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Abstract: Imagery assessment is an efficient method for detecting craniofacial
anomalies. A cephalometric landmark matching approach may help in orthodontic
diagnosis, craniofacial growth assessment and treatment planning. Automatic
landmark matching and anomalies detection helps face the manual labelling lim-
itations and optimize preoperative planning of maxillofacial surgery. The aim of
this study was to develop an accurate Cephalometric Landmark Matching method
as well as an automatic system for anatomical anomalies classification. First, the
Active Appearance Model (AAM) was used for the matching process. This pro-
cess was achieved by the Ant Colony Optimization (ACO) algorithm enriched
with proximity information. Then, the maxillofacial anomalies were classified
using the Support Vector Machine (SVM). The experiments were conducted on
X-ray cephalograms of 400 patients where the ground truth was produced by
two experts. The frameworks achieved a landmark matching error (LE) of 0.50
± 1.04 and a successful landmark matching of 89.47% in the 2 mm and 3 mm
range and of 100% in the 4 mm range. The classification of anomalies achieved
an accuracy of 98.75%. Compared to previous work, the proposed approach is
simpler and has a comparable range of acceptable matching cost and anomaly
classification. Results have also shown that it outperformed the K-nearest neigh-
bors (KNN) classifier.

Keywords: Maxillofacial anomalies; cephalometric landmarks similarity; chi-
square distance; quadratic assignment problem; ant colony optimization; SVM

1 Introduction

When confronted with a wide range of clinical manifestations and pathological symptoms, practitioners
have to conduct a thorough clinical examination to determine the cause of the dysfunction, functional
disorders (such as swallowing, chewing, breathing, and phonation), social acceptance issues, and pain [1].
These are all symptoms of cranial-maxillofacial anomalies [2]. Medical imagery was developed to
improve surgeons' performance by providing new compliant and absolute tools that could be integrated
into the diagnosis, planning, and simulation, and which outcomes could serve for surgery optimization.
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Preoperative preparation, which may require long hours, is a crucial step in maxillofacial surgery.
Furthermore, the outcome of the cephalometric landmark matching [3] will determine both the functional
and aesthetic results. Obviously, an accurate identification of any maxillofacial anomalies is required for
oral and maxillofacial surgeries as well as orthodontic treatments. The most commonly used image
modalities for this purpose are two-dimensional (2D) X-rays of the human head. High resolution, well-
defined measurements are now possible thanks to modern cephalometry. Because manual annotation of
cephalograms is time-consuming and potentially inaccurate, there is an urgent need for a computerized tool
that can extract and measure diagnostically-relevant properties of the skull and allow for automated
detection and classification of maxillofacial anomalies. To address the issue of the preoperative preparation
problem, we have developed a framework to automate the matching of cephalometric landmarks and
optimize preoperative planning of the maxillofacial surgery. The objectives of this research was to provide
an efficient support to the preoperative planning of maxillofacial surgery by means of:

– developing a framework to automate the matching between cephalometric landmarks
– providing an automatic abnormality classification.

The remainder of this article is structured as follows: Section 2 provided a review of similar works.
Section 3 introduced the dataset attributes, as well as the locations and labels of landmarks. Section 4
described the proposed approach. The experiment design and related results and evaluation were provided
and discussed in Section 5. Section 6 summarized the key features of the proposed work and suggested
some potential perspectives.

2 Related Works

The cephalometric analysis is basically used for orthodontic diagnosis [4–6]. Landmarks determined on a
Skeletal X-ray images are needed for this analysis as they provide the required measurements and distances for
the diagnosis and treatment. However, such an analysis could be time-consuming, inaccurate and dependable
on the experiment considerations. Besides, landmarks identification is subject to the inter-observation
variability [7]. Thus, a computer aided detection could provide objectivity and efficiency for landmark as
well as anomaly detection, recognition and classification. In this context, it is worth reviewing the rich
literature with the various studies that have addressed the cephalometric landmark analysis.

