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Abstract: Live Virtual Machine (VM) migration is one of the foremost techniques
for progressing Cloud Data Centers’ (CDC) proficiency as it leads to better
resource usage. The workload of CDC is often dynamic in nature, it is better to
envisage the upcoming workload for early detection of overload status, underload
status and to trigger the migration at an appropriate point wherein enough number
of resources are available. Though various statistical and machine learning
approaches are widely applied for resource usage prediction, they often failed
to handle the increase of non-linear CDC data. To overcome this issue, a novel
Hypergrah based Convolutional Deep Bi-Directional-Long Short Term Memory
(CDB-LSTM) model is proposed. The CDB-LSTM adopts Helly property of
Hypergraph and Savitzky–Golay (SG) filter to select informative samples and
exclude noisy inference & outliers. The proposed approach optimizes resource
usage prediction and reduces the number of migrations with minimal computa-
tional complexity during live VM migration. Further, the proposed prediction
approach implements the correlation co-efficient measure to select the appropriate
destination server for VM migration. A Hypergraph based CDB-LSTM was vali-
dated using Google cluster dataset and compared with state-of-the-art approaches
in terms of various evaluation metrics.

Keywords: Convolutional deep Bi-LSTM; hypergraph; live VM migration; load
aware migration; cloud data centers; VM consolidation

1 Introduction

Over the past few years, Cloud Computing [1], has emerged as a new computing paradigm, offering its
users with dynamically scalable services at flexible prices [2]. Owing to its flexibility, it is widely used in
hosting and delivering IT services [3]. Cloud Computing works on the principle of virtualization of
resources with on-demand and pay-as-you-go model policy [4]. Although the concept of virtualization
increases resource utilization, the operating cost of cloud still increases gradually owing to the over
consumption of electrical energy and intensification of VMs. Thus, live VM Migration has become an
efficient approach in managing cloud resources by enabling administrators to transfer VM between two
physical machines without service disruption.
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Live VM migration provides uninterrupted cloud services during VM consolidation [5,6] which also
upholds fault tolerance, load balancing and minimizes Service Level Agreement (SLA) breaches [7,8].
However, it is essential to perceive CPU utilization, memory, disk and power consumption for preventing
resource wastage [8]. Also it enables the end-users to experience the cloud resources without break. Live
VM migration approach provides an energy efficient cloud environment by integrating normal loads of
multiple servers on a few physical machines and put in an energy saving mode for the idle servers [9,10].
While performing live VM migration, CDC workload parameters such as CPU, Disk and memory
utilization plays a vital role and envisaging those parameters for the upcoming workload, still remains an
open challenge [11], as the CDC workload parameters are highly dynamic and non-linear in nature
[12,13]. Thus, determining the workload parameters for live VM migration can be viewed as a prediction
problem as it predicts the upcoming workload parameters in advance [14,15].

Recent research works reveal that Deep Learning (DL) approaches yield prolific solutions in the field of
predictive analytics [16]. Among the existing DL approaches, Long Short-Term Memory (LSTM) is one of
the promising approaches for handling the ever-growing CDC data [17]. LSTM relies on Recurrent Neural
Network (RNN) architecture which yields higher accuracy with lesser complexity [18]. However, a standard
LSTM still suffers due to vanishing and exploding gradient problems while handling massive amount of data,
memory bandwidth and overfitting. To overcome the setbacks, dimensionality reduction techniques are
applied in the recent studies. Among the dimensionality reduction techniques, Hypergraph is found to be
an appropriate mathematical tool as it captures the n-ary relationship among the high dimensional
elements [19]. However, to the best of authors’ knowledge very few have attempted hypergraph for
solving the aforementioned setbacks and the complete significance of hypergraph remains unexploited.
Due to enormous data generation by CDC with highly fluctuating resource usage, the conventional
prediction models may take more extensive operational time to predict the larger-scale cloud data. Thus,
to address these limitations, this article presents a novel prediction-based live VM migration scheme by
incorporating the benefits of Bi-LSTM [17,20], and Hypergraph. The aim of this study is to design a
prediction based live VM migration process, which reduces unwanted migrations thereby preventing
resource wastage and the major contributions of this article are as follows:

