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Abstract: Renewable energy is created by renewable natural resources such as
geothermal heat, sunlight, tides, rain, and wind. Energy resources are vital for
all countries in terms of their economies and politics. As a result, selecting the
optimal option for any country is critical in terms of energy investments. Every
country is nowadays planning to increase the share of renewable energy in their
universal energy sources as a result of global warming. In the present work, the
authors suggest fuzzy multi-characteristic decision-making approaches for renew-
able energy source selection, and fuzzy set theory is a valuable methodology for
dealing with uncertainty in the presence of incomplete or ambiguous data. This
study employed a hybrid method for order of preference by resemblance to an
ideal solution based on fuzzy analytical network process-technique, which agrees
with professional assessment scores to be linguistic phrases, fuzzy numbers, or
crisp numbers. The hybrid methodology is based on fuzzy set ideologies, which
calculate alternatives in accordance with professional functional requirements
using objective or subjective characteristics. The best-suited renewable energy
alternative is discovered using the approach presented.

Keywords: Multi characteristic decision making framework; fuzzy sets; fuzzy
theory; renewable energy; energy resource selection

1 Introduction

In today’s industrial civilization, energy is a necessary commodity. It provides energy to our homes,
offices, transportation, and communication networks. It is a problem that affects everyone, yet it is
frequently misunderstood until an energy crisis occurs. Every country in the world is definitely in the
middle of an energy crisis. That problem does not appear to be solved anytime soon [1,2]. Fuel prices
and oil depletion are causing unprecedented alarm. In addition, global warming issues are creating
concern as well. A lot of people are worried about these things and want to fix the indicators right away.
However, only a few people understand the root causes of the problems and don’t realise that major
social and technological reorganisations are needed to solve them [3,4]. Because of these issues, many
countries are attempting to replace conventional power plants with sources of renewable energy.
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Renewable energy is a sustainable source of energy that will never run out. Dry rocks, lava, hot springs, and
even firewood, animal excrement, crop remnants, and garbage can all be found. Biomass energy, solar
energy, hydro energy, geothermal energy, and wind energy are the most common renewable energy
sources [5].

Many densely populated countries, particularly energy-importing developing countries, rely
substantially on petroleum imports now. Increases in international petroleum prices have had a negative
impact on the economy and will continue to do so unless dependency on imported petroleum is reduced
by switching to other resources [4,5]. Many countries with an oil-based economy, on the other hand, are
considering alternatives to enhance their economies until 2050 [3–5]. In the long run, there are many
different sorts of renewable energy that may be employed to make the planet a better place to live.

The decision of which options for renewable energy are best is a multi-characteristic problem with
numerous competing characteristics. As a result, the decision-making process for multi-characteristic
problems should be employed to tackle this problem. Some decision-making processes for multi-
characteristic problems have been employed in the various literatures for making energy investment
decisions, including the Analytic Hierarchy Process (AHP), the Analytic Network Process (ANP), the
removal and select transforming actuality and favourite position organisation technique for improvement
assessment, multiple objective linear programming, and the Technique for Order Performance by
Similarity to Ideal Solution (TOPSIS) [6,7].

When dealing with the imprecise or unclear nature of the linguistic estimation for selecting the
challenges of renewable energy systems, the decision-making process alone for the multi-characteristic
problems listed above is less effective. The values of any qualitative or linguistic characteristic are
frequently imprecisely specified for decision-makers in numerous scenarios. Linguistic variables with
values that aren’t numbers but words or sentences in a natural or artificial language offer crisp data in the
form and accuracy that is suited for the problem. When making a decision, some information can’t be
looked at exactly in a quantitative way but must be looked at qualitatively, which means using a
linguistic method.

The fuzzy-based hybrid strategy is a multi-characteristic method that uses both linguistic variables and
crisp definitions to capture this imprecise or hazy nature, as well as a flexible aggregation operator.
Furthermore, for issues with interactive characteristics under fuzziness, the fuzzy-based hybrid technique
of the ANP-TOPSIS is an outstanding multi-characteristic tool. The best renewable energy option is
determined in this paper by considering interactions among characteristics [8–10]. The major goal of this
research is to look at how the defined characteristics interact by employing a fuzzy-based hybrid
technique of ANP-TOPSIS. The remainder of the present work is structured as follows. A literature
overview on energy issues is offered in Section 2. Section 3 explains the criteria for evaluating renewable
energy solutions. The combined methodology is presented in Section 4. A genuine application for the
case study is carried out in Section 5. Finally, in Section 6, there are some closing observations.

According to the foregoing, the paper’s contribution is as follows:

� In this study, two well-known MCDM approaches (ANP and TOPSIS) are combined with fuzzy set
theory to rank the options for renewable energy sources in order.

� Using both environmental and conventional criteria to evaluate a variety of renewable energy options.

� A consistency analysis was performed to assess the consistency of the expert’s opinion.

� There is no difference in the results of the normalisation process no matter what kind of normalisation
function is used.

� TOPSIS is used to look at how alternatives affect the quality used in estimation. Further, ANP is used
to look at how important each attribute is.
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2 Literature Review

It is vital to determine the best course of action to take while dealing with challenges that include several
characteristics, objectives, and actors. Çolak et al. [1] employed four multi-characteristic decision-making
models for ranking renewable energy sources, which are: Élimination ET Choix Traduisant La Realité
(ELECTRE), TOPSIS, and Viekriterijumsko Kompromisno Rangiranje (VIKOR). According to the
findings of this study, hydropower is the best renewable energy alternative in Taiwan. It can also be a
good source of information for people who make decisions about how to use energy, as well as a good
source of information about how other countries use power.