In [8], an automatic analysis of lateral cephalograms for malformation classification and assessment of
dental growth using the tree regression voting method is proposed. The achieved Success Detection Rate
(SDR) was 73.37%, 84.46% and 90.67% for respectively 2 mm, 3 mm and 4 mm ranges. The mean
landmark error was 1.69 ± 1.43 mm. Although the proposed algorithm provided comparable results to the
manual marking, the performance depends on the training set and the model consistency is limited by the
variety of the training set. In [9], the authors propose a Fully Automatic Landmark Annotation System
(FALA) for the search for cephalometric landmarks in lateral cephalograms. Their purpose is to perform a
classification of skeletal malformations based on the Random Forest regression-voting in order to detect the
position, scale and orientation of the skull and then locate the landmarks by a Constrained Local Model
framework. The experiments show that the method’s efficiency depends on the patch size and training and
reached a detection rate SDR of 84.70%, 92.62% and 96.30% for respectively 2 mm, 3 mm and 4 mm
ranges. The obtained mean landmark error was 1.20 ± 0.06 mm. Although the FALA system provided more
accurate results than the manual annotations, the system depends on the quality of the training set.

A great deal of research has taken advantage of the flourishing deep learning technique in anomalies and
diseases detection [8–11]. In 2017, Arik et al. [12] use a convolutional neural network for a binary
classification and achieved success detection rates of 75.58%, 75.37%, and 67.68% at a 2 mm range for
three different datasets, respectively. The achieved overall accuracies for pathology classification, for two
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test sets were of 75.92% and 76.75%. The approach has lower performance compared to previous works and
is limited by the dissimilarity of the training and test images. Relying on a new architecture, the authors in
[13] succeed to achieve the state-of-the art results and reached a nearly 6% higher accuracy than the previous
approaches. Similar to supervised learning based approaches, the system performance remains dependent on
the training set size and content. Song et al., introduce an automatic quantitative cephalometry for
orthodontics using a deep convolutional neural network (DCNN) [14]. The obtained SDR was 1.84 ±
1.79 m while the successful detection rate was 71.7% within a 2 mm range. Unfortunately, the suggested
method reached unsatisfactory results when processing cases with huge anatomy differences and the
predicted results are not similar to the ground-truth.

3 Dataset and Landmarks

3.1 ISBI Challenge Dataset

In this work, we used the public X-ray dataset proposed at the International Symposium on Biomedical
Imaging on cephalometry landmark detection challenge ISBI2015 [15] and ISBI2019 [13]. The X-Ray
images are lateral cephalograms acquired from 400 patients including 235 females and 165 males. The
sample ranged between 7–76 years in age with a mean age of 27 years. Each image contains 19 landmarks
manually marked by two clinical orthodontists as shown in Fig. 1. The landmarks were chosen based on
the common structures used in cephalometric evaluations such as Wits Appraisal. The training set consists
of 150 images while Test1 and Test2 datasets are made up of 150 and 100 images, respectively, in TIFF
format. The image resolution is 1935 × 2400 pixels and the spatial resolution is about 0.1 mm.

Several state-of-the-art methods were proposed and verified on this dataset despite its relatively small
benchmark size. The highest results were achieved by Lindner et al., [9] using the random-forest and
achieving a detection rate of 74.84% at a 2 mm precision range. The precision range is the error range
accepted between landmark position and manual annotation. Ibragimov et al., used a Haar-like [15]
feature extraction then a random-forest regression and a global-context shape refinement. Later, in 2017,
the authors used a CNN for a binary classification and improved the results to reach a 75.3% prediction
accuracy within the same range [16]. Qian et al., improved the Faster R-CNN [17] and proposed a
dedicated deep architecture called the CephaNet in [13]. The obtained accuracy results using this

Figure 1: Cephalogram annotation showing the 19 landmarks
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approach are 82.5% and 72.4% on Test1 and Test2 datasets, respectively, at a 2 mm range; this means a 6%
higher improvement than any of the other conventional methods.

3.2 Landmarks

Cephalometry is a concept that was first introduced by Broadbent and Hofrath in 1931 [18]. It is a
measurement of the dimensions of the pinnacle between the bone and soft tissue landmarks, used to
predict the craniofacial growth, set up a treatment, and check various cases.

The conventional methodology for landmarks localization depends on a manual tracing of the
radiographic images. Such a manual tracing which determines the anatomical landmarks on X-ray images
is a time-consuming process and might be fallible even when achieved by an experienced physician.
Consequently, several researchers have focused on automating the landmark detection process [19,20].
Regarding the bottom truth information for analysis, landmarks are initially marked manually and
reviewed by two experienced medical experts. Eight anatomical angles measurements are defined using
the 19 landmarks [15]. Tab. 1 summarizes the parameters used in this work.