1. This work proposes an integrated resource usage prediction algorithm using three major attributes
like CPU, RAM, and DISK usage by integrating the Hypergraph based Convolutional layer with
Deep Bi-LSTM (CDB-LSTM) model

2. The application of Helly property of hypergraph for selecting the informative samples enhance the
performance of LSTM by minimizing the computational complexity and adopted the SG filter
[21] to exclude noisy inference and outliers

3. Hypergraph based CDB-LSTM performs better than predictive analytics thereby identifying the
sudden spikes of cloud resource usage

4. The correlation based destination server selection has been carried out

5. The proposed model is validated using Google cluster dataset and evaluated in terms of error metrics:
RMSE, R2, MAE, and MAPE.

The remaining sections are organized as follows, Section 2 deals with the recent research works on live
VM migration schemes. Section 3 describes the proposed methodology and phases involved in the proposed
methods, Section 4 presents the experimental results and discussions of the proposed technique and Section
5 concludes the paper with future work.

2 Related Works

Cloud Service Providers (CSPs) provide a wide range of services that encourage consumers to use cloud
services that results in increased demand for resources. As a result, accurate resource forecasting has become
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an inevitable component in avoiding SLA breaches and server breakdowns [17]. Researchers have
contributed models or algorithms that use statistical, machine learning, and deep learning approaches to
anticipate resource usage. The above-mentioned techniques fall into one of two types: linear data
prediction or non-linear data prediction [17] and are discussed below.

2.1 Statistical Techniques

Most of the statistical techniques are fit for linear pattern prediction models. The popular time-series
linear prediction models are Moving Average (MA), Autoregressive Moving Average (ARMA),
Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing (ES), and its variants. This
section presents the various research works carried out using statistical techniques with respect to the time
series data for resource usage prediction. Dinda [22], developed a predictive framework for CPU load
forecast using CPU logs. The righteousness of the proposed system was evaluated using an array of
statistical models like MA, Auto Regressive (AR), and ARMA and concluded that AR is suited for the
chosen dataset. Subirats et al. [23], proposed an ensemble approach-based energy-efficient prediction
algorithm to identify the future status. It includes resources of virtual machines, infrastructure, and service
level of the cloud data center environment. The model comprises of four unique statistical prediction
methods: ES, double ES, MA, and Linear Regression (LR) for resource prediction. The final output as
future predicted usage of each VM resource was obtained with the lowest average absolute error. As an
evolution in the statistical time series forecasting and analysis approaches, the integration of advantages
of AR and MA contributed generously to the development of a hybrid technique called ARIMA [24,25].
Due to several benefits of ARIMA, it has been used as a forecasting model for various applications and
achieved better results. ARIMA has been used as either a single or a hybrid technique for forecasting.
However, as a statistical approach, ARIMA is not able to forecast the data in a nonlinear fashion. Hence,
various hybrid models and machine learning-based prediction strategies are evolved.

