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Abstract: In this paper, Support Vector Machine (SVM) and K-Nearest Neighbor
(KNN) based methods are to be applied on fault diagnosis in a robot manipulator.
A comparative study between the two classifiers in terms of successfully detecting
and isolating the seven classes of sensor faults is considered in this work. For both
classifiers, the torque, the position and the speed of the manipulator have been
employed as the input vector. However, it is to mention that a large database is
needed and used for the training and testing phases. The SVM method used in
this paper is based on the Gaussian kernel with the parameters γ and the penalty
margin parameter “C”, which were adjusted via the PSO algorithm to achieve a
maximum accuracy diagnosis. Simulations were carried out on the model of a
Selective Compliance Assembly Robot Arm (SCARA) robot manipulator, and
the results showed that the Particle Swarm Optimization (PSO) increased the per-
formance of the SVM algorithm with the 96.95% accuracy while the KNN algo-
rithm achieved a correlation up to 94.62%. These results showed that the SVM
algorithm with PSO was more precise than the KNN algorithm when was used
in fault diagnosis on a robot manipulator.

Keywords: Support Vector Machine (SVM); Particle Swarm Optimization (PSO);
K-Nearest Neighbor (KNN); fault diagnosis; manipulator robot (SCARA)

1 Introduction

Modern robots are highly susceptible to faults during their execution due to the highly complex nature of
new-generation robotic systems and the uncertain environments they occupy [1]. However, even well-
designed robotic equipment will be subject to defects during its service life. For this purpose, numerous
diagnostic techniques in the literature have been investigated to solve these problems [2–6]. The detection
of emerging sensor/actuator failures has been given limited attention in the literature, which is important
for the operation of the robot [7]. Indeed, detecting and isolating the defect sensor/ actuator in a
manipulator is not easy during the operation of the robot. Sensor measurements describe the features of
the monitored system and the sensor itself. For example, any abnormal deviation in sensor readings could
be caused by a change in the monitoring system.
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The system is also becoming more complex as the number of interconnected sensors and subsystems
increases. This increase may cause defects to appear independently or concurrently. Furthermore, the
measurements can be noisy because of the imperfect nature of the sensor [7].

Therefore, isolation and defect detection estimation (FDIE) methods are important for the diagnosis of
manipulation defects [2,3]. Many studies have been developed based on artificial intelligence (AI) methods
such as K-Nearest Neighbor (KNN) algorithm, artificial neural networks (ANNs), linear and nonlinear
regression analyses, fuzzy logic, discriminant analysis and the combination of the Sequential Floating
advance quest and Fisher Projection technique [8–13]. Artificial intelligence techniques were employed to
derive affective states. Then they are adapted to such diagnostic issues. In addition to the aforementioned
methods, Time Delay Control (TDC), Sliding Mode Control (SMC), tolerant control of faults which are
applied to contract the fault effect based on fault detection, and neural networks with TDC [14–20].

In other words, the machine learning method was used for the automatic diagnosis of failures in many
industries [21,22]. In particular, SVM is a significant machine learning method widely supported in many
applications [23–25]. The SVM performance is highly dependent on the selection of certain parameters
(such as kernel function and the parameters of regulation), the selection of kernel function and regulation
parameters are important for SVM technique [26]. Even though, v-fold cross validation is the usually
used procedure to establish the SVM model [2–4]. It requires t-times training, which in its turn needs a
lot of computation (which is CPU-intensive). The SVM algorithm can be hybridized with other
algorithms such as the Convolutional Neural Network (CNN) [27]. The aim of the combination is to
achieve an accurate diagnosis.

The aim contribution of this paper is to approve the effectiveness of the machine learning method in
diagnosing faults in a manipulator arm, it would be useful to do a comparative study between PSO-SVM
and KNN algorithms. Recognizing that, the manipulating arm used here has three degrees of freedom and
has been affected by defects on the three successive articulations. The proposed algorithms will be
capable of detecting, isolating and identifying affected articulations, depending on the x-axis, y-axis, z-
axis, xy-axis, xz-axis, yz-axis and xyz-axis. SVM parameters have been selected automatically by the
PSO algorithm to improve diagnosis accuracy. In decree to have a dependable model, the Cross
Validation (CV) method has been used. The application of PSO-SVM and the contrastive tests reveal the
efficiency and the supremacy of the suggested technique compared to the KNN algorithm.