Establishing the landmark matching allows the analysis of the anatomical structures by detecting the
deformation between the landmarks of the model and those of the test. Here, we introduced the problem
of point matching and correspondence and proposed an ACO-based algorithm to determine the matching
by incorporating the proximity information. We would prove that the consideration of proximity seemed

Table 1: List of cephalometric landmarks and anatomical angles

Landmarks Anatomical angles

L1: sella 1-ANB: angle between point A (L5), nasion (L2) and point B (L6).
2-SNB: angle between sella (L1), nasion (L2) and point B (L6).
3-SNA: angle between sella (L1), nasion (L2) and point A (L5).
4-ODI (Overbite depth indicator): sum of the angles between the lines from
L5 to L6 and from L8 to L10 and the angles between the lines from L3 to
L4 and from L17 to L18.
5-APDI (Anteroposterior dysplasia indicator): sum of the angles between the
lines from L3 to L4 and from L2 to L7, the angles between the lines from
L2 to L7 and from L5 to L6 and the angles between the lines from L3 to
L4 and from L17 to L18.
6- FHI (Facial height index): ratio of the posterior face height (distance from
L1 to L10) to the anterior face height (distance from L2 to L8).
7-FMA (Frankfurt mandibular angle): angles between the lines from sella
(L1) to nasion (L2) and from gonion (L10) to gnathion (L9).
8- MW (Modified Wits appraisal): indicator is the distance between the upper
and lower incisal incision landmarks.

L2: nasion

L3: orbital

L4: porion

L5: subspinal

L6: supramental

L7: pogonion

L8: chin

L9: gnathion

L10: gonion

L11: lower incisal incision

L12: upper incisal incision

L13: upper lip

L14: lower lip

L15: subnasal

L16: soft tissue pogonion

L17: posterior nasal spine

L18: anterior nasal spine

L19: articulate
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rather advantageous in points matching. Afterwards, we adopted a support vector machine (SVM) to classify
and predict the maxillofacial anomalies relying on a comparison with the k-nearest neighbor (KNN) method.
To prove the feasibility and effectiveness of our ACO- and SVM-based approach, we conducted several
experiments on normal and abnormal cases.

4 Methodology

This research aimed to assist the maxillofacial surgery in automating and optimizing the preoperative
planning of maxillofacial procedures by implementing an automatic correspondence approach of the 2D
structures of the facial mass and, therefore, the recognition of anomalies. The general framework is drawn
in the below Fig. 2.

This approach consists of two main procedures:

1. First, we proposed a new method based on the Active Appearance Shape (AAM) algorithm to extract
the cephalometric point model. The Shape Context was used to induce a singular descriptor (feature
vector) for each point of an object contour or surface. This descriptor was employed jointly with a b-
spline free-form deformation grid, for the full creation of point mappings between surfaces of patient
datasets.

In this context, we proposed an ACO based approach to obtain an accurate matching between interest
landmarks of models and test landmarks using the Chi-square distance. Furthermore, we used the sigmoid
function for anomalies visualization.

2. The classification of anomalies is based on an SVM classification of the maxillo-facial anomalies. The
results would then be compared to those achieved with the k-nearest neighbor (KNN) method.

In what follows, we detailed the landmark matching methodology and anomalies classification.

4.1 Landmark Matching Methodology

4.1.1 The Model Construction
The Active Appearance Model (AAM) is a deformable statistical model of the shape for a class of

deformable objects. This generative model aims to retrieve a parametric description through optimization.
The AAM model uses a training set as follows:

Class of abnormality

Matching results

Graphic Matching

Landmark Ground 
-Truth

Training 
data

AAM Model 
Construction ACO-based

matching 

Classification

Test 
data

Landmark Matching

Classification of Abnormality

Feature
Extraction

Matching

visualisation

Figure 2: Detailed methodology
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� Extraction of the characteristics of all the training images using the characteristics function.

� Distortion of the images based on the characteristics of the reference shape.

� Vectorization of the distorted images.

� Application of the Principal Component Analysis (PCA) on the acquired vectors for dimension
reduction.

To carry out the matching between the model and test landmarks, we used the ACO optimization
algorithm that was detailed in the next paragraph. Our main contribution was to use a metaheuristic
approach, which is based on the ACO algorithm to solve the correspondence problem of cephalometric
landmarks.