2.2 Machine Learning Techniques

Machine Learning (ML) techniques are successfully implemented for the diverse applications
(Bioinformatics, Cloud Computing, Cyber Security, etc). Regression techniques act as an appropriate
solution for the time series forecasting problems. Generally, neural networks can handle non-linear and
non-stationary data, which is a significant drawback in statistical techniques. Few ML regression-based
studies are explored: Baldan et al. [13], proposed an integrated model with a neural network for error
correction and workload prediction using linear regression models. Lu et al. [26], proposed a back
propagation-based workload prediction model for a data center named Rand Variable Learning rate
Backpropagation Neural Network (RVLBPNN). RVLBPNN has been evaluated to prove the proficiency
of the model in predicting the latency-sensitive task using Google cluster trace. Nevertheless, RVLBPNN
fails to incorporate the periodicity effects of the workload behavior which enhances the prediction
accuracy. A Bayesian model-based predictive framework [27], was developed to forecast whether the
application is CPU intensive or memory intensive. Hsieh et al. [28], proposed a model for dynamic VM
consolidation by forecasting CPU utilization using Gray–Markov model. Gray forecasting model does not
requires massive volume of training data to forecast, but fails to forecast correctly when the occurrence of
fluctuation is higher. Authors in [29], proposed an SVR-based predictive framework and applied
Sequential Minimal Optimization Algorithm (SMOA) for the training and regression estimation of the
prediction method and increases the accuracy. However, the comparison of the proposed system have
utilized a single resource-based prediction strategy. The above-stated Machine learning-based time series
forecasting models are not sufficient to process or handle the huge datasets. Henceforth, there is a
necessity to use deep learning techniques for resource usage prediction, energy-demand forecast, etc.
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2.3 Deep Learning Techniques

Apart from conventional methods, deep learning approaches are explored much in recent times [30–32]
for time-series prediction. Deep learning models are good at analysing the hierarchical and distributed
features that reside in data nonlinearity. Bi et al. [33], incorporated a standard LSTM model to predict the
workload of a data centre. As a pre-processing technique, the SG filter is incorporated to smoothen the
workload series. Since the standard LSTM method is adopted, that fails to obtain considerable gain in
prediction accuracy. Miao et al. [34], developed an intelligent task prediction model using LSTM for
offloading the computation to mobile edge computing environment. This model fails to focus on
choosing the precise destination based on optimal resource rich server. In [35], a prediction technique is
developed that examines the dependency in a large-scale system and builds two separate time series
models depending on day and time. Using two-dimensional time series information, an improved LSTM
model is suggested for forecasting future workload. Gupta et al. [36], enhanced the LSTM and added the
gradient descent approach to the prediction model to estimate online cloud load. However, the finding
overlooks the fact that in the process of cloud load forecasting, the gradient descent approach necessitates
more iterations to adjust model parameters and a longer training period. Pham et al. [31], incorporated
fuzzy recurrence plots with LSTM for time series data. This model precisely determines the system's
characteristics by increasing the feature dimension for very short time-series data. Further, the variants of
LSTM such as GridLSTM [37], Bi-directional LSTM (Bi-LSTM) [38], and convolutional LSTM [39] are
evolved and the vital difference between the variants lies in connections in the LSTM. Danihelka et al.
[37], proved that, in recollecting the digital sequences, 2D GridLSTM outperforms over stacked LSTM as
the multidimensional time-series data. However, an accurate prediction could be achieved by processing
the historical and future information together using Bi-LSTM. Few researchers proposed predictive
frameworks using Bi-LSTM [40]. As a variant to Bi-LSTM, deep Bi-LSTM has been evolved to improve
the accuracy [41]. Hanson et al. [42], proposed a deep Bi-LSTM model to predict intrinsic protein
disorders. The solution obtained from the prediction model helps in inspecting the long-range interactions
in bioinformatics applications. Authors [17], implemented deep Bi-LSTM with GridLSTM to predict the
cloud resource requirements. The proposed system in [17], fails to focus on spatiotemporal properties on
the cloud utilization data. Authors in [41], proposed a deep Bi-LSTM model to forecast the load in
advance but failed to address spatiotemporal issue. Though the researchers used deep configuration to
predict load rather than peak load and manage the spatiotemporal issue, it is observed from the literature
that, deep LSTM models failed to enhance the accuracy compared to deep Bi-LSTM. The above
conclusion made us focus on hybridizing the benefits of Convolution and deep Bi-LSTM layers.

3 Proposed Methodology

Handling the massive amount of CDC data remains a challenging task during VM migration. It is quite
evident from the literature that the performance of deep learning model increases as the data grows.