Barros et al. [2] reviewed the scientific literature using a decision-making process for multi-characteristic
problems for renewable energies. They also calculated the advantages and disadvantages of these methods
for household systems. Karatop et al. [3] used type-2 fuzzy sets and hesitant fuzzy TOPSIS methods to
estimate renewable energy sources from Turkey’s perspective. In their study, Sarpong et al. [4] employed
Decision Making Trial and Evaluation Laboratory (DEMATEL), ANP, and TOPSIS methodologies to
analyse hesitant fuzzy linguistic term sets in order to properly calculate green supply chain management
problems quantitatively.

Shamaki et al. [5] employed AHP and a Sequential Interactive Model for Urban Sustainability (SIMUS)
to calculate each alternative source in terms of renewable energy. Authors suggested the use of SIMUS for
estimation because it considers quantitative and qualitative assessment at a single time. Medjoudj et al. [6]
employed a fuzzy model of decision-making procedure for multi-characteristic problems to measure four
different renewable energy sources: solar, geothermal, hydropower, and renewable energy. For ranking
the four possibilities in their study, the authors employed a fuzzy analytic hierarchy approach and a fuzzy
technique to arrange performance by resemblance to an ideal answer.

Lee et al. [7] employed fuzzy preference programming and an ANP to create a model for determining
renewable energy unit determination. Following the analysis, it was determined that the 2.5 W renewable
energy unit would provide the best estimation value, which is consistent with the expanding market share
of permanent magnet direct-drive renewable energies. Furthermore, Butkiene et al. [8] examined a variety
of decision-making procedures for multi-characteristic problems for renewable energy applications,
including decision-making that is multi-objective, multi-characteristic, or a mix of the two.

Pang et al. [9] employed multi-characteristic decision-making approaches and a geographic information
system to analyse the feasibility of renewable energy farm locations. Their findings can be used to expand
policies on renewable energy and assess the feasibility of projects that have already been planned. Kumar
et al. [10] describe hybrid decision-making procedures for multi-characteristic problems that use VIKOR,
distance from the average solution, and additive ratio assessment methods to rank renewable energy
projects in a fuzzy environment. These methods are used to rank renewable energy projects in a fuzzy
environment.

Saraswat et al. [11] enhanced fuzzy two-stage decision-making frameworks for offshore renewable
energy project location selection. Ramezanzade et al. [12] proved the feasibility of applying multi-
objective evolutionary algorithms to renewable energy selection challenges in their research. Wu et al.
[13] investigated the use of decision-making procedures for multi-characteristic problem applications for
the selection of renewable energy production sites. When it came to site selection, the authors
concentrated on two types of conditions and techniques throughout the process’s five phases. The
findings reveal that hybrid geographic information systems and decision-making procedures for multi-
characteristic problems are the most frequently employed technologies in this field. To analyse the
viability of renewable power sources, Shao et al. [14] suggested a fuzzy decision-making procedure for
multi-characteristic problems based on cumulative prospects. By giving public risk-takers alternative
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options, this study provided significant findings for determining the most acceptable renewable power source
under ambiguous conditions.

As this literature review demonstrates, the decision-making process of multi-characteristic problems is a
modest variation from operational research in that it deals with determining optimal solutions in complex
scenarios involving many indices, opposing aims, and different characteristics. This widely employed tool
in the field of energy planning is gaining popularity due to the freedom it offers decision makers in
making judgments while taking into account all factors [15,16]. However, just a few studies have
employed decision-making procedures based on fuzzy sets to create a support system of decisions for
projects of renewable energy that may assist project managers in analysing and selecting the best options
[13–17]. In this study, the authors propose a fuzzy-based decision-making procedure for selecting
renewable energy suppliers that involves a multi-characteristic problem.

3 Estimation of Characteristics for Selection Process

To analyse an accomplishment strategy for the dissemination of technology related to renewable energy
at a regional scale, authors Widianta et al. [18] employed elimination and choice to interpret reality. To rank
the projects, Pourmehdi et al. [19] looked into the energy planning process. The characteristics were taken
into consideration [20]. Aryanfar et al. [21] were interested in a multi-characteristic decision-making
estimation of energy resources that allowed for the selection of an appropriate power-producing
alternative. They looked at several energy options in terms of their political, environmental, physical,
economic, and other uncontrollable characteristics. The primary characteristics and sub-characteristics that
are derived from the above works are presented in this study. The authors of the present work are
currently weighing renewable energy options such as solar, ethanol, biodiesel, etc. It’s also shown in
Fig. 1 how this paper chose the best renewable energy option through the hierarchy.

The next section gives a quick overview of the characteristics that will be used to figure out how to use
renewable energy alternatives [19–21]:

� Feasibility: This principle assesses the certainty with which renewable energy can be implemented.
The number of times a product has worked out could be used to make a decision.

Figure 1: Renewable energy characteristics and alternatives
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� Risk: The risk principle looks at how likely it is that a renewable energy system will be employed by
counting how many failures there are in a case study.

� Reliability: This category assesses renewable energy technologies. In the lab or in a pilot plant,
technology may have been tried out, or it may still be being worked on. It could be a combination
of technologies.