The remainder of the paper is organized as follows. Section 2 offers an overview of the dynamic model
of the robot. Section 3 presents some reminders on KNN and SVM-PSO algorithms. Section 4 specifies the
simulation results and discussions. Finally, Section 5 concludes the document and provides guidance for
future work.

2 Problem formulations

Manipulative robots are represented by dynamic equations that are found thanks to the Lagrangian
formulation, so the equation of a manipulator is written as follows [28]:

M qð Þ €qþC q; _qð Þ _qþ G qð Þ ¼ s (1)

where G qð Þ is the vector of gravitational force, C q; _qð Þ is the matrix of centrifuge and Coriolis, M qð Þ the
inertia matrix, seRn is the vector torque, q

€e
Rn; _qeRn; qeRn are angular acceleration, the angular velocity,

and the angle of the joints, respectively [28]. In this paper, the dynamic equations of the SCARA robot
have been utilized for the simulation.

The additive fault sensors signified by:

qt ¼ qþ Dq (2)

where:

1958 IASC, 2023, vol.35, no.2



� qt is the sensor’s joint measurement;

� q is the sensor’s joint fault-free measurement;

� Dq is the supposed sensor fault;

Then the dynamic Eq. (3) can be obtained by replacing Eq. (2) in Eq. (1).

M qtð Þ €qt þC qt; _qtð Þ _qt þG qtð Þ ¼ st (3)

Where:

� M qtð Þ is the inertia matrix;

� C qt; _qtð Þ is the matrix of Coriolis and centrifuge;

� G qtð Þ is the vector of gravitational force;
� st is the control input torque;

3 K-Nearest Neighbor (KNN)

KNN, which is a supervised learning algorithm, usually applied to signal processing, pattern
recognition, image processing, medical, etc. [29]. The algorithm assumes that the closest position for
acquisitions falls into the same category. The technique is developed to compute the distance between the
test point and the drive samples [30]. Thus, the nearest neighbors are found from the training dataset to
determine which class label is the most common. The k closest data points are studied with the aim of
assigning to the data points being analyzed [31].

The value of k is chosen so that it is not too small, thus that the noise effect is minimized in the training
dataset. On the other hand, when the value of k is large, this influences the increase in the computation time.
This consists in choosing for an example x the class y ¼ vj of its closest neighbor j [31]:

DKNN xð Þ ¼ xjj j ¼ argmin1�i�md x; xið Þ (4)

With d x; xið Þ is a metric allowing to measure the distance between two examples. To avoid being too
sensitive to noisy data, we often search for the KNN. Let us denote by NN x; k;vi;Zmð Þ the function returning
the number of examples of the class vi among the k nearest neighbors of x. The selected class is the one
which is the majority among these k neighbors, which corresponds to the following decision function:

DkNN xð Þ ¼ argmaxxi2yNN x; k;xi; Zmð Þ (5)

The pseudo code of KNN algorithm can be established as follows:

Begin

For each example x; cð ÞeA
Calculate the distance d x0; xð Þ
End

For each xe KNN x0ð Þ do
Count the number of occurrences of each class

End

Assign to x0 the most frequent class

End

IASC, 2023, vol.35, no.2 1959



4 Support Vectors Machine (SVM)

The SVMs are a pioneer machine learning tool suited for classification, prediction and regression. The
purpose of using SVM is to find the optimal solution between two classes. When the number of samples is
infinitely large one obtains the optimal solution. In particular, it has a good generalization even when the
samples are few [32].

The SVM decision function can be written as follows:

f xð Þ ¼ wx þ b ¼
Xm
k¼1

wkxk ¼ 0 (6)

where f xð Þ results Classifications of test data, w weight, b biase, x Kernel test data calculation [33]. In order
to satisfy the constraints, the hyperplane must be definitely separated. In other words:

f xkð Þ � 1 if yk ¼ 1 => xk be owned by to class 1 and

f xkð Þ � �1 if yk ¼ �1=> xk be owned to class -1

The merging of these constraints gives the following result:

yk wxk þ bð Þ � 1 for k ¼ 1; 2; . . . ;m (7)

In the case of non-linear separation of two classes, the variable nk is introduced in Eq. (7), and it then
becomes:

yk wxk þ bð Þ � 1� nk for k ¼ 1; 2; . . . ;m ; and 0 < nk (8)

The conditions below must be satisfied by the separating hyperplane:

yk wxk þ bð Þ � 1

min
1

2
kwk2

(
(9)

Obviously, kwk2 ¼ wTw, minimizing the norm makes the margin maximum.

