacks and restored accuracy (blue bar) of the target model M-net
after applying CRU-Net Defense model
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5.5 Comparison of Proposed CRU-Net Defense with Other State-of-the-Art Defense System

We have compared our CRU-Net with the start-of-the-art defense systems such as Adversarial Training
(AT) defense technique, MagNet-Defense, Defense-Gan, DRAGAN-Defense, DDSA-Defense, and cGAN-
Defense. We have used four models named A, B, C, and D. The structures of these models were first
described in Defense-GAN and used for experiments for both white-box and black-box attacks set. The
structure of models A, B, D, and C are given in Tab. 8. We will use the success rate as a comparison
metric with the above defense systems, presented in Eq. (12). The reason for using success rate metrics is
that the accuracy of these models in our setting is different from the other defense techniques. Therefore

Table 4: Our proposed defense framework CRU-NET results on the dataset MNIST in the black-box setting

Attacks Target models No attack No defense CRU-net defense

FGSM A-net/B-net 0.9935 0.2244 0.9866

B-net/A-net 0.9939 0.1844 0.9890

R-FGSM A-net/B-net 0.9935 0.1315 0.9911

B-net/A-net 0.9939 0.1011 0.9923

PGD A-net/B-net 0.9935 0.1264 0.9799

B-net/A-net 0.9939 0.1378 0.9811

DFA A-net/B-net 0.9935 0.4297 0.9922

B-net/A-net 0.9939 0.4097 0.9925

CWA A-net/B-net 0.9935 0.5050 0.9821

B-net/A-net 0.9939 0.5050 0.9830

SPA A-net/B-net 0.9935 0.0512 0.9913

B-net/A-net 0.9939 0.0732 0.9915

Table 5: Our proposed defense framework CRU-NET results on the dataset CIFAR10 in the black-box setting

Attacks Target models No attacks No defense CRU-net defense

FGSM D-net/M-net 0.8330 0.1370 0.8230

M-net/D-net 0.8230 0.1820 0.7857

R-FGSM D-net/M-net 0.8330 0.1520 0.8278

M-net/D-net 0.8230 0.3360 0.7767

PGD D-net/M-net 0.8330 0.1260 0.7893

M-net/D-net 0.8230 0.4200 0.7854

DFA D-net/M-net 0.8330 0.2610 0.8921

M-net/D-net 0.8230 0.2310 0.7953

CWA D-net/M-net 0.8330 0.5470 0.7999

M-net/D-net 0.8230 0.6500 0.7689

SPA D-net/M-net 0.8330 0.0720 0.8045

M-net/D-net 0.8230 0.0540 0.7989
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the accuracy metric for comparison is not suitable here. Therefore, the comparison results for the MNIST and
CIFAR10 datasets are shown in Tabs. 9 and 10.

The results of state-of-the-art defense approaches MagNet, Defense-GAN, DRAGAN-Defense, DDSA-
Defense, and cGAN-Defense are taken from the original research sources.

Figure 10: (a) The degraded adversarial accuracy (red bar) due to adversarial attacks and restored accuracy
(blue bar) of the target model A-net/B-net after applying CRU-Net Defense model (b) The degraded
adversarial accuracy (red bar) due to adversarial attacks and restored accuracy (blue bar) of the target
model B-net/A-net after applying CRU-Net Defense model

Figure 11: (a) The adversarial (red bar) and restored accuracy (blue bar) of the target model D-net/M-net
after CRU-Net Defense model, (b) The adversarial (red bar) and restored accuracy (blue bar) of the target
model M-net/D-net after CRU-Net Defense model
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Table 6: The SSIM and PSNR similarity between original and restored examples for tested models A-Net,
B-Net on the MNIST dataset

Target
model

Average
SSIM &
PSNR

Similarity
between
restored
FGSM &
original
examples

Similarity
between
restored R-
FGSM &
original
examples

Similarity
between
restored
PGD &
original
examples

Similarity
between
restored
DFA &
original
examples

Similarity
between
restored
CWA &
original
examples

Similarity
between
restored S.
A. &
original
examples

A-Net SSIM 0.9996 0.9998 0.9997 0.9998 0.9995 0.9996

PSNR 94.31 97.98 95.67 95.89 94.89 94.31

B-Net SSIM 0.9995 0.9996 0.9996 0.9998 0.9990 0.9997

PSNR 94.31 97.99 95.50 95.91 94.85 94.35

Table 7: The SSIM and PSNR similarity between original and restored examples for tested models D-Net,
and M-Net on the CIFAR10 dataset

Target
model

Average
SSIM &
PSNR

Similarity
between
restored
FGSM &
original
examples

Similarity
between
restored R-
FGSM &
original
examples

Similarity
between
restored
PGD &
original
examples

Similarity
between
restored
DFA &
original
examples

Similarity
between
restored
CWA &
original
examples

Similarity
between
restored S.
A. &
original
examples

D-Net SSIM 0.9996 0.9998 0.9752 0.9631 0.947 0.967

PSNR 101.11 105.13 82.48 81.91 80.18 80.59

M-Net SSIM 0.9996 0.9999 0.9667 0.9612 0.9476 0.970

PSNR 101.12 105.32 81.34 81.89 80.20 81.67

Table 8: The Structures of models A, B, C, and D, are for comparison purposes

Model A Model B Model C Model D

Conv(64, 5 × 5, 1) Dropout (0.2) Conv(128, 3 × 3, 1) FC (200)

ReLU Conv(64, 8 × 8, 2) ReLU ReLU

Conv(64, 5 × 5, 2) ReLU Conv(64, 3 × 3, 2) Dropout (0. 5)