� Preparation Phase Duration: This principle assesses the availability of renewable energy alternatives
in order to reduce financial assets and achieve the lowest cost. The planning stage entails making a
decision based on years or months.

� The Duration of the Implementation Phase: This principle assesses the alternative’s suitability for
achieving the lowest cost. The cost of the implementation segment is calculated based on the
number of years or months it will take to complete.

� Performance Continuity and Predictability: This principle assesses the technology’s operation and
performance as a renewable energy option. It’s crucial to determine if the technology works
reliably and continually.

� Local Technical Know How: Qualitative comparisons must be made for this characteristic. They must
look at how difficult a technology is, as well as how well local actors can help with the maintenance
and installation of renewable energy technology.

� Pollutant Emission: This principle calculates the Carbon Dioxide (CO2) equivalent emissions, air
emissions from the combustion process, liquid wastes from fumes treated with solid wastes, and
process water. The principle is assessed based on the type and quantity of emissions as well as the
cost of waste treatment. Electromagnetic interference, bad smells, and changes in the microclimate
for energy investment are also taken into account when this principle is looked at.

� Land Requirements: One of the most important variables in energy investment is the availability of
land. The economic losses can also be determined by the high demand for land.

� Waste Disposal Need: This principle assesses the impact on environmental quality from the
perspective of renewable energy. Taking this into account, the use of renewable energy could be
calculated to lessen the destruction of quality of life and make the world a better place.

� National Energy Strategy Compatibility: This principle assesses the degree to which the national
energy policy and the suggested alternative of renewable energy are aligned with one another. It
calculates the degree to which the government’s strategy and the proposed strategy have aims that
are similar to each other. In addition, the principle takes into account how well the government is
on your side, how institutional players act, and the public information policy that the government
has in place, among other things.

� Political Acceptance: This principle looks to see if there is agreement among leaders on the suggested
renewable energy source. It also talks about how to keep politicians from reacting and how to solve
problems between political leaders.

� Social Acceptance: This principle helps social partners come to an agreement. It also talks about how
to keep special-interest groups from being angry about renewable energy options.

� Labor Impact: Alternatives to renewable energy are looked at in terms of how many jobs they create,
both directly and indirectly, as well as how many new professionals they could help to make.

� Cost of Implementation: This principle looks at how much energy it will take to be fully operational,
and how much it will cost.

� Funds Availability: This factor assesses national and international funding sources as well as
government economic support.
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� Economic Value: This principle uses one of the engineering economics methods, such as current
worth, internal rate of return, benefit and cost analysis, payback period, or payback time, to figure
out how much money the suggested renewable energy alternative is worth in terms of money.

4 Research Methodologies

In this study, there are two key processes for measuring the performance level of each designated place.
The weight of each principle for the fuzzy ANP approach is computed in the first stage of the method of fuzzy
TOPSIS. The relationships between the characteristics are explored in this manner to offer more realistic
weights. The fuzzy TOPSIS approach is employed to calculate the performance of the collection centres
in terms of environmental, social, and economic aspects, as well as the risk related to their presentation,
after measuring the vital weights of these characteristics. All of the aforementioned methodologies require
the input of renewable energy sector specialists for their processes. The specialists are chosen based on
pre-set characteristics: they must have at least five years of professional experience in renewable energy
source selection, management, and conceptual understanding. The following is a step-by-step breakdown
of the suggested integrated methodology:

4.1 Fuzzy Analytic Network Process

Thomas Saaty [16] offered the ANP, which is an addition to the AHP. It enhances the capability of
dealing with interplay and reliance between characteristics and sub-characteristics, which can have an
impact on their weights. Despite numerous endeavours to alter the AHP to make it deal with imprecise
human assessments, the ANP is quite limited to clear comparison ratios. The fundamental intention
behind this is that the AHP’s aggregation approach is quite modest and it can be conducted on intervals
or fuzzy local priorities. However, the ANP’s supermatrix priority derivation process needs sophisticated
real-number matrix operations. On the other hand, all known interval and fuzzy prioritisation algorithms
produce interval or fuzzy local priorities, which cannot be employed in the ANP matrix calculations. The
fuzzy ANP was developed in order to deal with the uncertainty related to the preferences of professionals
in a Pairwise Comparison Matrix (PWCM). The following are the steps in the fuzzy ANP technique that
will be used to figure out the weights of the characteristics:

Step 1: Constructing the problem network by describing the relationships between its various pieces

Step 2: The second step is in which the comparison matrices are created by comparing different
connected characteristics of the network pair-wise using Triangular Fuzzy Numbers (TFN) based on the
scale proposed by Saaty [16]. Adoption of the linguistic phrase for comparison has been done in this
work, as has the TFN allocated to it [17].

Step 3: Creating the supermatrix.

The weight of each characteristic and sub-characteristic should be determined to build the supermatrix.
Due to the triangular fuzzy structure of each comparison matrix’s characteristics, the weights are generated
using Zadeh’s (“s extent analysis method,”) [17] which includes the following steps.

Step 3.1: The next step is to figure out the value of the fuzzy artificial extent for each of the following
things:

Assuming that Pw is a PWCM matrixin (Eqs. (1)-(5)):

Pw ¼ ½Qij�r�s; Qij ¼ ðlij; mij; uijÞ i ¼ 1; 2 . . . ::r j ¼ 1; . . . ::s (1)
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Step 3.2: Estimating the degree of the possibility for each Si over others (Eq. (6)).