4.1.2 ACO Based Landmark Matching
The cephalometric landmarks correspondence can be modeled as a graph matching problem. In this

paper, we proposed to search the optimal matching using the ACO, which is a meta-heuristic approach
that has been used to solve many combinatorial optimization problems such as: Vehicle Routing [20,21],
Traveling Salesman [22,23], Network Model [24], and Quadratic Assignment (QAP) [16,25,26]. We
applied the correspondence points problem theory which integrates proximity information [27–29] and
explains how the ACO algorithm is used to determine the landmarks matching.

i) The Quadratic Assignment Concept:

Considering two sets I and J, the graph correspondence problem can be defined as finding the best
mapping over the two sets, which minimizes the cost function. π denotes the mapping that verifies that

∀i ∈ I,∃ j ∈ J : π(i) = j. We aimed to find the optimal matching π∗, expressed by (1).

p� ¼ argminp COST p; I ; Jð Þð Þ (1)

COST is the function that measures the matching π in relation to the shapes determined by the points in
the I and J sets. Without loss of generality, we also assume that |I| ≤ |J|. QAP [30] is used to represent this
matching. As QAP is an NP-hard problem, we proposed to solve it using a heuristic that imitates the ants’
behavior [31,32]. The adopted concept was to assign a set of facilities to a set of locations [33]. These
locations are separated by distances. Assigning the facilities to locations is constrained by minimizing the
sum of products between flows and distances [14,34,35].

The optimal correspondence for two contours is computed by our ACO algorithm and displayed in
Fig. 3. The obtained ACO mapping between the two red and blue shapes is represented by lines.

Figure 3: ACO-based Mapping
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ii) Proximity Information:

The proximity principle asserts that when two points are close on one shape, their matched points in the
second shape should also be close. Considering i from the set I and j from the set J, the mapping for each
point in the set I to its mapping in J is presented by π [36,37]. Besides point ordering, we also considered
the distances between point pairs on the same shape. By adding proximity information to a shape
descriptor R, we obtained the general objective function of QAP as expressed in (2) where v is the
weights parameters with 0 ≤ ν ≤ 1. The similarity term f (·) is defined by (3). The proximity term v (·) is
given in (4) where the Gaussian function acts as normalization functions in order to have
0 � f p;R; I ; Jð Þ � 1. The proximity term is therefore expressed as in (4).

QAP p;R; I ; Jð Þ ¼ 1� vð Þf’ p;R; I ; Jð Þ þ vv p;R; I ; Jð Þ (2)

f p;R; I ; Jð Þ ¼ 1� 1

Ij j
X

e

�DRðRi;Rp ið ÞÞ2
rR (3)

v p; I ; Jð Þ ¼
P

i2I
P

i0 6¼i2I e

�DIði; i0Þ2
rI

DI i; i0ð Þ � DJ p ið Þ; p i0ð Þð Þj j

Ij j Ij j � 1ð Þ2 (4)

where 0≤ v p; I ; Jð Þ ≤1, DI and DJ are normalized distances between two points from I and J respectively.

In our case, the shape distances are normalized with respect to contour length and order preservation. As
for proximity, which is emphasized more in the local neighborhood, we proceeded with the Gaussian
weights. We obtained the Gaussian widths σR and σI for the descriptor distances and proximity. The QAP
advantage is its suitability to any contour matching problem regardless of the shape with the sole
condition that the distance factor is considered. The ACO is an iterative algorithm, where pheromone is
used to reinforce the traversal of the edges providing optimal solutions. Pheromone evaporates during the
iterations at an evaporation rate ρ, 0 ≤ ρ ≤ 1 as presented in Fig. 4. Pheromone is updated regularly.

– Pheromone Evaporation: For all edges (i, j), i.e., vertices connecting two sets of points, new
pheromone is deposited only on edges that are traversed by the ants:

sij  1� qð Þsij (5)

Figure 4: Pheromone deposit for 100 and 1,000 iterations
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– Pheromone constant deposition:

sij  sij þ
Xm
k¼1

Dsijk (6)

where Dskij is the amount of pheromone that ant k has deposited on edge (i, j). This amount is given as a
constant d divided by the cost defined in (1): the larger the cost, the less the amount of deposited
pheromone. In addition, a minimum level of pheromone smin is maintained on all edges to avoid
discarding certain traversals during the ants’ exploration process.

iii) ACO Based Approach

Tab. 2 shows the list of parameters used in our ACO-based approach to establish the matching
algorithmic rules and the various values selected in the experiments. The auxiliary parameter Imax is set to
the maximum proximity in I while Rmax is set to the maximum descriptor distance.