ReLU Conv(128, 6 × 6, 2) ReLU FC (200)

DropOut(0.25) ReLU Dropout(0.25) ReLU

FC(128) Conv(128, 5 × 5, 1) FC (128) Dropout (0.5)

DropOut(0.5) ReLU ReLU FC (10)

FC (10) Dropout (0.5) Dropout (0.5) Softmax

Softmax FC (10) FC (10)

Softmax Softmax
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Table 9: Comparison of the success rate of proposed CRU-Net Defense System with other Defense Systems
for the MNIST dataset. Dash (-) means the corresponding Defense System does not deal with or defend that
specific attack

Adversarial
attacks

Target
models

AT defense
success_rate

MagNet
defense
success_rate

Defense-
GAN
success_rate

DRAGAN-
Defense
success_rate

DDSA-
Defense
success_rate

cGAN-
Defense
success_rate

Proposed
CRU-Net
success_rate

FGSM A 0.6529 0.1915 0.9909 - 0.9120 0.9889 1.0000

B 0.0600 0.0852 0.9937 - - 0.9958 1.0000

C 0.7891 0.1636 0.9929 - - 0.9906 1.0000

D 0.7379 0.0947 0.9879 - - 0.9909 1.0000

R-FGSM A - - 0.9614 - 0.8989 - 1.0000

B - - 0.9537 - - - 1.0000

C - - 0.9726 - - - 1.0000

D - - 0.9671 - - - 1.0000

PGD A - 0.9940 - - 0.9211 - 1.0000

B - - - - - - 0.9999

C - - - - - - 1.0000

D - - - - - - 0.9998

DFA A - - - - - - 1.0000

B - - - - - - 1.0000

C - - - - - - 1.0000

D - - - - - - 1.0008

CWA A 0.0772 0.0381 0.9919 0.9967 0.8503 0.9679 1.0000

B 0.2910 0.0353 0.9521 0.9941 - 0.9604 1.0000

C 0.0311 0.0251 0.9929 0.9856 - 0.9718 1.0000

D 0.0100 0.0211 0.9909 0.9846 - 0.9738 0.9990

SPA A - - - - - - 1.0000

B - - - - - - 1.0000

C - - - - - - 0.9990

D - - - - - - 1.0000

Table 10: Comparison of the success rate of the proposed CRU-Net Defense System with other Defense
Systems for the CIFAR10 dataset. Dash (-) means the corresponding Defense System does not deal with or
defend that specific attack

Adversarial
attacks

AT defense
success_rate

MagNet
defense
success_rate

Defense-
GAN
success_rate

DRAGAN-
defense
success_rate

DDSA-
defense
success_rate

cGAN-
defense
success_rate

Proposed
CRU-Net
success_rate

FGSM 0.9990 - - 0.7494 0.8858 0.9976

R-FGSM - - - - 0.6671 - 1.0036

PGD - - - - 0.7506 - 0.9592

DFA - 0.9340 - - 0.8954 1.0012

CWA - 0.9370 - - 0.4508 0.8589 0.9724

SPA - - - - - - 0.9880
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6 Discussion

In general, our proposed CRU-Net model, which is used as a defense method against adversarial
examples, gives excellent results. It performs reasonably well on the MNIST and CIFAR10 datasets and
achieves outstanding results than other defense techniques, shown in Tabs. 9 and 10. The exact reasons
for negative attacks are not yet confirmed because different researchers have given various reasons.
However, the common thing is that all adversarial attacks decrease the performance of a model. Our
experiments show that CWA and PGD attacks are the most robust. The robustness of the attack means it
needs small perturbation and has a significant negative effect on decreasing the accuracy of the target
model. However, our method gives a high success rate against CWA and PGD attacks.

Our CRU-Net model works based on the structures of two popular learning algorithms, Residual and U-
Net models. First, get the low and high-level features and remove the adversarial perturbation by de-noising
blocks in the encoding part of the U-Net model. Second, we upscaled and restored the clean image with the
help of features that we got during the decoding part of the U-net Model. In the end, we add the input layer
and output layer to merge the attributes by using residual learning (ResNet). This way, we get the output as a
clear example that the target model correctly predicts. Finally, it restores adversarial examples with
adversarial perturbation-free like the original image, as demonstrated by our results on the datasets
MNIST and CIFAR10, shown in Figs. 6 and 7, respectively. Finally, our proposed defense method is
limited to removing adversarial perturbation produced by the six types of adversarial attacks such as
FGSM, R-FGSM, PGD, DFA, CWA, and SA. The results of the proposed defense methods have been
presented in Tabs. 2–5.

7 Conclusions

This study proposed a defensive technique to prevent the adversarial example attack named the CRU-
Net defense model. The structure of the proposed CRU-Net model is inspired by the famous ResNet and U-
Net learning, as shown in Fig. 2. The CRU-Net restores adversarial examples into clean examples, almost
like original examples or images for the correct prediction of the target models. The proposed CRU-Net
defense central is the sequel of well-known state-of-the-art methods such as Magnet-Defense, Defense-
GAN, DRAGAN-Defense, DDSA-Defense, and cGan-Defense. In addition, we tested the CRU-Net
defense model on the adversarial samples produced by the many adversarial attacks such as FGSM, R-
FGSM, PGD, DFA, CWA, and SPA from the MNIST CIFAR10 datasets. In addition, we have shown
excellent results on selected datasets and target models. Finally, our CRU-Net defense system gives a
high success rate to restore adversarial examples into clean examples than other latest and state-of-the-art
defensive approaches.
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