Thus, to forecast the CDC data, CDB-LSTM is proposed. However, if the data grows the computational
complexity of Bi-LSTM increases which is a trade-off. Henceforth for efficient VM migration, a novel
Hypergraph based CDB-LSTM is proposed which reduces the computational complexity. Capturing the
n-ary relationship among data attributes using Hypergraph pave the way for the proposed system to work
efficiently. By keeping the informative samples identified by the Hypergraph, the proposed Hypergraph
based CDB-LSTM for VM migration can attain a high success rate with low computational complexity.
Fig. 1 illustrates the proposed framework with four modules, 1. Informative sample extraction, 2.
Convolutional deep Bi-LSTM, 3. Load classification, and 4. Trigger Migration.
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3.1 Informative Sample Extraction Using Hypergraph–Helly Property

As an initial step, the application of Helly property in hypergraph was used to extract informative
samples from the Google cluster dataset. The informative sample selection using Helly property is
indigenously built from which the samples that satisfies Helly property is taken as training exemplars for
the proposed deep learning model. Three features of proposed system are represented in the form of
triplet < processing unit XCPUð Þ, primary memory XRAMð Þ, and secondary memory XDiskð Þ >. Each triplet
data is mapped onto a vertex in the hypergraph. The relation between two vertices is defined using the
distance between them (Euclidean metric). Based on one fixed threshold, vertices are grouped to find the
Helly feature. Depending on the closeness of the VM resource usage, the number of Helly hyperedges
that constitute Helly features vary from dataset to dataset. The informative samples are fed as input to SG
filter for removing the noisy data and Min-Max Normalization is applied to standardize the data.

Figure 1: Proposed framework of Hypergraph based CDB-LSTM

IASC, 2023, vol.35, no.3 3283



3.2 Convolution Deep Bi-directional Long Short Term Memory (CDB-LSTM)

The extracted features are treated as an input for CDB-LSTM. The Bi-LSTM network executes the input
sequence using two unidirectional LSTM stacked up and down for both forward and backward pass and
double the number of memory cells [43]. Consequently, separate hidden states ht

 
; ht
!� �

were maintained
and concatenated to generate a single hidden state. At time step t, the LSTM memory cell takes the input
from current cell and hidden state to compute the new cell state. The memory cell of the forward LSTM
unit in the Bi-directional approach takes initial state values (c0,h0) and calculates the first output cell (h1)
new cell state (ct). The final hidden states (ht) Eq. (1), of both directions are combined as a single output.
The overall architecture of the proposed CDB-LSTM has been represented in Fig. 2.

ht ¼ s ht
 
; ht
!� �

(1)

where, σ represents the operations of addition, multiplication, and concatenation (or average)

The normalized output is fed to the input layer in a resource matrix with “t” time steps. Next, this
resource usage sequence data is given to the convolution layer, which aims at extracting spatiotemporal
features.

Here, we employed a one-dimensional convolution kernel filter to obtain the local perceptual domain.
The computational process of the convolutional kernel can be written as

Figure 2: Layer representation of CDB-LSTM
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CLt
i ¼ s wi � xti þ bi

� �
(2)

where CLt
i is the output of convolution layer; xti represents the informative sample; w and b represents the

weight matrix and bias term for the convolution operation (*); sð Þ is the sigmoid activation function. The
extraction of spatiotemporal feature using convolution layer is denoted by CLt

i in Eq. (2). The stacked layer
architecture of proposed model is mentioned from Eqs. (3)–(7). The representation for LSTM network
function replaced with LSTMðÞ.
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FCLtþ1 ¼ W←
h
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L
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þ W→

h
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L

���!� �
þ bFCL (7)

where,

1. The terms at timestamp t � 1 denotes: h t�1ð Þ
L

 ���
and h t�1ð Þ

L

���!
—hidden state with forward and backward

direction

2. The terms at timestamp t represents: fg tð Þ
L

��!
; ig tð Þ

L

��!
; and og tð Þ

L

��!
—forget, input and output gate with forward

direction; fg tð Þ
L

��!
; ig tð Þ

L

��!
; and og tð Þ

L

��!
—forget, input and output gate with backward direction; CL tð Þ—input

of Deep Bi-LSTM; O tð Þ
L
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and O tð Þ

