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Abstract: Real-time applications based on Wireless Sensor Network (WSN) tech-
nologies are quickly increasing due to intelligent surroundings. Among the most
significant resources in the WSN are battery power and security. Clustering stra-
tegies improve the power factor and secure the WSN environment. It takes more
electricity to forward data in a WSN. Though numerous clustering methods have
been developed to provide energy consumption, there is indeed a risk of unequal
load balancing, resulting in a decrease in the network’s lifetime due to network
inequalities and less security. These possibilities arise due to the cluster head’s
limited life span. These cluster heads (CH) are in charge of all activities and con-
trol intra-cluster and inter-cluster interactions. The proposed method uses Lifetime
centric load balancing mechanisms (LCLBM) and Cluster-based energy optimiza-
tion using a mobile sink algorithm (CEOMS). LCLBM emphasizes the selection
of CH, system architectures, and optimal distribution of CH. In addition, the
LCLBM was added with an assistant cluster head (ACH) for load balancing.
Power consumption, communications latency, the frequency of failing nodes, high
security, and one-way delay are essential variables to consider while evaluating
LCLBM. CEOMS will choose a cluster leader based on the influence of the fol-
lowing parameters on the energy balance of WSNs. According to simulated find-
ings, the suggested LCLBM-CEOMS method increases cluster head selection
self-adaptability, improves the network’s lifetime, decreases data latency, and bal-
ances network capacity.
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1 Introduction

Wireless networks are characterized by the enormous count of a sensor node that is microscopic in size,
low in cost, and consumes little energy. WSNs are broadly applied in surveillance systems, climatic and
environmental surveillance, natural catastrophe prediction and response, intelligent medical advances, and
other disciplines [1]. Depending on the specific kinds of sensors nodes, WSN is classified as static or
mobility wireless sensor networks. Once installed, the position of the node in static WSN is permanent.
Because nodes with low power near the static sink node may be designated as member nodes regularly,
those nodes’ energy consumption will be excessive, resulting in the sensor nodes’ untimely demise.
Sensors are used in mobile Ad hoc applications.

The internet of things has wide use, including e-health, e-commerce and transportation, precision
farming, smart homes, and smart cities. Nonetheless, these systems necessitate specific characteristics
such as reduced latency, safety, and dependability. The mentioned features are critical for optimal IoT
utilization, and it has been discovered that new platforms necessitate distinctive features. In the case of e-
health and intelligent education, for example, secured, dependable, and private communication is
essential. Likewise, ensuring accessibility and a short response time is critical in the event of an
emergency. Every application requires energy efficiency; as a result, it creates a link for balancing load to
meet standards [2]. The WSN serves as a link between the actual and virtual worlds.

Assuming that the mobile sink linkage with other sites is immutable in a specific time frame, portable
WSN can be reduced to static WSN. In this time frame, it allows for effective electricity navigation
techniques. These techniques rely on static WSN to mobile WSN [3–5]. The Lower Energy with
Adaptive Cluster Hierarchy Protocols (LEACH) is a well-known cluster-based routing method. This
program separated nodes in the network into separate groups first and then replaced heads in clusters
regularly to balance network energy consumption, resulting in a longer system life span [6,7]. In
particular, to decrease energy usage and balance system resources, paper [8] uses the Hybrid, Energy-
Efficient, Distributed Cluster technique (HEED), Stable Election Protocols (SEP) for the cluster [9], and
LEACH-C) [10] was developed.

Besides sensing, WSNs for IoT confront several challenges, including sensor node deployment in the
field, hardware problems, communications manner, limited battery capacity, and growth in computing
cost. Aside from these limitations, WSNs designed for IoT have issues with the quality of service (QoS),
power management, and privacy [11,12]. Furthermore, energy consumption has been a primary concern
when developing the WSN architecture for IoT, prompting the research to dig deeper into ways to reduce
power usage [13]. Many concepts, such as sequencing and grouping, have been implemented to reduce
energy usage.