ACO ALGORITHM

1. ACO-ShapeMatching(I, J):

2. G ← initGraph(I, J)

3. BestMatching ← Ø

4. BestCost ← ∞
5. for i ← 1 to T do

6. Matchings ← Ø

7. for j ← 1 to m do

8. M ← constructMatching(G)

9. C ← Cost of matching M according to Eq. (1)

10. Matchings ← Matchings ∪ {M,C}

11. if C < BestCost then

12. BestMatching ← M

13. BestCost ← C

14. end if

15. end for

16. updatePheromones(G, Matchings)

17. end for

18. return {BestMatching, BestCost}

iv) Chi-square Distance

The similarity between points from the two sets I and J was computed by the shapes Chi-square
Distance. Considering an nxp frequency matrix (fij), the chi-square distance vi;j between two rows i and k
is given by (7) where fi: is the sum of the ith rows and f:j is the sum of the jth columns.

vi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
j¼1

fij
fi:
� fkj
fk:

� �2 1

f:j

vuut (7)
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4.1.3 Matching Visualization
For a normalized representation, the sigmoid activation function converts the weighted sum of the

diagonal of the matching matrix to a value between 0 and 1. A continuous line means that there is no
detected malformation while a discontinuous sigmoid representation indicates the existence of a
malformation.

4.2 Maxillofacial Anomalies Classification

Our aim was to classify maxillofacial anomalies based on SVM. The obtained results were compared to
those of the k-nearest neighbors (KNN) clustering algorithm. The SVM algorithm is a kernel machine based
on a set of kernel functions. Basically, the kernel function maps the data into a higher dimensional space. The
kernel Radial Basis function (RBF) is given by (8). The RBF has been widely used for nonlinear problem
classification [38,39]. ||.||2 is the squared Euclidean distance, x and x’ are feature vectors. δ is a
hyperparameter.

k x; x0ð Þ ¼ e

x� x0j jj j2
2d2 (8)

5 Experimental Results and Discussion

In this section, we described and discussed the achieved matching and classification results.

5.1 Cephalometric Landmarks Matching Experiment

In this study, we considered the sum of the distances over the points of the graph pairs, which is a scoring
scheme proposed by Karlsson and Ericsson [40]. Our method was compared to the Hungarian algorithm later
on. The results show that the ACO algorithm generally provides better matching as it provides the minimal
COST. According to Fig. 5, the best obtained cost is 0.23. The displayed results were obtained based on the
set of parameters presented in Tab. 3. The ACO was executed for 1000 iterations. The next subsections
detailed the matching results for both of normal and malformation cases.

Table 2: ACO parameters

ACO Parameters Symbol Value

Number of ants M 1

Number of iterations T 1000

Influence of pheromones Α 0.3

Pheromone evaporation rate Ρ 0.1

Pheromone deposition constant Δ 0.01

Initial pheromone levels τ0 1

Influence of proximity N 0.7

Gaussian width in X σI 0.1·Imax

Gaussian width in S σR 0.1·Rmax

Minimum pheromone levels T min 0.1· 1/|I|
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5.1.1 Results of Malformation-Free Images
In this test, we used malformation-free images containing 19 landmarks. The matching was performed

between the cephalometric points of the model landmarks and the test landmarks. Fig. 6 shows the matching
based on proximity information and order preservation. The outcome indicates that the matchings tend to be
intuitive and yield the best results.

5.1.2 Matching Matrix
In this study, we referred to K as a matrix of <19 × 2> dimension containing the matching values as

follows: vertex K (i, 1) on shape 1 is matched to vertex K (i, 2) on shape 2. The best obtained matching
results for each Landmark model vertex K (i, 1) on shape 1 corresponds to the same Landmark for image
test vertex K (i, 2) on shape 2, where i is the landmark index.