In order to get the optimal solution of the hyperplane, the Lagrangian principle has been utilized:

L w; b;/ð Þ ¼ 1

2
kwk2 �

Xm
k¼1

ak yk wTxk þ b
� �� 1

� �
(10)

/ is a set of Lagrnage coefficients /kð Þ > 0

By introducing the following optimal conditions

@L w; b; að Þ
@w

¼ 0

@L w; b; að Þ
@b

¼ 0

8><
>: (11)

We obtain:

w ¼ Pm
k¼1

/kxkyk

Pm
k¼1

/kxk ¼ 0

8>><
>>: (12)
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We solve the problem using the following form:

max L w; b; að Þ
w ¼ Pm

k¼1
/kxkyk

Pm
k¼1

/kxk ¼ 0 8k;/k � 0

8>>>><
>>>>:

(13)

This is equivalent to the following equation:

max
Pm
k¼1

/k � 1

2

X
k;j

/k/jykyj xk ; xj
� �

Pm
k¼1

/kxk ¼ 0 8k; /k � 0

8>><
>>: (14)

We integrate the deviation variable k as follows:

yk wxk þ bð Þ � 1� nk such as k ¼ 1; 2; . . . ;m 8k; 0 < n < 1 (15)

We obtain the following optimization problem:

min
1

2
kwk2 þ C

Xm
k¼1

nk

yk wxk þ bð Þ � 1� nk such as 8k; 0 < nk < 1 k ¼ 1; 2; . . . ;m

8<
: (16)

where C is the margin parameter.

The lagrangian is defined as follows:

L w; b; n; xð Þ ¼ 1

2
kwk2 þ c

Xm
k¼1

nk �
Xm
k¼1

/k ½yk wTxk þ b
� �� 1þ nk (17)

If we apply the Karush-Kuhn-Kucker conditions which are the second order optimization
conditions:

@L w; b; n;/ð Þ
@w

¼ 0

@L w; b; n;/ð Þ
@b

¼ 0

@L w; b; n;/ð Þ
@E

¼ 0

8>>>>><
>>>>>:

(18)

We obtain:

max
Pm
k¼1

ak � 1

2

X
k;j

akajykyj[ xkð Þ[ xj
� �

such as 8k; ak � 0

Pm
k¼1

/kxk ¼ 0

8>><
>>: (19)

In the SVM networks, the product[ xkð Þ[ xj
� �

may be supplanted by the positive kernel function. In our
case, the following Gaussian kernel function has been selected:
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k xk ; xj
� � ¼ exp �g x� x0j jj j2

� �
(20)

w and b define the position of the separating hyperplane as explained in the Fig. 1:

4.1 SVM Parameters Optimization using PSO algorithm

The PSO algorithm has been developed by Kennedy and Eberhart [34] since 1995. The parameters (C,γ)
of the SVM model have been optimized for the progression of the PSO algorithm, in order to increase the
diagnostic precision. This algorithm was built after having had a long observation about a flock of birds
and also a school of fish, while they are in search of their food. Every fish has its way between food and
itself. This action is a social behavior, intelligence in swarms, leads all natural processes to find a shorter
path to their walls [35].

The PSO algorithm ensures auto-selection of the SVM parameters which achieve the best diagnostic
accuracy.

The optimization procedure of the SVM parameters through PSO technique is interpreted in different
step as follows:

1. Initialization: N particles of populations are randomly generated by PSO, each particle with a position
and a velocity in the d dimensional search space.

Moreover, the particles are named thus, Pi ¼ Pi1;Pi2; . . . ;Pidð Þ position and Vi ¼ Vi1;Vi2; . . . ;Vidð Þ
speed, knowing that, Pi and Vi are matrices of N � d. C; cð Þ conditioning parameter for SVM variables

2. Training: The SVM model is trained using 90% of the database, for each particle

3. Testing: 10% of the database has been reserved to test the SVM model. The evaluation criteria
representing the accuracy of each particle are calculated through Eq. (21).

fi ¼ yt � yfi
yt

� 100 (21)

Where yfi is the total number of false classified data, yt is the total number of testing data.