There are numerous clusters in a WSN, each with its cluster head, and if one of the clusters heads fails,
the network becomes unbalanced, and data transfer continues to fall. Other factors, like energy usage,
contribute to network lifetime decrease [14]. An energy depletion equilibrium or load balancing approach
was developed. Several load balancing approaches have previously been developed [15,16], even though
these techniques confront challenges including high dimensionality, CH lifespan, CH-selection, grouping,
and sequencing. The proposed LCLBM-CEOMS method helps to improve the enhanced load-balanced
network and develop the WSN lifetime. The main contribution of the work is given below:

Ø The primary aim of LCLBM is to extend the system’s lifetime by balancing a load.

Ø Balancing cluster algorithm for research and analysis.

Ø Initially, a design tailored to the networking topology and energy-based model is created, followed by
an adaptable clustering head distribution method.
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Ø To allocate nodes initially with good energy and cluster head, functions are used. The density
functions of energy comprising factors are the rate of residual energy and density. Based on this rate,
adjacent sensor nodes are built. Compared to typical clustering algorithms, the suggested technique
considers the residual energy of nodes in the network and the density of nodes in the region. Hence to
extend the network’s life, CEMOS is used.

The proposed LCLBM-CEOMS research helps to identify the solutions for:

Ø How does the cluster head selection method address the load-balancing issue?

Ø How the ACH mechanism improves the lifetime?

Ø How the proposed algorithm reduces energy utilization?

The remaining sections of this article are as follows: Section 2 consists of a brief study of existing
Wireless Sensor Networks, Cluster Head (CH), Lifetime centric load balancing mechanism (LCLBM),
and Cluster-based energy optimization using mobile sink (COMS). Section 3 explains the working
principle of the proposed work. Section 4 evaluates the result and gives a comparison of different
algorithms. Section 5 finally concludes the research performance.

2 Related Work

The static and mobile WSN routing algorithms are a traditional technique that impairs balancing energy
and less network life span. This balancing drawback is due to topology changes in mobile WSN during data
transfer using portable sinks. Some research scholar develops routing systems that leverage mobile sinks to
manage network energy usage. A node can be designated as a meeting point based on the distance from the
portable sink to gather data from neighboring nodes and subsequently connect with the mobile sink [17,18].

In [19] devised, a data-gathering routing scheme that allocates the node with the highest cluster head
density. This prevents energy transmission over long distances and high battery consumption. It results in
network resource balancing using mobile data collection and hierarchical cluster techniques. The author
developed a data-gathering method using the tree cluster technique. Specific meeting points and sub
meeting points are primarily based on the node’s remaining energy. The number of multi-hops which
includes both and data for all meeting spots was gathered by mobile sink [20].

The inventor of WSN [21] uses the particle swarm optimization (PSO) method to improve a load
balancing technique, and routing is performed on CH. every specified node sends its data to the sink,
which handles load balancing. The PSO-based network routing contains a strategy for effective particles
encoding. It introduces a unique PSO-based routing and clustering algorithm for WSNs [21],
outperforming the previously submitted approach [22].

The genetic (GA) algorithm was used to tackle clustering techniques in WSNs [23]. The gateway is
used for residual energy for clustering, and space between CH and SN is used. The trade-off between
forwarding numbers and transmission time is used in routing. Additionally, gateways residual energy is
used. The chromosome representation has proven effectively resolve routing and clustering issues. The
authors in [24] studies related to local data nodes to overcome the difficulties in clustering and routing
techniques in WSN.

The article [25] author uses an artificial bee colony (ABC) to overcome routing technique issues and
cluster challenges in WSN. Clusters are created using the method’s data from the neighborhood and SN
energy level. The number of paths and energy efficiency help obtain fitness functions for routing issues in
ABC. According to [26], the author addressed the clustering and routing problem in WSN by assuming a
hotspot. The introduced approach uses the multi-objective immune algorithm to measure residual energy
from the sink and thereby splits the network into unequal cluster sizes.
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The author discussed routing and clustering methods in WSN [27], in which all stations are diverse. This
technique selects the CHs for each round, resulting in fewer heterogeneous nodes. The heterogeneous node
and CH were selected to support an SN to transmit data to the sink node. The writer of the paper [28] solved
the routing and grouping challenges in WSNs by treating them as a Pareto optimization, a multi-objective
problem. Quality links are built using routing tree and Pareto optimization for CH.

