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Abstract: In IoT, routing among the cooperative nodes plays an incredible role in
fulfilling the network requirements and enhancing system performance. The eva-
luation of optimal routing and related routing parameters over the deployed net-
work environment is challenging. This research concentrates on modelling a
memory-based routing model with Stacked Long Short Term Memory (s − LSTM)
and Bi-directional Long Short Term Memory (b − LSTM). It is used to hold the
routing information and random routing to attain superior performance. The pro-
posed model is trained based on the searching and detection mechanisms to com-
pute the packet delivery ratio (PDR), end-to-end (E2E) delay, throughput, etc. The
anticipated s − LSTM and b − LSTM model intends to ensure Quality of Service
(QoS) even in changing network topology. The performance of the proposed b
− LSTM and s − LSTM is measured by comparing the significance of the model
with various prevailing approaches. Sometimes, the performance is measured
with Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for mea-
suring the error rate of the model. The prediction of error rate is made with Learn-
ing-based Stochastic Gradient Descent (L − SGD). This gradual gradient descent
intends to predict the maximal or minimal error through successive iterations.
The simulation is performed in a MATLAB 2020a environment, and the model
performance is evaluated with diverse approaches. The anticipated model intends
to give superior performance in contrast to prevailing approaches.

Keywords: Internet of Things (IoT); stacked long short term memory;
bi-directional long short term memory; error rate; stochastic gradient descent

1 Introduction

Recently, the Internet of Things (IoT) promotes cooperative communication among the dense network
environment, which has captured the attention of researchers [1]. It possesses various advantages like high
spectral efficiency, mitigates fading and enhanced transmission capacity in IoT network by spatial diversity
[2]. IoT environment’s multi-hop routing with cooperative nodes is the newer area of research where one or
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more nodes cooperate during data transmission to the next successive hop among the suitable nodes to
achieve higher throughput and network lifetime.

Some prevailing cooperative routing algorithm concentrates on transmission power adjustment of nodes
to preserve the nodes’ energy. It enhances the energy efficiency to extend network lifetime with adaptive
outage routing, minimal energy non-cooperative routing, and shortest path [3]. The shortest path
algorithm adopts cooperative transmission cost to attain minimal energy among the cooperative paths.
With the shortest path algorithm, the minimal cooperative routing model models the cooperative routing
with reduced power consumption by adjusting the hop-by-hop transmission power from the source to
destination [4]. In an energy-efficient cooperative routing algorithm, the nodes coordinate packets towards
the successive hop with minimal energy non-cooperative path. It is specifically used to combine signal at
the receiver to measure the signal-to-noise ratio threshold and reduce the E2E energy consumption [5].
Consider multi-flow cooperative routing algorithm deals with the route selection process and contention
avoidance issue over medium access control layer. It promotes routing decision into a transmission-
optimization issue among the contention association of multiple links multi-flows [6]. The energy-
efficient cooperative routing algorithm must attain reduced total power consumption along with the
fulfilment of Quality of Service (QoS) requirements and the probability of destination hop [7]. The
minimal selection based forward and decode routing algorithm realizes minimal transmission for all
cooperative links over the route as BER is restrictive towards the target. It intends to include relays
among the cooperative nodes until the entire link BER performs route construction than the target BER.
With the minimal-energy non-cooperative route, the routing model attains a considerable energy saving
process compared to non-cooperative multi-hop transmission with probability requirements at the
destination side needs to be fulfilled [8]. With the assistance of centralized or distributed power
allocation, it predicts the minimal total transmission as the nodes’ probability turn lesser than the target
value or destination probability becomes more inferior than the E2E probability.