L

�!
—output from the forward and backward direction of first Bi-LSTM

layer; h tð Þ
L
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and h tð Þ

L

�!
—hidden state with forward and backward direction; O tð Þ

L —output layer

3. The terms at termstimestamp t þ 1 indicates: fg tþ1ð Þ
L

 ���
; ig tþ1ð Þ

L

 ���
and og tþ1ð Þ

L

 ����
—forget, input and output

gate with forward direction; fg tþ1ð Þ
L

���!
; ig tþ1ð Þ

L

���!
and og tþ1ð Þ

L

����!
—forget, input and output gate with

backward direction; O tþ1ð Þ
Lþ1
 ���

and O tþ1ð Þ
Lþ1

���!
—output layer with forward and backward direction;

FCLtþ1—Fully connected layer

4. W←
h
and W→

h
represents the weights of the output layer with forward and backward direction

5. bFCL denotes the bias of the fully connected layer.

To explore the periodic features of the resource usage time series data, the temporal output information is
associated with a hypergraph based convolutional deep Bi-LSTM network for precise prediction. Then, the
dropout layer ensures the establishment of model generalization and avoidance of overfitting. Finally, the
mapping of input resource usage to the output future demand forecast is accomplished by a fully
connected and regression layer, collectively known as a dense layer.
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3.3 Load Classification: Server Load Clustering

This section briefly explains the method used for server clustering based on the threshold value of VM
resources (Algorithm 1). For server allocation, load migration controller observes the load handled by the
servers for the determination of VM resource usage rate. The challenge occurs when there is a lack in
server maintenance while allocating the resources. To address this issue, the classification of predicted
workloads is carried out by formulating the server cluster table as presented in Tab. 1.

The Tab. 1 is generated based on three VM resources (C-CPU, R-RAM, and D-Disk usage). The
threshold value ‘t’ is considered based on the resource original capacity (CAP). The threshold value for
the VM resources is categorized into the range of 25%–85% (Upper and lower threshold limits are
estimated to adjust the tradeoff between resource wastage and the number of migrations). The VM
resources are presented as m rows ranging from VM1–VMm and servers as n columns ranging from S1-
Sn. The server failure is detected based on the resource utilization of server cluster table.

Table 1: Server cluster table

VM/Server S1 S2 … Sn

VM1 1 0 … 1

VM2 1 –1 … –1

VM3 –1 1 … 0

…. … … … …

VMm 0 1 … 0

Algorithm 1: Server Load Clustering

Input: Predicted VM resource usageList(VM) = {VM1<C,R,D>, VM2<C,R,D>,… VMn<C,R,D>}, C-
CPU, R-RAM, D-Disk, CAP-Original Capacity
Output: IM, index matrix
SLC( ):

1: Begin
2: Initialize all VMs status as “-1”
3: for each i in list(VM):
4: if((VMi

<C,R,D> > (0.25 * CAP )&& (VMi
<C,R,D>< (0.85 * CAP )) then:

5: Assign the status of VMi as 0
6: else if (VMi

<C,R,D> > (0.85 * CAP):
7: Assign the status of VMi as 1
8: Store the status of VMi with 1 in the list
9: end if.
10: Record status (VMi) in IM
11: end for
12: end
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3.4 Trigger Migration-Destination Server Selection using Correlation Measure and VM Consolidation

3.4.1 Destination Server Selection using Correlation Measure
The server cluster table is used to analyse the future load status of each server. The server is identified as

overloaded when the predicted VM resource entry is N (1). To select the appropriate VM from its host server,
consumes high resources. Therefore, all the VMs resource values are sorted in descending order and the
higher-order VM is chosen to resolve the problem of server failure as mentioned in the Eq. (8). Further,
the process relies on finding the correlation between the resources. So, Pearson Correlation Coefficient is
applied for choosing a suitable destination server. It predicts the value between –1 and 1 with the
interpretation, if a value that is greater than 1 indicates it is highly correlated, whereas –1 indicates no
correlation between the resources.