In [29], the researchers discussed clustering, utilizing fuzzy rules with a convolutional neural network
for WSN. For cluster creation, four parameters are used: CH energy, sink, CH distance, and CH and node
distance. They use the CHs degree to construct a cluster, and it is incapable of managing the load sensor
nodes among CH. [30] proposed a well dynamically layer dual-CHs routing method based on the Krill
herds (KH) used in underwater WSN. The main aim is to keep track of how much electricity CHs use.

Making appropriate usage information about the location and speed of a mobile node to choose a cluster
head can help WSNs balance their energy usage [31–43]. The method first categorized sensor nodes before
constructing a CH. It is selected using a threshold function based on nodes’ energy. Initially, clustered sensor
networks work based on location. The allocated cluster heads to every cluster based on the residual energy of
nodes and the distance between nodes. The main problems with existing methods are computation cost is
very high due to the formation of clusters and processing. Sensor nodes take individual processing time
in cluster head selection.

3 Proposed Load Balanced Mobile Sinking Methodologies

The models of network, energy, CH sharing, motion, assistant cluster head (ACH), and its executions are
all addressed in the below sections of the LCLBM-CEOMS. Fig. 1 explains the overall architecture of the
new proposed methodology. The proposed method has many models. The system model has a standard
LEACH protocol with a mobile sink in WSN.

3.1 Network Model

The network’s infrastructure in the circular array is developed in this section with the sink center and
each layer in the form of squares that does not lose their attributes. The networking topology is divided
into a ring form. In the beginning, all nodes are immobilized and deployed, so all clusters than an equal
amount of energy. Each sensor network can scathe le range of transmission, and the information of
networks are in sinks and their parameters s, l, e and. Similar behavior is used to gather the data. For
example, this data is broken down into numerous pieces which control traffic flow and are regarded as a
continuous parameter.

3.2 Energy Models Used

The energy model is presented in this portion of the study effort. The first order of energy is being used
here, and the optimal energy model was developed in the meantime. The power amplifier and radio circuitry
in the transmitter require energy to operate. While broadcasting, the receiver supplies energy to an electronic
radio device. The consumption of energy is needed for the bits m to replace at the distance ‘e’. The model’s
energy consumption is shown in Eq. (1)

Ftrans dm; deð Þ ¼ Ftrans�rl Mð Þ þ Ftrans�amp M ; deð Þ

Ftrans dm; deð Þ ¼ M � Freq þM � ntrans � de2ifde < de0;
M � Freq þM � namp � de4ifde � de0;

�
(1)

Frl is the amount of energy needed to operate the receivers or transmitters, which depends on various
variables like modulating and electronic codes. Trans and amp are the properties of the transmitter and
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amplifiers, accordingly. The letters dm and de stand for data and distance, respectively. The amount of energy
used to receive the M data bits is illustrated in Eq. (2)

Frecv Mð Þ ¼ M�Freq (2)

The proportion of transmitters and amplifiers properties is the threshold value e0.

e0 ¼ 2fs

2mp

�1
2

� �
(3)

3.3 Mobile Sink Model

Assuming that the motion models of a mobile sink in a two-dimensional monitoring region is as follows:

Figure 1: Overall architecture of the system
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where X(Ti) = [X(Ti) X(Ti) Y(Ti) Y(T)] and Y(Ti) = [X(Ti) X(Ti) Y(Ti)] Ti is mobile sink time t; p(t), p(t),
q(t), q(t) are mobile sink coordinates and speed in the p and q directions at t time; D is transition matrix state;
and noise coefficient matrix; CM(T) ~N(0, G(T)) is the Gaussian noise with covariance G(T); t is sampling
time; is angular velocity.

The mobile sink follows the mobility model described above and takes data from all sensor nodes. When
the portable sink has collected all of the data from the sensor nodes, the round is over. The portable sink is
situated at (X(Rn), Y(Rn)) to begin collecting in the rth game.

3.4 Assistant CH-Mechanism

This part covers the Assistant CH mechanism to design a perfect inter-communication to achieve load
balancing. Cluster head share, conserving energy, and helper CH-mechanism is also included in this part.