5.1.3 Similarity Matrix Between Matching Points
Let S be a 19 × 19 matrix that represents the similarity for the specified descriptor. The similarity values

are determined using the chi-square, where S(i,j) is the similarity between the i-th vertex/point of shape 1 and
the j-th vertex/point of shape 2, e.g., 0.0769 mm is the distance between the first landmark of the model
landmarks and the first landmark of the test landmarks. Tab. 4 displays the distance between the matching
points in mm. The diagonal matching landmark j is denoted Sj,j.

There is no detected malformation between the corresponding points when the values of the diagonal are
close to zero. For a better normalized representation, the sigmoid visualization determines the malformation
status. In Fig. 7, the continuous line means that there is no detected malformation. The graph shows the
diagonal values of the matching matrix divided by o threshold of 0.1.

Figure 5: The optimal matching with the ACO algorithm

Table 3: Cost comparison

Shape class Hungarian COST ACO COST

Cephalometric landmarks 133 0.23

2228 IASC, 2023, vol.35, no.2



Figure 6: Pheromone deposit during 100 and 1,000 iterations

Table 4: Diagonal values of the matching matrix for a normal case

S1,1 S2,2 S3,3 S4,4 S5,5 S6,6 S7,7 S8,8 S9,9 S10,10 S11,11 S12,12 S13,13 S14,14 S15,15 S16,16 S17,17 S18,18 S19,19

0.0769 0.0429 0 0.0243 0.0100 0 0.0270 0 0 0.3333 0.0013 0.3429 0.0039 0 0 0.0909 0 0 0

Figure 7: Abnormality visualization for a normal case

IASC, 2023, vol.35, no.2 2229



5.1.4 Results of Images with Dysmorphisms
Fig. 8 shows a malformation case III with the clear protrudent mandible compared to the maxilla. The

correspondence between the model and the test cephalometric landmarks was achieved.

5.1.5 S’ Similarity Matrix Between Matching Points
Now, let S’ be a matrix of dimensions <19 × 19> representing the similarity matrix for the specified

descriptor, where S’ (i, j) is the similarity between i-th vertex/point of shape 1 and the j-th vertex/point of
shape 2, e.g., 10.8182 mm is the distance between the first landmark of the model landmarks and the first
landmark of the test landmarks. Tab. 5 displays the diagonal values of the Matrix. S’ in mm. The
obtained matrix shows that the diagonal values are greater than zero, which proves the existence of
malformations. The sigmoid function to the diagonal values provides the malformation profile shown in
Fig. 9 where the greatest anomaly lies in landmark 10.

The developed framework was compared to the ground truth landmarks involving 250 test dataset. The
matching matrix provides the difference between all the landmarks’ positions. Therefore, it provides a
similarity measurement between landmarks. The given matrix is a quantitative measure of the matching
of the 19 landmarks. Our framework showed a landmark matching error (LE) of 0.50 ± 1.04. It achieved

Figure 8: Landmarks matching results in the case of an abnormality class III

Table 5: Diagonal values of the matching matrix S’ for a malformation case

S1,1 S2,2 S3,3 S4,4 S5,5 S6,6 S7,7 S8,8 S9,9 S10,10 S11,11 S12,12 S13,13 S14,14 S15,15 S16,16 S17,17 S18,18 S19,19

14,15 26,33 22,83 17,83 26,80 10,44 15,78 29 25,90 10,53 8,82 28 7,78 27,33 19,67 6,76 28 24,90 18,20

2230 IASC, 2023, vol.35, no.2



a successful landmark matching of 89.47% in the 2 mm and 3 mm ranges and of 100% in the 4 mm range.
The maximum matching distance is for the Gonion (3.43 mm).

For anomaly cases, the matching error is of 1.94 ± 0.78 mm. the successful landmark matching rate is
52,7%, 94.37% and 100% for respectively 2 mm, 3 mm and 4 mm. The proposed landmark approach reaches
less performant results in the case of abnormality which is explained by the deformation impact on the natural
landmark to the Bayesian convolutional neural networks presented in [41]. In this case, a deep architecture
based on confidence region was proposed; the mean landmark error (LE) is 1.53 ± 1.74 mm and the detection
rate is of 82.11%, 92.28% and 95.95% in respectively the 2 mm, 3 mm, and 4 mm ranges. Therefore, the
proposed approach performs better matching results.