V ðS1 � S2Þ ¼
1 if m1 � m2

0 if l1 � u2
l2 � u1

ðm1 � u1Þ � ðm2 � l2Þ otherwise

8><
>: (6)

Step 3.3: Using Eqs. (7)-(8), it’s hard to figure out how much each characteristic should be worth in
terms of the chance that a convex fuzzy number is bigger than k convex fuzzy numbers.

W 0
i ¼ V ðSk � S1; S2; . . . . . . SrÞ ¼ min

i¼1;2;...:k;::r
ðSk � SiÞ (7)

w0 ¼ ðW 0
1; W

0
2; . . . ::; W

0
rÞ (8)

Step 3.4: Calculating the normalized weight vector (Eq. (9)).

w ¼ ðW1; W2; . . . ::WrÞ (9)

After computing the weights of each PWCMmatrix, the super-matrix can be designed as shown
in Eq. (10):

W 0 ¼
1 ¼ Goal

2 ¼ Criteria
3 ¼ Sub� criteria

0 0 0
W21 W22 0
0 W32 W33

2
4

3
5 (10)

Step 4: Calculating the absolute weight vector of each sub-characteristic (Eq. (11)).

W ¼ lim
x!1W

02kþ1 (11)

4.2 Fuzzy Technique for Order of Preference by Similarity to Ideal Solution

Widianta et al. [18] was the first to propose the fuzzy strategy for order performance based on
resemblance to the ideal solution method, and since then, it has been widely employed for assessing
alternatives in a variety of scenarios. This method can be employed to rate options based on how close
they are to or how similar they are to an ideal answer. On this page, a detailed description of the stages
involved in employing the fuzzy TOPSIS is given [19].
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Step 1: Calculating the normalized decision matrix.

Assume that Dnd is the normalized fuzzy decision matrix (Eq. (12)):

Dnd ¼ ½dij�r�s i ¼ 1; . . . . . . :r j ¼ 1; . . . . . . ; s (12)

Each characteristic of decision-making is normalised to the category of each principle, with the
exception of decision-making itself. Whether the principle is a benefit or a cost principle, which means
that a rise in their magnitude is favourable in the first group and a drop in their size is favourable in the
second category, depends on the principle. Each component of the normalised decision-making is
calculated using the following equations, which are organised according to their category. (Eq. (13)):

dij ¼ lij
uþj

;
mij

uþj
;
uij
uþj

 !
(13)

where uþj is the maximum uij for benefit characteristic (Eq. (14)).

dij ¼
l�j
uij

;
l�j
mij

;
l�j
lij

� �
(14)

where l�j is the minimum lij for cost characteristic.

Step 2: Calculating the weighted normalized decision matrix.

The weight of characteristic i is represented as wi, and the weighted normalized decision matrix is
deliberated as follows (Eq. (15)):

V ¼ ðvijÞr�swhere vij ¼ rij � wij8j ¼ 1; . . . . . . ; s; and i ¼ 1; . . . ::; r (15)

Step 3: Postulating the fuzzy positive ideal and negative ideal solutions.

FPI ¼ ðvþ1j; . . . ::vþij Þ for benefit characteristic, FPI ¼ ðv�1j; . . . ::v�ij Þ for cost characteristic.
FNI ¼ ðv�1j; . . . ::v�ij Þ for benefit characteristic, FNI ¼ ðvþ1j; . . . ::vþij Þ for cost characteristic.
Where vþi is maximum v�ij , v

�
ij is the minimum vþij , and i = 1,….., r; j = 1,……, s.

Step 4: Calculating the distance of each alternative from positive ideal and negative ideal solutions (Eqs.
(16)-(17)).

diaþj ¼
Xn
j¼1

diavðvij; vþj Þi ¼ 1; . . . . . . ; r (16)

dia�j ¼
Xn
j¼1

diavðvij; v�j Þi ¼ 1; . . . . . . ; r (17)

The distance between two TFN can be calculated (Eq. (18)):

diað~A; ~BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ððlA � lBÞ2 þ ðmA � mBÞ2 þ ðuA � uBÞ2Þ

r
(18)

Step 5: Calculating the Closeness Coefficient Factor (CCF) (Eq. (19)).

CCFj ¼
dia�j

ðdiaþj þ dia�j Þ
(19)

Step 6: Prioritizing the alternatives.
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Since the formula employed to calculate the closeness coefficient rewards the option with the highest
CCFj value, the one with the highest CCFj value comes out on top in the ranking list.

5 Results

Because energy resource selection is first and foremost a qualitative metric, which further quantifies the
renewable energy resource selection process, it is a multifaceted and complicated job. Prioritization of quality
characteristics throughout the renewable energy resource selection process is critical for any country. This
research work offers an approach for the estimation of the impact of renewable energy resources using
the FANP-technique for ordering performance by similarity to an ideal solution. According to Fig. 1, the
four main factors for evaluating the impact of renewable energy resources are technological (RE1),
environmental (RE2), socio-political (RE3), and economic (RE4), in that order: feasibility, risk, and
reliability. In that order, when it comes to renewable energy resource selection at level 2, RE1 is at the
top of the list. Pollutant emissions, land requirements, and the need for waste disposal are represented as
RE21, RE22, and RE23, respectively, in terms of renewable energy resource selection at level 2 with
respect to RE2. Compatibility with the national energy policy objectives, political acceptance, social
acceptance, and labour impact are represented as RE31, RE32, RE33, and RE34, respectively, in terms of
renewable energy resource selection at level 2 with respect to RE3. RE41, RE42, and RE43 are also
shown in terms of renewable energy resource selection at level 2 with respect to RE4. These are the costs
of implementation, the availability of funds, and the economic value.