3.4.1 Clustering Head Sharing
Considering range between the CH as ‘eo’ and the sink; additionally, the power will be minimized, if the

following condition Eq. (6) is met:

If all of the criteria are true, the distributions are indeed the CH-optimal distributions, and Eq. (6) must be
demonstrated. Assuming that area of the other layer is about equal to the number of clusters. The distance and
sink are Y. Assume a randomized node that can be distributed at random to provide coordinates, where the
given coordinate is CH distance and serves as a member in the cluster. Furthermore, if the square of the
distance between cluster members and CH is less than the nominal energy consumption, then the cluster
member with appropriate CH is delivered through Eq. (7).

A range between the sink and the cluster member is Z, and the angle middle of the CH and member of
cluster is A in Eq. (7). The distance of cluster member and the CH is measured in Eq. (8)

The Eq. (8) can be changed and displayed in a variety of ways Eq. (9).

As a result, if you consider Eq. (6), you can reduce the energy overhead by using Eqs. (7) and (8). It’s
also worth noting that is decreased if coordinates are drawn by just using Eq. (10).
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As a result, once Eq. (6) is met, the best CH can be chosen.

3.5 CEOMS Algorithm

In this part, the study uses an energy consumption model to select some nodes near the sensor node for
establishing a neighborhood set for that node. It designs an energy density function for that set. Furthermore,
the CH selector threshold is defined by the energy density function and the movement effectiveness
functional, both of which are built using the motion characteristics of the mobile node. Lastly, the cluster
heads selector’s threshold can be adapted based on node fatality.

3.5.1 Constructing Density Function of Energy Using Neighborhood Nodes
Assume that Ns sensors are distributed in a monitored region randomly. In each round, KRopt is the

node number chosen as cluster heads. The targeted proportion of cluster - heads compared to all nodes is
as follows:

Popt ¼ KRopt=Ns (11)

3.5.2 Sensor Node Neighborhood Set construction
As is well known, data communication consumes more energy than data sensing and processing. As

illustrated [30], this work adopts the first order in the radio model to represent energy usage in nodes. If
another packet contains kb bits of data, the energy consumes for transmitting kb bits of ETX data and
retrieving kb bits of data ERX can be written as follows:

ETX kb; dð Þ ¼ ETX�elec kbð Þ þ ETX�amp kb; dð Þ ¼ kbEelec þ kEfsd2d � d0
kbEelec þ kEfsd4otherwise

�
(12)

ERX kbð Þ ¼ ERX�elec kbð Þ ¼ kbEelec (13)

ETXelec, ERXelec, and ETXamp represent the power consumption of the transmitter, the energy
consumption of receivers, and the usage of amplifiers in energy. The coefficient amplifies free space, and
correspondingly, the coefficients amplified of multi-path are fs and mp. Kb is the data bits number, d is
the transmitter and receiver distance, and d0 is the distance of critical communication. Eelec refers to the
power of 1-bit consumption of information execution related to the k node. The data pieces number,
transmitter and receiver at ‘d’ distance, and d0 is the critical communication spacing.

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Efs
�
Emp

q
(14)

3.5.3 Construction of Energy Density Function
The neighboring nodes leftover power rates fe(si) is included as Formula 15 to increase the chance of

nodes to have huge energy for consumption. being designated as cluster heads.

fe sið Þ ¼ Enr sið Þ � Enavg
� �

=Enavg (15)

Enavg �
X
sj2N

Er sj
� �

=n0 (16)

Where, the sensor node residual power si is Er(si), the amount of nearest neighbors of a sensed data si is
n′, and the average left over energy of sensor node si’s neighborhood node is Eavg.
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The neighborhood node density - functional f(si) is proposed here to describe the relationship between
cluster head energy consumption and mobile nodes within the clusters.

fp sið Þ ¼ 1= n0 þ 1ð Þ (17)

Equation describes the energy density - functional fe(si) of node si by mixing fe(si) and f(si) Eq. (18).

fep sið Þ � fe sið Þ:fp sið Þ � E sið Þ � Eavg

Eavg

	 

: 1= n0 þ 1ð Þ½ � (18)

The relative distance ΔDsi is introduced the proposed to represent distance changes among a node and a
mobile sink.