4. Updating: each particle updates the position and speed using the following equations:

Vd
i t þ 1ð Þ ¼ WVd

i tð Þ þ C1r1 tð Þ pbestd tð Þ � pdi tð Þ� �� C2r2 tð Þðgbestd tð Þ � pdi tð Þ (22)

pdi t þ 1ð Þ ¼ pdi tð Þ þ Vd
i t þ 1ð Þ (23)

� C1 and C2 are acceleration coefficients;
� Pi represents the position of the “i” particle;

Figure 1: Separation of two classes: (a) Linear separation (b) Non-linear separation
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� V irepresents the velocity of the “i” particle;

� r1 and r2 are random number in the range [0,1];

� V is the inertia weight.

5. Stop criterion: Steps 2 to 4 are duplicated until reaching the maximum number of iterations.

6. Exploitation: The SVM optimal parameters acquired are utilized for classification.

The calculation process of SVM model can be summarized by the flowing flowchart in Fig. 2:

5 Cross Validation

V-fold cross validation is a procedure for ranking or comparing the robustness of a classification
algorithm on a set of data. The classification algorithm is randomly distributed by a bend dataset of equal
size, and each fold is used to test the induced pattern of the other folds. Evaluating the mean of the
precisions of v leads the cross-validation of v-fold to better performance of the classification algorithm,
implying the level of averaging is supposedly to be in the fold. Knowing that each fold contains the same
number of instances [37].

6 Simulations and results

A robot manipulator arm has been considered in this work with 3 degrees of freedom, called SCARA as
described in Section 2. The robot manipulator parameters used in the simulations are introduced as follows,

Figure 2: The SVM model with the calculation process [36]
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in order to diagnose the manipulator faults: the moments of inertia are I1 = 0.02, I2 = 0.03 and I3 = 0.05 (rad/
s), m1 = 0.5, m2 = 0.3, m3 = 0.1 Kg, the length of the links is L = 1m and the sampling time is equal to
ts ¼ 0:01 s. In order to test the diagnosis of faulty joints, 7 classes have been supported on the x-axis, y-
axis, z-axis, xy-axis, xz-axis, yz-axis and xyz-axis. One on the x-axis (D1), 10 additive samples faults
have been applied with a 0.001 sampling step over an interval [0,0.02]. The second class (D2) on the y-
axis, also 10 additive samples faults with a 0.001 have been introduced over the interval [0,0.02]. On the
interval [0,0.03], the 10 additive samples faults have been injected on the z-axis and considered as the
third class (D3). In the fourth class (D4), the 10 additive faults have been implanted on the xy-axis, on
the x-axis over the interval [0,0.02] and along the y-axis on the interval [0,0.02]. On the interval [0,0.02]
and [0,0.03] according to the x-axis and z-axis, the 10 additives faults have been inserted to create the
D5 class. However, in the sixth class (D6), and in the intervals [0,0.02] and [0,0.03] interposed to the y-
axis and z-axis, we apply 10 additive samples faults. The last class D7 (xyz-axis) which includes three
variation intervals [0,0.02], [0,0.02] and [0,0.03], we introduce 10 additive samples faults. Thus, the
output vector consists in: [D1 D2 D3 D4 D5 D6 D7]. The whole of the injected faults according to the
7 classes have been established with a database of 63000 samples.

Concerning the input vector, the composition consists of: the torque vector s sx; sy; sz
� �

; position

vector q qx; qy; qz
� �

and manipulator speed vector _q _qx; _qy; _qz
� �

, and it will be represented by:

sx sy sy qx qy qz _qx _qy _qz
h i

. For classifiers, the cross validation method has been used.

The simulations have been carried out using the MATLAB software. The results are presented below.

6.1 KNN results

For both classifiers, the training and test procedures were initiated using the cross-validation method. 10-
fold cross validations have been chosen and the database D is composed of : D = [V1 V2 V3 V4 V5 V6 V7 V8 V9

V10]. The accuracy diagnosis is assessed 10 times and the grader is assessed on the basis of the average value.
Every time, for the ith test Vi is used, and the remaining of the database is reserved for the training process.
Then, all accuracies rates have been evaluated on the tenth of samples population (63 000 samples) for the
testing phase and on ninth of the samples population (56 700) for the training phase. Tab. 1 explains the
decomposition of the data of the 10-fold cross validation method.