VMTBM ¼ DESC Status1 VM List½ �ð Þ (8)

where VMTBM is the VM to be migrated, Status1 VM List½� contains a list of VMs with status “1”, and
DESC ðÞ represents the descending order function to arrange the list.

The correlation value is determined using the prediction value for the selected VM to be migrated
(Eq. (8)) and the residual capacity from each normal loaded server. Thus, the highly correlated values
represent the availability for future overloaded VM to avoid the accommodation of one or more heavily
running VM in overloaded servers that may trigger unnecessary migrations. The predicted usage and free
space of each server is expressed as in Eqs. (9) and (10)

Corr rVMTBM; SRCS

� � ¼ covVMTBM; SRCSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
VMTBM

�s2
SRCS

q (9)

covVMTBM; SRCS ¼
P

VMTBM � �nð Þ SRCS � �nð Þ
N� 1

(10)

where ‘r VMTBM; SRCS’ represents the Pearson’s correlation coefficient between VM to be migrated (VMTBMÞ
and residual capacity of each server (SRCSÞ, cov denotes the covariance; s2 is variance and n represents
total mean.

If the correlation rð Þ value lies between [0,1], then the corresponding server will be chosen for further
process; Otherwise, the server will not be selected. During the upsurge in resource demand, migration
module scrutinized the process by taking right decision on migration considering the correlation between
the resources.

3.4.2 VM Consolidation
The significant issue of the CDC is resource wastage that results in unnecessary power usage. Therefore,

the objective of this module is to classify underloaded VMs (Algorithm 2). Underloading occurs when all
three VM resources were less than 10% of their capacity. Then the server is selected with the value N
(-1), and triggers the VM in idle mode to migrate the VMs to servers with a higher number of N (0). As
a result, the VM consolidation improves the energy efficiency of the system by allocating the
unconsumed cloud resource usage to the desirable servers even at peak hours. This module decreases
superfluous force utilization and uses the resources in an enhanced way.
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4 Experimental Analysis

The proposed hypergraph based CDB-LSTM is simulated using Cloudsim 3.0.3, Java-based toolkit with
the Eclipse Oxygen (4.7)-an Integrated Development Environment (IDE) platform on an Intel® Core™ i5-
4200U CPU, 8 GB RAM, and 1.6 GHz processing speed to test the efficacy of the proposed model.

4.1 Evaluation Metrics

This section demonstrates the evaluation metrics in terms of learning model metrics and migration
metrics.

4.1.1 Learning Model Metrics

� Mean Square Error (MSE): Determined by computing the average of square of true and predicted
values from all the samples in a dataset

� Root Mean Square Error (RMSE): Calculated from the standard deviation of the error

� Mean Absolute Error (MAE): Consider the average of difference between the true and predicted
values from all the samples in a dataset and generates the output

� Mean Absolute Percentage Error (MAPE): An estimation technique to measure the prediction
accuracy in terms of percentage

� R2: Determine how well a model fits in the dataset.

4.1.2 Migration Metrics

� Number of Migrations: One of the key migration metrics, the number of migrations implies the total
number of VMs, which are transited from the source physical server to the targeted physical server. It
is always desirable to have smaller number of migrations in a cloud environment

Algorithm 2: Trigger VM Migration–TVMM

Input: VMTBM ; SRCS , IM // VM to be migrated, Residual capacity server, Index Matrix
C-CPU, R-RAM, D-Disk, CAP-Original Capacity

Output: Migration initiation
TVMM ( ):

1: Begin
2: for each i in list(VM):
3: if ((VMi

<C,R,D> < (0.10 * CAP ) then:
4: Assign the status of VMi as −1
5: end if
6: end for
7: for each VMi in servers:
8: if VMi status is −1 then:
9: Migrate VMi to the server with higher number of N(0)
10: else if (VMi status is 1 and VMi = VM_TBM then:
11: Migrate VMi to the SRCS
12: end if
13: end for
14: End
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� Energy Consumption: Energy Consumption (EC) is defined as the power consumption at time t
which is expressed as follows in Eqs. (11) and (12),

Ec ¼ Pc � t (11)

Pc ¼ F � Pmax þ 1� Fð Þ � Pmax � Ru (12)

where, Pc is the power consumption at any time t. Pmax denotes the power consumption when the server is
fully utilized. F is the fraction of power consumption by the idle server. Ru denotes resource utilization at a
given time t.