DDsi ¼ D að Þ � d a� 1ð Þ (19)

D að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX að Þ � XsiÞ2 þ ðY að Þ � YsiÞ2

q
(20)

D a� 1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX a� 1ð Þ � XsiÞ2 þ ðY a� 1ð Þ � YsiÞ2

q
(21)

Algorithm 1 CEOMS Algorithm

Input: sj,N, rmax,fep

Output: Optimal Cluster head selection

Step 1: Initializing rmax

Step 2: for r = 1: rmax do

Step 3: By using Eq. 14 threshold Tsi(sj) calculated

Step 4: if sj2 � then

Step 5: sjenters node si’s neighborhood set N.

Step 6: for sj N do 6: end if

Step 7: Using Equation, optimize the energy density function fe(si) (17)

Step 8: end for

Step 9: Using Equations, compute the movement efficiency factor fd(si) (20)

Step 10: Using Formula (21), calculate the first cluster head selection threshold T′(si) and (11)

Step 11: Using Formula, construct the adaptable correction factor g(Pdead) (21)

Step 12: Using Formula, select threshold to construct the adaptive cluster head T(si) (20)

Step 13: Select the cluster heads and transfer the data

Step 14: if r rmax, then

Step 15: r = r + 1, and go back to Step 3.

Step 16: end if

Step 17: end for
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3.6 Energy Minimization

The CH-Rotation and CH-selection are used to reducing the power consumption. This section focuses
on power to range; particularly, it formulates the ratios between both the node’s residual energy and node to
CH distance, which is indicated as SF−e; also, Eq. (22) offers the mathematical method for calculation.

SF�e ¼ et � CHð Þ � 1 FRE (22)

3.7 Assistant Cluster Head (ACH)

During the cluster development, it was discovered that CH views traffic differently than its cluster
members, causing consume more energy in CH than its members, requiring the consumption of power to
be balanced. The CH and CM roles of these sensor nodes are reversed to do this. Furthermore, it has
been discovered that when role reversal, energy consumption is higher while sending messages for their
function; to address this, assistance CH, i.e., ACH, is utilized. Only ACH and CH reverse roles while
using the ACH, increasing power consumption. The node with the most significant SF-e number is
chosen first, and the node with the second-highest SF-e value is designated as the ACH.

3.7.1 LBCM Based Inter Cluster Communication Model
The part describes the best inter-cluster communication paradigm, in which each node acts as the player

and selects the nearest node as the next hop to save power. As a result, the node with the smallest route from
the other nodes is more likely to be selected as the next hop. However, this leads to energy depletion and, as a
result, network disintegration. To minimize this, create an ideal inter-cluster-based communication
technique. The LCLBM model is divided into levels. The LCLBM strategic approach comprises a set of
nodes and information directed toward these nodes’ adjacent layers; also, OICC aids in establishing
equilibrium.Further balanced energy is checked. Also, CH builds the choice to forward data to the next
on its own. Furthermore, the LCLBM goal can be achieved using Eq. (23).

The node anywhere at arbitrary level n of a given topology of the network are regarded as a set in the
LCLBM model; for example, if the nodes are in the nth layer N, the set of OICC is given as Eq. (24)

Q ¼ Qjn1 � j � 0
� �

(24)

T ¼ t1; t2; . . . :; T0ð Þ (25)

Ej;k ¼ hi;Dkð
XN

j�1
hjÞ�1 (26)

3.7.2 LCLBM Based CH-Selection
Step 1: Therefore, base stations use network topology parameters, e, S, and l to determine the most

efficient distribution.

Step 2: After the optimal sharing of the cluster head is completed, the nodes calculate the output from the
cluster head using optimization and the excess energy.

Step 3: Once the distribution of eo has been determined and optimal, the next sensor node computes the
matching range et-CH and then gets SF-e using Eq. (19).

Step 4: In addition, the sensor node transmits the selection signal of CH, which holds the data of o, ID,
and SF-e. Once the sensor device receives the broadcast television signal, it equates the computed ratio to a
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particular node ratio. If the given node is high at the balance, it generates a CH alert by recommending itself
as cluster head. As a result, we have chosen CH as the node with the highest ratio.

Step 5: Likewise, the respective cluster picks the appropriate bunch Head (CH) via an invite message
broadcasted by the CH. This invite message provides data such as id of layer, sender ID, and
minimization of energy phenomena.

Step 6: ACH is then picked by ordering all the calculated ratios, with the greatest being chosen as the
cluster head.