The authors used a unified method of fuzzy ANP and fuzzy TOPSIS to determine how much renewable
energy resources would have an impact on the environment. Present work got the numbers from linguistic
values and then accumulated TFN using the standard Saaty scale and Eqs. (1)–(5). Further, Eqs. (6)-(8) were
utilised to convert the crisp numerical values into fuzzy TFN. The PWCMmatrixes for level-1 characteristics
are then generated and displayed in Tabs. 1–5, respectively. After that, Eq. (9) was employed to derive the
consistency index and random index. The random index of this PWCMmatrix is less than 0.1, indicating that
it is consistent. They can also be used for things like adding, multiplying, defuzzing, and normalising fuzzy
numbers in the middle.

Table 1: The PWCM of dimensions with respect to renewable energy dimension

RE1 RE2 RE3 RE4 Fuzzified
weights

Defuzzified and
normalized weights

Technological
(RE1)

1.000,
1.000,
1.000

0.500,
0.600,
0.890

0.470,
0.580,
0.740

0.680,
0.860,
1.260

0.141,
0.455, 0.696

0.391

Environmental
(RE2)

1.120,
1.550,
1.940

1.000,
1.000,
1.000

0.202,
0.233,
0.282

0.296,
0.357,
0.437

0.035,
0.085, 0.215

0.169

Socio-Political
(RE3)

1.360,
1.730,
2.120

0.790,
1.160,
1.470

1.000,
1.000,
1.000

0.332,
0.410,
0.474

0.149,
0.176, 0.257

0.200

Economic
(RE4)

1.120,
1.550,
1.940

1.360,
1.730,
2.120

0.790,
1.160,
1.470

1.000,
1.000,
1.000

0.035,
0.076, 0.128

0.240
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Table 2: The PWCM of dimensions with respect to technological dimension

RE1 RE2 RE3 RE4 RE15 RE16 RE17 Fuzzified
weights

Defuzzified
and
normalized
weights

Feasibility (RE11) 1.000,
1.000,
1.000

0.500,
0.600,
0.890

0.470,
0.580,
0.740

0.680,
0.860,
1.260

0.470,
0.580,
0.740

0.680,
0.860,
1.260

0.470,
0.580,
0.740

0.079,
0.135,
0.256

0.123

Risk (RE12) 1.120,
1.550,
1.940

1.000,
1.000,
1.000

0.202,
0.233,
0.282

0.296,
0.357,
0.437

0.202,
0.233,
0.282

0.296,
0.357,
0.437

0.202,
0.233,
0.282

0.035,
0.075,
0.115

0.103

Reliability (RE13) 1.360,
1.730,
2.120

0.790,
1.160,
1.470

1.000,
1.000,
1.000

0.332,
0.410,
0.474

0.470,
0.580,
0.740

0.680,
0.860,
1.260

0.470,
0.580,
0.740

0.049,
0.076,
0.157

0.127

The duration of
preparation phase
(RE14)

1.120,
1.550,
1.940

1.360,
1.730,
2.120

0.790,
1.160,
1.470

1.000,
1.000,
1.000

0.202,
0.233,
0.282

0.296,
0.357,
0.437

0.202,
0.233,
0.282

0.074,
0.134,
0.257

0.141

The duration of
implementation
phase (RE15)

1.120,
1.550,
1.940

1.000,
1.000,
1.000

0.470,
0.580,
0.740

1.360,
1.730,
2.120

1.000,
1.000,
1.000

0.470,
0.580,
0.740

0.680,
0.860,
1.260

0.035,
0.076,
0.118

0.173

Continuity and
predictability of
performance
(RE16)

1.360,
1.730,
2.120

1.120,
1.550,
1.940

1.000,
1.000,
1.000

1.120,
1.550,
1.940

0.470,
0.580,
0.740

1.000,
1.000,
1.000

0.296,
0.357,
0.437

0.074,
0.134,
0.247

0.076

Local technical
know how (RE17)

0.470,
0.580,
0.740

1.360,
1.730,
2.120

0.790,
1.160,
1.470

0.470,
0.580,
0.740

0.470,
0.580,
0.740

0.470,
0.580,
0.740

0.470,
0.580,
0.740

0.035,
0.076,
0.118

0.257

Table 3: The PWCMof dimensions in perspective of the environmental dimension

RE21 RE22 RE23 Fuzzified
weights

Defuzzified and
normalized weights

Pollutant emission
(RE21)

1.000,
1.000, 1.000

1.120,
1.550, 1.940

0.470,
0.580, 0.740

0.079,
0.135, 0.256

0.178

Land requirements
(RE22)

1.120,
1.550, 1.940

1.000,
1.000, 1.000

0.680,
0.860, 1.260

0.035,
0.075, 0.115

0.316

Need of waste
disposal (RE23)

1.360,
1.730, 2.120

0.790,
1.160, 1.470

1.000,
1.000, 1.000

0.049,
0.076, 0.157

0.506
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The significance acquired from the numerous PWCMs is employed to create an un-weighted super-
matrix. In addition, Eqs. (10)–(11) are employed to construct the un-weighted super matrix, and the
weighted super matrix is calculated by altering all column sums to unity [18–21]. A weighted super
matrix is then employed to compute the limit super-matrix. Universal characteristic weights are also
computed, and the outcomes are shown in Tab. 6 with the characteristics ranked.