4.2 Dataset Description, Simulation Environment and Pre-Processing

Google Cluster Dataset (GCD) [44] has been traced for 29 days. The GCD workload compromises
670000 jobs,each job with one or more tasks, and the 670000 jobs totally contains 40 million task events.
This traced database is publicly available, and from that, three attributes are taken to perform the
experimental evaluation of the proposed method. The selected attributes contain information about CPU,
RAM, and Disk usage.

The informative samples are extracted using helly property which reduced the dimensionality of the
sample space as shown in Tab. 2.

We compared different filter techniques using two major assessment metrics: MSE and R2, as shown in
Tab. 3. Over the proposed model, several filtering techniques are used. It has been observed that combining
the SG filter with the Hypergraph based CDB-LSTM results in improved performance when compared with
all the filter techniques.

The MSE between the original data and the pre-processed data employing SG-Filter is shown in Fig. 3a.
The Mean Square Error metric is used to determine the differences between the original data and the
smoothed data. The presence of more substantial changes is indicated by a higher MSE score. Based on
the results of this experiment, it is obvious using the SG filter with a window size of 11 resulted in a
lower error value of 0.002458.

Table 2: Impact of hypergraph

Representation of google cluster dataset size in numbers

Dataset used: Google Cluster Traces

Original dataset size: 30,000*3 1,10,000*3

Size after applying Hypergraph: 21,323*3 79,080*3

Table 3: Performance comparison of different filters

CPU RAM Disk

Methods MSE R2 MSE R2 MSE R2

No filter 408.11 0.85 510.32 0.87 632.55 0.89

Median filter 365.33 0.88 421.33 0.94 467.21 0.92

Average filter 276.24 0.93 298.54 0.97 294.09 0.96

SG filter 147.31 0.99 165.65 0.99 198.46 0.99
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The comparison of different rankings and window sizes for MSE between the original data and the
predicted data using the SG Filter was shown in Fig. 3b. The SG filter with rank 6 at window size
11 was chosen as the final parameter settings to build our proposed model based on the results.

4.3 Parameter Setting Experiments

The experiments were conducted to select the best combination of network hyperparameters (number of
neurons, Batch size, and Epochs) for resource usage prediction. Tab. 4, shows the extracted results based on
these parameters for investigation. The optimum hyperparameters identified are Batch Size (2000) and the
Epochs (500) and the corresponding number of neurons (70) with the RMSE value 0.161, which shows
the accurate prediction performance.

Figure 3: (a) MSE between original data and processed data by SG filter (b) MSE with proposed
Hypergraph based CDB-LSTM and SG filter

Table 4: Comparative analysis–Optimum parameter setting

Batch size & Epochs = 1000 & 2000 Batch size & Epochs = 2000 & 5000

Num of neurons RMSE Training time (s) Num of neurons RMSE Training time (s)

10 0.23 1871.12 10 0.24 2311.12

30 0.205 2174.19 30 0.222 2634.19

50 0.2 2416.33 50 0.194 2811.33

70 0.18 2618.32 70 0.161 3012.32

100 0.19 2721.17 100 0.21 3129.17

150 0.24 2920.32 150 0.24 3354.32

200 0.25 3146.56 200 0.27 3778.56

Batch size & Epochs = 3000 & 6000 Batch size & Epochs = 4000 & 7000

Num of neurons RMSE Training time (s) Num of neurons RMSE Training time (s)

10 0.29 2681.12 10 0.3 2911.12

30 0.25 3011.31 30 0.27 3255.31

50 0.21 3315.15 50 0.23 3621.15

70 0.18 3783.49 70 0.21 3714.49

100 0.19 4039.17 100 0.23 4316.17

150 0.225 4427.28 150 0.25 4807.28

200 0.251 4698.56 200 0.28 5391.56
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4.4 Comparative Analysis

The proposed model is evaluated and compared with two different metrics: 1) learning model metrics: to
evaluate the performance of the prediction model and 2) migration metrics: it describes the impact of
prediction model which helps to mitigate the server failure viz. resource prediction.