3.7.3 Assistant CH-Protocol Step
The method is conducted in the following order to decrease the energy and balance the use of the

Assistant Cluster Head:

Step 1: After every round, the current CH is checked to the assistant CH’s ratio; if the current CH’s
balance is less, a signal is issued.

Step 2: If CH assistance CH chooses to be CH, it transmits the message and waits for cluster members to
acknowledge it.

Step 3: After receiving the confirmation, the membership keeps track of data regarding the next ACH.

Step 4: If the ACH ratio is less than the current cluster head, the discarding is triggered, and the cluster
head remains CH. As a result, this sub-process is prone to load balancing. It assesses the LCLBM-mechanism
in the next step after the mechanisms have been created.

4 Result Analysis

Wireless sensor networks have a lot of applications, and their popularity is growing despite challenges
like storing, transmission range, processing capability, and power consumption. The main problem is that it
has a shorter lifespan due to higher energy usage. This problem can be solved by load balance, which
consumes less energy. In this part, analyze LCLBM-CEOMS utilizing system parameters with Operating
System- Windows 10-OS and a 64-bit quad-core CPU and NVIDIA CUDA (2GB) and RAM (16 GB).

The sensor simulator [27] is used for simulation, while LCLBM-CEOMS is written in the C#
programming language. More information on the system parameters can be found in Tab. 1.

Table 1: Simulation parameter

Parameters Values

Network size 80 m*80 m

Energy amplification (Emp) 100 pJ/bit/m2

Sensor node count 1000, 2000, 2500, 500

data packet delay in processing 0.1 ms

base station count 2

initially energy of sensor node 0.20 J

Bandwidth 5000 bits/s

Speed of transmission 100 bit/s
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4.1 Lifetime of the Network

Given the limited quantity of energy available to each sensor, energy efficiency is constantly utilized as a

requirement for network longevity. As a result, the network lifespan analysis is done using different nodes in
this part. For 500, 1000, 2000 and 2500 nodes, lifetime comparisons are shown in Figs. 2–4. In this example,
it is noticed that the network lifetime of an existing model is slightly lower than a current design. As a result,
it can be concluded that the suggested model reduces energy usage and thus improves

4.2 Energy Consumption

The sensor nodes have a certain amount of energy. Thus power consumption is the main factor in
evaluating a load balancing system. As a result, energy usage becomes a critical metric. By adjusting the
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sensor number of nodes to 500, 1000, 2000 and 2500, the present model is compared to the suggested model
LCLBM-CEOMS.

Fig. 5 shows the energy consumption of the proposed method LCLBM-CEOMS. Thus, the proposed
method increases its energy consumption.

4.3 Active Nodes

It’s another LCLBM-CEMOS performance parameter; in balancing load, power is an essential
parameter since it must be distributed effectively, and the way of managing load with power may be used
with a more significant number of active nodes or nodes that are doing data transfer. As a result, active
nodes in large numbers imply that the node is under fewer loads, and energy can be saved. In addition,
the network’s lifetime is extended; a graphical comparison is shown in Fig. 6.

5 Conclusion

This study suggests LCLBM-CEOMS balances network traffic on the Internet of Things. A specialized
network is created for an optimal load balancing environment, and then the loads are then balanced with the
help of the ACH to improve the network’s lifespan. The LCLBM-CEOMS is compared to the old model on
key performance measures like network lifespan, energy usage, length, and overhead. To minimize the
randomization of cluster head selection, the suggested approach first established the density function of
energy by evaluating the remaining energy rates and neighborhood density radius of nodes. Secondly, the
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Figure 5: Energy consumption
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performance of the motion function was created using parameters from the mobile sink’s motion parameters,
efficiently balancing bandwidth requirements and reducing data latency.

Furthermore, to change the cluster head selection threshold variables, the adaptive adjustment function
associated with the mortality node was presented, which extended the life of the network. The density
function of energy, function of motion performance, and function of adaptive adjustment collaborated to
improve cluster head self-adaptability, equalize network capacity, minimize data latency, and extend
network life span. The suggested model outperforms the previous model in energy consumption for
500 to 2500 nodes, consuming 17.60%, 23.52%, 11.87% and 15.26% less energy. In future work, the
optimization-based algorithms can be used in energy-saving targets.
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