5.2 Anomalies Classification Using the SVM and KNN

The classification of the Maxillofacial anomalies with the SVM and KNN was detailed in this
subsection. The different detailed classes in Tab. 6 were considered.

Figure 9: Abnormality profile for a case with anomalies

Table 6: Anomalies classification results

Classifications

Measurement Normal class I Anomalies

Class II Class III

ANB 3.2°~5.7° > 5.7° –

SNB 74.6°~78.7° < 74.6° –

SNA 79.4°~83.2° > 83.2° –

ODI 68.4°~80.5° > 80.5° –

APDI 77.6°~85.2° < 77.6° –

FHI 0.65~0.75 > 0.75 –

FMA 26.8°~31.4° > 31.4° –

MW 2 mm~4.5 mm = 0 mm > 4.5 mm

IASC, 2023, vol.35, no.2 2231



The dataset contains 284 samples for Class II and 114 samples for Class III. We took into account the
maxillofacial anomalies labels Class II and Class III. The dataset was divided into two subsets as follows: an
80% training set involving 319 subjects and a 20% testing set including 79 subjects. The SVM classification
results are shown in the Confusion Matrix in Fig. 10.

For the KNN classification, the best result was obtained for k = 11, where k is the count of nearest
neighbors as shown in Fig. 11. The Confusion Matrix in presented in Fig. 12.

Predicted Label

Class II Class III

T
ru

e 
la

be
l

56 0 

0 23 

Figure 10: Confusion matrix of the SVM prediction results

Figure 11: Best overall accuracy (Acc) for the KNN method variation for various k values

Predicted Label

Class II Class III

T
ru

e 
la

be
l

54 3 

1 22 

Figure 12: Confusion matrix of the KNN results
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Tab. 7 details the classification metrics when considering class II and class III. The achieved accuracy is
98.75% for the SVM classifier and 95% when using the KNN classifier. The SVM resulted in a higher
precision and recall than the KNN. It is crucial to reduce the prospect of getting false positives during
such a prediction scenario as we do not want to mistakenly diagnose a patient with anomalies. The f1-
score summarizes the classifier’s performance considering the Precision and Recall measures. Clearly, the
SVM classifier reaches a better F1-score. Overall the proposed methodology for landmarks matching and
anomalies classification has good performances and also significantly outperforms some cephalometric
landmark detection methods. Existing techniques since the 2015 ISBI Grand Challenges followed a
supervised learning approach and therefore are dependent on the learning process and data. In our case,
the proposed QAP-based ACO framework is flexible when it comes to the number of landmarks and the
order-preservation. It can be extended to 3D landmarks matching by determining the proximities over a
surface. The limitations are related to the ACO itself when many constraints exist and less a priori
information is available.

The proposed approach may be applied to a variety of fields for digital and clinical research. The
adaptive control should be enhanced by experts within a knowledge-based dataset. The activation
conditions can be applied by medical requirements or cephalometric x-ray images diagnosis. Compared to
the other existing methods [9,32,33], it can be deduced that our contribution is original as a fully
implementable approach for landmarks matching. Moreover, it proposed a malformation classification
using the SVM. Further improvements of landmarks matching could be sought through the use of the
matching results for the malformation quantification and preoperative planning. The framework could
also take advantage form the machine learning [42], neural networks [43] and optimized deep
architecture [44].

6 Conclusion

In this study, we proposed an automatic preoperative methodology of maxillofacial surgery, by
performing a fully automatic cephalometric landmark matching and anomaly detection. The matching is
based on constructing an AA model and then performing an ACO optimization. The maxillofacial
anomalies are classified using the SVM. The achieved results show that our approach is promising and
has lower computational cost. The system can be used for a fully automatic landmark matching and
anomaly recognition, which allows an extensive cephalometric analysis. It introduced a computer aided
diagnosis system that can be used within a digital clinic and assist clinical research for developing new
treatments. The proposed approach has a low complexity and comparable landmark matching cost. Based
on 2D imaging only, the approach provides landmark matching, graphic visualization of abnormality and
anomality classification. Future works may include extending the system to an automatic landmark
detection. It would be interesting to investigate the correlation between landmarks matching and clinical
outcomes as well.

Table 7: Anomalies classification results for the SVM and KNN

SVM KNN

Overall accuracy 98.75% 95%

Precision 1 94.73

Recall 1 98.18

F1-score 1 0.96
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