4.4.1 Learning Model Metrics
Tab. 5, presents the performance comparison of different forecasting techniques (ARIMA, SVR RNN,

LSTM, Conv LSTM, and Bi-LSTM) based on the following metrics, Accuracy, RMSE, R2, MAE, and
MAPE. Furthermore, the informative samples are extracted from Helly property of hypergraph and SG
filter is applied to remove the noisy data. It is observed from Tab. 5, the deep learning models performs
better than the statistical models. As a result, the proposed deep learning models exactly predicts the
unexpected workload at earlier stage to avoid the server failures.

4.4.2 Cloud based Metrics
The proposed Hypergraph based CDB-LSTM model is compared with Automatic Live Migration

(ALM) [45], Combined Forecast Load Aware (CF-LA) [46], and Bi-directional Grid LSTM (BG-LSTM)
[17] to determine the optimum resource prediction model. It is executed in a simulation environment, and
the results were observed in terms of cloud metrics, including the Number of migrations and Energy
utilization. Fig. 4a, compares the Number of migrations based on the demand prediction.

For example, the earlier techniques ALM and CF-LA at 400 servers have more significance than
15000 triggers of migrations. It is clear that the Number of migrations using the BG-LSTM technique is
less compared to the statistical-based prediction models. Moreover, for the same experiment, the proposed
model has achieved the count of 647 migrations which is greater than the other three methods. Based on
the discussion, it can be concluded that the Hypergraph based CDB-LSTM forecast the non-linear pattern
of cloud resource demand better than other prior research works.

The energy utilization is compared in Fig. 4b, across five different numbers of servers. It is observed that
all three other methods have a higher utilization value of energy consumption crossed above 250 KWh
compared to the proposed model. Among those three, the BG-LSTM model is little closer to the
proposed model with 100 KWh especially with 400 servers.

Table 5: Performance comparison of different techniques

Techniques Accuracy (%) RMSE R2 MAE MAPE

ARIMA 83.22 0.812 –9.35 0.875 433.9637

SVR 86.18 1.23 0.78 1.1 321.22

RNN 92.33 0.651 –7.395 0.785 217.9637

LSTM 94.47 0.521 0.95 0.66 198.9637

Conv LSTM 95.1 0.72 0.91 0.4466 172.35

Bi-LSTM 95.8 0.38 0.96 0.594 156.784

SG LSTM 96.2 0.058 0.76 0.032 544.17

SG Conv LSTM 96 0.5545 0.3395 0.4466 79.59637

SG Bi-LSTM 96.365 0.802 0.899 0.13 107.57

Hypergraph based CDB-LSTM (Proposed) 98.13 0.017 0.937 0.016 94.89
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5 Conclusions

Live VM Migration is an exceptionally viable approach for expanding the performance level by
overseeing the available resources dynamically. The occurrence of sudden rise in the VM workload is
unexpected, which automatically degrades the performance of the cloud data center. Thus, in this research
work, the demand for virtual machine resources on a cloud data center was accurately anticipated during
live VM migration using the proposed hypergraph based CDB-LSTM model that captures the future
resource utilization in an effective way by extracting helly informative samples at different instances. The
proposed Hypergraph based CDB-LSTM model was validated using the Google cluster dataset to show
that it minimizes the number of migrations and energy utilization than the other state-of-the-art
approaches. The future work is to decrease the migration downtime and ensure secure migration in the
cloud data center.
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