Table 4: The PWCMof dimensions with respect to socio-political dimension

RE31 RE32 RE33 RE34 Fuzzified
weights

Defuzzified and
normalized
weights

Compatibility with the
national energy policy
objectives (RE31)

1.000,
1.000,
1.000

0.202,
0.233,
0.282

0.296,
0.357,
0.437

0.202,
0.233,
0.282

0.078,
0.132,
0.255

0.103

Political acceptance (RE32) 1.120,
1.550,
1.940

1.000,
1.000,
1.000

0.500,
0.600,
0.890

0.202,
0.233,
0.282

0.035,
0.075,
0.115

0.516

Social acceptance (RE33) 1.120,
1.550,
1.940

0.470,
0.580,
0.740

1.000,
1.000,
1.000

0.296,
0.357,
0.437

0.049,
0.075,
0.155

0.306

Labour impact (RE34) 1.360,
1.730,
2.120

0.296,
0.357,
0.437

0.470,
0.580,
0.740

1.000,
1.000,
1.000

0.075,
0.145,
0.325

0.075

Table 5: The PWCMof dimensions with respect to economic dimension

RE41 RE42 RE43 Fuzzified
weights

Defuzzified and
normalized weights

Implementation
cost (RE41)

1.000, 1.000,
1.000

0.500, 0.600,
0.890

0.470, 0.580,
0.740

0.078, 0.132,
0.255

0.118

Availability of
funds (RE42)

0.790, 1.160,
1.470

1.000, 1.000,
1.000

0.470, 0.580,
0.740

0.035, 0.075,
0.115

0.306

Economic value
(RE43)

0.470, 0.580,
0.740

0.202, 0.233,
0.282

1.000, 1.000,
1.000

0.049, 0.075,
0.155

0.576

Table 6: Final weights

Characteristics Final
weights

Weights in
percentage

Ranks

Feasibility (RE11) 0.0481 4.81% 11

Risk (RE12) 0.0403 4.03% 12

Reliability (RE13) 0.0497 4.97% 10

The duration of preparation phase (RE14) 0.0551 5.51% 8
(Continued)
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A renewable energy source is obtained from renewable resources that are replenished naturally over
time, as measured by the human calendar. Examples include waves, tides, rain, wind, sunlight, and
geothermal heat, to name a few. According to some estimates, some biomass sources are no longer viable
if employed at current rates of production. In addition, the authors gathered information on nine
renewable energy sources, including ethanol, solar, biodiesel, wind, geothermal, hydropower, Landfill
Gas (LFG), biogas, Municipal Solid Waste (MSW), and wood and wood waste. The following is a
description of these resources:

� Wood and WoodWaste:Humans have been cooking with wood for thousands of years and heating and
lighting their homes with it for even longer. Forestry was the dominant source of energy in the United
States and around the world until around 1850, when coal and oil supplanted it.

� Municipal Solid Waste: At waste-to-energy plants and landfills in the United States, MSW, often
known as rubbish, is used to generate electricity to power the facilities. There are a lot of different
types of materials that are called “MSW.”

� Landfill Gas: LFG is a natural by-product of organic waste breakdown in landfills. LFG is made up of
around half methane (natural gas’s major component), half CO2, and a minor quantity of non-methane
chemical molecules. LFG is a type of biogas produced by anaerobic microorganisms in MSW dumps
that can be used to generate electricity. Because methane is a flammable gas, LFG that contains a high
concentration of methane can be hazardous to both people and the environment. Methane is a potent
greenhouse gas as well.

� Biogas: Biogas is a high-energy gas produced by anaerobic decomposition of biomass or thermo-
chemical conversion of biomass. Methane and CO2 are the primary components of biogas. When
it comes to raw (untreated) biogas, the methane content can range from 40 to 60 percent, with the
rest made up of CO2 and water vapour. Biogas is produced in MSW landfills and livestock
manure holding ponds and can be collected.

Table 6 (continued)

Characteristics Final
weights

Weights in
percentage

Ranks

The duration of implementation phase (RE15) 0.0676 6.76% 6

Continuity and predictability of performance (RE16) 0.0297 2.97% 14

Local technical know how (RE17) 0.1005 10.05% 3

Pollutant emission (RE21) 0.0301 3.01% 13

Land requirements (RE22) 0.0534 5.34% 9

Need of waste disposal (RE23) 0.0855 8.55% 4

Compatibility with the national energy policy objectives
(RE31)

0.0206 2.06% 16

Political acceptance (RE32) 0.1032 10.32% 2

Social acceptance (RE33) 0.0612 6.12% 7

Labour impact (RE34) 0.0150 1.50% 17

Implementation cost (RE41) 0.0283 2.83% 15

Availability of funds (RE42) 0.0734 7.34% 5

Economic value (RE43) 0.1382 13.82% 1
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� Ethanol: Ethanol is classified as a renewable biofuel because it is obtained from biomass. Ethanol is a
colourless, pure alcohol that can be produced from a variety of biomass feedstock sources (the raw
materials employed to make a product). Feed stocks for ethanol production in the United States
are often made from food grains and crops with high starch and sugar content. Examples of such
crops are sugar beets, sugar cane, barley, sorghum, and maize.