Table 1: Data decomposition

Fold Training Testing

1 [V1 V2 V3 V4 V5 V6 V7 V8 V9] [V10]

2 [V1 V2 V3 V4 V5 V6 V7 V8 V10] [V9]

3 [V1 V2 V3 V4 V5 V6 V7 V9 V10] [V8]

4 [V1 V2 V3 V4 V5 V6 V8 V9 V10] [V7]

5 [V1 V2 V3 V4 V5 V7 V8 V9 V10] [V6]

6 [V1 V2 V3 V4 V6 V7 V8 V9 V10] [V5]

7 [V1 V2 V3 V5 V6 V7 V8 V9 V10] [V4]

8 [V1 V2 V4 V5 V6 V7 V8 V9 V10] [V3]

9 [V1 V3 V4 V5 V6 V7 V8 V9 V10] [V2]

10 [V2 V3 V4 V5 V6 V7 V8 V9 V10] [V1]
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To obtain the highest possible diagnostic accuracy, several types of distance were used for the KNN
algorithm, namely Cityblock, Cosine, Correlation and Euclidean. For the training phase, the number of
neighbors k has been varied from 1 to 100 where the value corresponding to the better accuracy rate is
maintained. The effect of the number of neighbors was also investigated, Fig. 3 shows clearly this
influence (the first cross validation taken as example).

From the obtained results in Fig. 3 of the first fold validation, it becomes clear the extent of the effect of
the number of neighbors on the diagnosis accuracy. An accuracy diagnosis of 99.69% has been obtained for
correlation distance with k = 1, the cosine comes in second place with an accuracy of 99.55 and k = 1.
Accuracy of 99.50% and 99.03% have been achieved for the Euclidian and city block respectively with
k = 1 for both distances. The results of the 10 folds validation are summarized in Tab. 2. For each
validation, it is clear the extent of the impact of distance type and neighbors value.

10 20 30 40 50 60 70 80 90 100
97

97.5
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Figure 3: The impact of the distance type and number of neighbors on accuracy diagnosis

Table 2: KNN accuracy analysis

Cross
Validation

Best neighbors ( k) Accuracy diagnosis (%)

Euclidean Correlation City block Cosine Euclidian Correlation City block Cosine

1st validation 1 1 1 1 99.50 99.69 99.03 99.55

2nd validation 3 1 1 1 99.82 99.82 99.80 99.82

3rd validation 1 1 1 1 99.90 99.90 99.90 99.90

4th validation 1 1 1 1 99.90 99.90 99.90 99.90

5th validation 1 1 1 1 99.90 99.90 99.90 99.90

6th validation 1 1 3 1 99.90 99.90 99.90 99.90

7th validation 57 1 43 57 99.80 99.88 99.50 99.80

8th validation 75 1 94 75 97.61 97.95 96.84 97.71

9th validation 55 1 3 41 86.68 87 85.79 86.60

10th

validation
1 1 1 1 62.04 62.28 60.44 62.25

Overall accuracy 94.50 94.62 94.1 94.53
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The overall accuracy of each distance type is represented in Tab. 3. The results are given for the four
distance types, such as, Euclidean, Correlation, City block and cosine. It was found that the best accuracy
of the KNN algorithm was 94.62% with a correlation distance type against 94.53 for cosine distance
type. The Euclidean and the City block distances have achieved 94.50% and 94.10% respectively.

6.2 SVM results

The SVM parameters C and ɣ are adjusted using PSO. The results of the simulations show that the
approach makes it possible not only to select important characteristics, but also to obtain high precision
for the classification of faults. PSO affects the precision of the SVM after hybridization of SVM-PSO.
The SVM-PSO method performs better than the SVM on the benchmark dataset of the reviewer’s dataset.
Fig. 4 shows the evolution performance of the SVM classifier during optimization process using PSO
algorithm for the first validation. The PSO algorithm has been employed to the auto selection of
parameters (C, γ) for the gaussian kernel. Fig. 4 proves the influence of parameters values on the
accuracy results.

The results presented in Tab. 4 for cross-validation 10; in each cross-validation, the parameters (C, γ)
that provided the highest possible accuracy are different. Subsequently, the PSO algorithm was helpful in
adjusting the C and γ parameters.