� Biodiesel: Biodiesel and renewable diesel are both biomass-based diesel fuels that are employed in the
same way that petroleum distillate fuel oil is employed in transportation (diesel fuel and heating oil).
As biomass-based diesel fuels, they’re both referred to as such because of their most common use in
diesel engines, but they can similarly be employed for heating purposes. In accordance with the
American Society for Testing and Components (ASTM) specification ASTM D6751, biodiesel
may be blended with petroleum distillate or diesel in any proportion.

� Hydropower: Water running through streams and rivers has been employed to generate mechanical
energy by humans for thousands of years. Since hydroelectricity was among one of the initial
forms of energy to be employed for electricity generation, it has accounted for the vast majority of
the total yearly renewable electricity output in the United States, which will continue until 2019 [11].

� Geothermal Energy: Geothermal energy that originates deep beneath the earth is referred to as
geothermal energy. Geothermal energy is taken from the Greek words geo (earth) and therme
(heat). Given that heat is constantly produced within the earth, geothermal energy is considered a
renewable energy source. Geothermal heat is employed for a variety of purposes, including
bathing, heating homes, and generating electricity. This energy is produced by the slow
disintegration of radioactive particles in the earth’s core, a process that happens in all rocks and is
responsible for the formation of geothermal energy [12].

� Wind Power: The wind is caused by the uneven heating of the earth’s surface caused by the sun. The
earth’s surface, which is made up of diverse types of land and water, engages the sun’s heat at diverse
rates depending on its composition. Nowadays, wind energy is the primary source of electricity
generation. The use of windmills to pump water was once widespread across the United States,
and some still do so on farms and ranches, mostly to provide water for cattle and other livestock.

� Solar Energy: In addition to creating energy for billions of years, the sun also serves as our sole and
ultimate source of all modern energy sources and fuels. For thousands of years, people have relied on
the sun’s beams (solar radiation) to keep warm and preserve grains, fruit, and dry meat in their homes
and farms. People devised methods for collecting solar energy for use as heat, with the energy
eventually converted to electricity. The solar oven is an example of a solar energy harvesting
device that was developed in the early 1900s (a box for collecting and absorbing sunlight).

Renewable energy is employed in a variety of applications, including electricity generation, air and
water heating and cooling, transportation, and rural (off-grid) energy services [22,23]. Energy-efficient
and cost-effective renewable energy systems are rapidly improving, and their share of total energy
consumption is increasing, with renewable energy accounting for the great majority of newly added
power capacity around the world. In most countries, photovoltaic solar or onshore wind energy is the
most cost-effective new-build electricity source. The data in Tab. 7 reflects the output and consumption of
renewable energy in the United States as of January 2022. If current estimates are correct, wood and
wood waste (bark, sawdust, and wood chips, as well as wood scrap and paper mill wastes) will account
for about 2.3% of the total amount of electricity that the United States uses each year in 2020. There
were about 12% of the 292 million metric tonnes of MSW that the United States made in 2018. Waste-to-
energy plants and other facilities that looked like them burned about 12% of that waste in 2018.

IASC, 2023, vol.35, no.2 2129



To analyse the influence of various solutions on order performance, the fuzzy TOPSIS method makes
use of this description and data. This is accomplished through the application of Eq. (12), and a
normalised decision-matrix is obtained as shown in Tab. 8. The fuzzy negative-ideal solution and the
fuzzy positive-ideal solution are then calculated using Eqs. (13)–(15). Finally, the performance value of
each principle was calculated using Eq. (16) through Eq. (19), and the ranking of alternatives was
established using the resulting performance score, which is also shown in Tab. 9 and Fig. 2.

Table 7: Renewable energy production and consumption (in trillion BTU)

Production Consumption

Year Overall
production

Year Hydro-
electric
Power

Geothermal Solar Wind Wood Waste Bio-
fuels

Overall
consumption

2011 9308 2011 3103 212 112 1168 2213 462 1941 9212

2012 8893 2012 2629 212 159 1340 2151 467 1899 8856

2013 9433 2013 2562 214 225 1601 2338 496 2022 9459

2014 9789 2014 2467 214 337 1728 2401 516 2089 9752

2015 9754 2015 2321 212 427 1777 2312 518 2170 9737

2016 10459 2016 2472 210 570 2096 2226 503 2313 10391

2017 11237 2017 2767 210 777 2343 2185 495 2339 11116

2018 11552 2018 2663 209 915 2482 2261 487 2324 11343

2019 11595 2019 2564 201 1017 2635 2236 442 2341 11436

2020 11667 2020 2503 203 1211 2965 2081 440 2100 11503

Table 8: Individual awareness outcomes

Solar Hydropower Geothermal Wind Biodiesel Ethanol Landfill
gas and
biogas

Municipal
solid
waste

Wood
and
wood
waste

(RE11) 4.100,
5.400,
6.600

2.500,
3.900,
5.500

3.900,
5.700,
7.400

4.100,
5.400,
6.600

3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6000

3.900,
5.700,
7.400

4.100,
5.400,
6.600

(RE12) 4.100,
5.600,
7.000

5.200,
6.700,
7.900

4.100,
5.400,
6.600

2.500,
3.900,
5.500

2.800,
3.700,
4.900

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.400,
6.600

2.500,
3.900,
5.500

(RE13) 2.800,
4.100,
5.600

2.900,
4.400,
6.000

4.100,
5.600,
7.000

5.200,
6.700,
7.900

3.900,
5.700,
7.400

4.100,
5.400,
6.600

2.500,
3.900,
5.500

3.900,
5.700,
7.400

4.100,
5.400,
6.600

(RE14) 2.800,
3.900,
5.100

4.100,
5.400,
6.600

2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6000

3.900,
5.700,
7.400

4.100,
5.400,
6.600

2.500,
3.900,
5.500

(Continued)
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Table 8 (continued)