Tab. 5 presents the dataset used in the simulations. In fact, has been finding 7 classes of faults in which
the value of the fault for each input is given.

The simulation results illustrate that the PSO-SVM and KNN algorithms detect immobilization in
various faults. The test result presented in Tab. 6 shows that the PSO-SVM method could diagnose errors
correctly and efficiently with an accuracy of 96.95%. On the other hand, the KNN algorithm has a fault
diagnosis with a precision of 94.53%. In this regard, we conclude that the PSO-SVM algorithm provides
a better accuracy for the error classification, compared to the KNN algorithm.

Table 3: Overall accuracy

Distance type Euclidean Correlation City block Cosine

Accuracy diagnosis (%) 94.50 94.62 94.1 94.53
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Figure 4: Performance of PSO-SVM classifiers
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7 Conclusions

In this paper a comparative study was made between the PSO-SVM and KNN methods for the
classification of faults in a manipulator robot arm. In addition to the classification-based approach for
fault detection, a fault detection method based on a dynamic model of the interaction of the SCARA
robot was also introduced. Various parameters are considered as input vectors for classifying seven
classes of faults within the manipulator. The diagnostic accuracy of the two classifiers was estimated
using 63,000 samples from the associated database. The classification method by SVM has a strong
capability of learning the characteristics of the system (manipulator), which avoids the problems of low
exemplary and poor distinction of traditional manual uprooting of the characteristics, and improves the
diagnostic accuracy of the characteristics faults. In order to improve the SVM method, a PSO algorithm

Table 4: PSO-SVM analysis of accuracy

Validation (C, γ) Accuracy diagnosis (%)

1st validation (187.62, 0.2560) 99.42

2nd validation (268.23, 0.0555) 99.90

3rd validation (223.73, 0.3137) 99.90

4th validation (310.89 ,0.0213) 99.90

5th validation (464.98, 0.1076) 99.90

6th validation (21.64, 0.0482) 99.87

7th validation (556.05, 0.0802) 99.90

8th validation (23.69, 0.0581) 99.84

9th validation (1.08, 1.5039) 96.22

10th validation (5.37, 0.0867) 74.65

Overall accuracy 96.95

Table 5: Diagnosis result of 7 samples

N sx sy sy qx qy qz _qx _qy _qz Sensor
fault

KNN PSO-
SVM

1 0,3 3e − 9 −10,5 0,0014 6e − 7 −1e − 7 2,72e − 5 0,056 0,4905 D1 D1 D1

2 0,3 1.28e − 7 −10,5 0,0126 2,43e − 5 −6.59e − 6 0,0011 0,4479 0,4906 D2 D1 D2

3 0,3 1,28e − 7 −10,5 0,0126 6e − 7 −6.59e − 6 0,0011 0,4479 0,4906 D3 D3* D3

4 0,3 3e − 9 −10,5 0,0014 6e − 7 −1e − 7 2,72e − 5 0,056 0,4905 D4 D4 D4

5 0,3 3e − 9 −10,5 0,0014 6e − 7 −1e − 7 2,72e − 5 0,056 0,4905 D5 D5 D5

6 0,3 3e − 9 −10,5 0,0014 6e − 7 −1e − 7 2,72e − 5 0,0560 0,4905 D6 D6 D6

7 0,3 3e − 9 −10,5 0,0014 6e − 7 −1e − 7 2,72e − 5 0,0560 0,4905 D7 D7 D7

Table 6: Comparison accuracy between KNN and PSO-SVM

KNN PSO-SVM

Accuracy (%) 94.53 96.95
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has been proposed in this paper to perform automatic optimization of the SVM parameters, which facilitates
the efficiency of optimization of these parameters. Extensive simulations were conducted to demonstrate the
efficacy of the proposed method. The numerical optimization simulations were carried out based on 7 widely
applied fault classes and simulation results indicated that the proposed PSO variant has better performance in
terms of search accuracy and speed of convergence. The results also demonstrate that the PSO-SVM
algorithm offers a more accurate diagnosis than the KNN algorithm. The SVM algorithm may be a
promising technique to diagnose defects in robotic manipulators. In the future, it is recommended that the
SVM algorithm be linked to other optimization techniques in order to achieve better results.
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