Solar Hydropower Geothermal Wind Biodiesel Ethanol Landfill
gas and
biogas

Municipal
solid
waste

Wood
and
wood
waste

(RE15) 3.900,
5.500,
6.900

4.100,
5.600,
7.000

5.200,
6.700,
7.900

2.800,
3.700,
4.900

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.400,
6.600

(RE16) 4.100,
5.400,
6.600

2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.000,
6.600,
7.800

3.900,
5.700,
7.400

4.100,
5.400,
6.600

3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6000

(RE17) 3.900,
5.700,
7.400

4.100,
5.400,
6.600

2.500,
3.900,
5.500

3.900,
5.700,
7.400

4.100,
5.400,
6.600

2.500,
3.900,
5.500

2.800,
3.700,
4.900

4.100,
5.400,
6.600

2.500,
3.900,
5.500

(RE21) 4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.600,
7.000

5.200,
6.700,
7.900

3.900,
5.700,
7.400

4.100,
5.400,
6.600

2.500,
3.900,
5.500

(RE22) 4.100,
5.600,
7.000

5.200,
6.700,
7.900

4.100,
5.600,
7.000

5.200,
6.700,
7.900

2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6.000

3.900,
5.700,
7.400

(RE23) 2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.000,
6.600,
7.800

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.600,
7.000

5.200,
6.700,
7.900

3.900,
5.700,
7.400

4.100,
5.400,
6.600

(RE31) 5.200,
6.700,
7.900

2.800,
3.700,
4.900

4.100,
5.400,
6.600

4.100,
5.600,
7.000

5.200,
6.700,
7.900

2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6000

(RE32) 3.900,
5.700,
7.40000

3.900,
5.700,
7.400

4.100,
5.400,
6.600

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.600,
7.000

5.200,
6.700,
7.900

3.900,
5.700,
7.400

4.100,
5.400,
6.600

(RE33) 3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6.000

4.100,
5.600,
7.000

5.200,
6.700,
7.900

2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6000

(RE34) 2.800,
3.700,
4.900

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.400,
6.600

2.500,
3.900,
5.500

2.500,
3.900,
5.500

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.600,
7.000

(RE41) 3.900,
5.700,
7.400

4.100,
5.400,
6.600

2.500,
3.900,
5.500

3.900,
5.700,
7.400

5.200,
6.700,
7.900

5.200,
6.700,
7.900

4.100,
5.600,
7.000

5.200,
6.700,
7.900

2.500,
3.900,
5.500

(RE42) 3.900,
5.700,
7.400

5.000,
6.600,
7.800

2.900,
4.400,
6.000

3.900,
5.700,
7.400

3.900,
5.700,
7.400

3.900,
5.700,
7.400

5.000,
6.600,
7.800

4.100,
5.400,
6.600

2.500,
3.900,
5.500

(RE43) 2.800,
3.700,
4.900

4.100,
5.400,
6.600

2.500,
3.900,
5.500

4.100,
5.400,
6.600

2.800,
3.700,
4.900

2.800,
3.700,
4.900

4.100,
5.400,
6.600

4.100,
5.600,
7.000

5.200,
6.700,
7.900
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6 Conclusions

Every country has a substantial renewable energy potential due to the abundance of natural resources
such as hydropower, biomass, geothermal, sunlight, and wind. A consequence of this is that governments
encourage business investments in the renewable energy sector by releasing new energy companies. For
the country’s energy options to be as effective as possible, the country’s resources must be properly
utilised. As an outcome, determining the relative importance of various energy options is crucial. In this
study, a fuzzy-based combination methodology was employed to estimate the relative importance of
several possibilities. Efficiency is calculated from best to worst for various renewable energy sources,
including hydropower, solar, geothermal, biomass, and wind. Further exploration into the usage of an
ANP technique to analyse internal and external dependencies among characteristics is proposed. Another
way to figure out energy options and their characteristics in language is to use a fuzzy ANP technique in
a fuzzy setting.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Table 9: Closeness coefficients of selected renewable energy sources

Alternatives Negative distance Positive distance Closeness coefficients

Alternative 1 (Solar) 0.225 0.131 0.543

Alternative 2 (Hydropower) 0.245 0.146 0.489

Alternative 3 (Geothermal) 0.229 0.154 0.445

Alternative 4 (Wind) 0.245 0.156 0.452

Alternative 5 (Biodiesel) 0.183 0.182 0.481

Alternative 6 (Ethanol) 0.165 0.191 0.542

Alternative 7 (Landfill Gas and Biogas) 0.247 0.156 0.477

Alternative 8 (Municipal Solid Waste) 0.256 0.187 0.463

Alternative 9 (Wood and Wood Waste) 0.274 0.196 0.474
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Figure 2: Ranking of renewable energy sources
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