It is highly complex to adjust the transmission power dynamically over the cooperative nodes in
distributed wireless networks [9]. Thus, this research intends to analyze the throughput in direct
transmission models with SNR at the receiver level and transmission power. It is observed that it can
enhance the signal reception probability successfully and improve throughput [10]. Various existing
approaches (in Section 2) identified that the records of the cooperative nodes are not appropriately
maintained. As enormous transmission leads to massive data analysis and needs massive space for
storage. Sometimes, these sorts of information are lost and lead to computational complexity. The growth
of the learning model paves the way to achieve these issues efficiently. The memory management is
efficiently performed with the Long-short Term Memory (LSTM), and the model provides suggestion for
predicting the active cooperative nodes over the dense IoT environment. Thus, this research concentrates
on modelling a routing approach among the cooperative nodes (memory-based and directional) with
LSTM with theoretical experimentation. Here, two diverse forms of LSTM is adopted, they are stacked
and bi-directional LSTM. It is used to analyze the routing in a random manner using the cooperative
nodes. This LSTM model is used for searching and detecting the route to evaluate the PDR, E2E delay,
throughput, and lifetime and so on. Thereby, the proposed model fulfils QoS even in the case of changing
network topology. Our proposed model considers the Ad-Hoc On Demand Vector (AODV) routing
protocol. The model performance is measured with MAE and RMSE for measuring the error rate of the
model. The target objective of this research is discussed below: 1) To analyze routing among the
cooperative nodes in an IoT environment using AODV routing protocol; 2) To measure the essential
routing information among the cooperative nodes in a better manner. Thus, a memory-based Long Short
Term Memory of learning approaches; 3) To efficiently fulfil Quality of Service (QoS) with the adoption
of bi-directional LSTM even in the rare case of changing network topology; and 4) Evaluate various
metrics like Packet Delivery Ratio (PDR), End-to-End (E2E), throughput, network lifetime and error rate
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using MATLAB simulation environment. The work is structured as: In Section 2, an extensive analysis is
done with the various existing routing models in the IoT environment and the issues related to them. In
Section 3, the anticipated methodology is discussed using the proposed LSTM model for memory-based
and routing-based models. The extensive functionality of the proposed idea is elaborated and ensures the
fulfilment of the proposed model. In Section 4, the evaluation metrics and the numerical outcomes are
analyzed extensively. In Section 5, the results of the metrics are summarized, and the ideas for future
research extensive are given for young researchers.

2 Related Works

The proposed model adopts LSTM for handling the issues over cooperative nodes during the
preservation of packet information and routing. The cooperative nodes pattern information is attained
using the learning models. Several approaches are used in the literature to identify the mobility of the
joint nodes. Mahajan et al. [11] discuss the prediction of immediate neighbourhood future typically in the
next few seconds over the context of nodes mobility. The evaluation of the neighbourhood node analysis
is performed over a massive dataset with Global Positioning System (GPS) data with 703 subjects. The
anticipated model is competent in identifying the position with better accuracy. Zhao et al. [12] identify
the point-of-interest of the connected nodes using the Markov chain concept. The author also proposes
another approach for determining the trajectories of the moving objects. The author adopts the Hidden
Markov Model to predict the constant movement of the cooperative nodes indeed of the trajectory pattern
slices. Therefore, based on the above discussion, it is known that the apriori contact pattern information is
used for data forwarding context, and it is more feasible. Jiang et al. [13] use mobility patterns among the
connected nodes, which plays a crucial role in developing productive data forwarding strategies. The
learning automata for transmission are discussed by Chai et al. [14]. The learning automata model
significantly chooses the target for data transfer based on the data forwarding strategy and opportunistic
aggregation. It identifies the vehicles mobility pattern and chooses forwarding path. During tolerance, the
routing strategy is anticipated with extensive knowledge of the nodes’ mobility pattern. The dataset with
mobile nodes and fixed access points are also considered. The cooperated nodes are connected with an
assumption connected to the same access points that outcomes in invalid routing. An extensive analysis
of the accessibility of mobile patterns is also presented by [15] in Mobile Ad-Hoc Networks (MANET).
Here, mobility metrics are considered to construct a data pattern prediction model via supervised learning.
He et al. [16] identifies the variations over the network topology with the NN concept. Some analysis
over future research is discussed with crowd sense-data types, data pre-processing, human mobility
objects and analysis approaches. Rodrigues et al. [17] discuss diverse relay node selection processes
where data forwarding protocols are considered to establish link stability during data forwarding.
Kolodner et al. [18] examine nodes stability by participating during routing process. The nodes with least
strength than the threshold value are not facilitated to the data forwarding process. Lucas-Simarro et al.
[19] discusses the on-demand routing protocol with link stability and considers bandwidth as selection
parameters in the relay nodes. It predicts some available slots for linking purpose. An extensive survey
on diverse routing protocols determines link stability as a primary factor. Cheng et al. [20] state that the
networking region is autonomous and competent in predicting the appropriate communication model. Wu
et al. [21] anticipate eliminating connectivity issues with node competency over communication with
opportunistic and multi-channel connectivity. The model shows increased network size and not cost-
efficient as there is a necessity to include active and passive elements over the multiple communication
channels. Baadachen et al. [22] model a community network where the service providers offer service
over a certain region. The model needs a specific setup with a prominent infrastructure. Some
interoperable wireless networks like JupiterMesh are considered. Wang et al. [23] anticipate a cooperative
model with connectivity, which acts as a gateway. Boukerche et al. [24] consider mobile phones as the
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gateway and Bluetooth profiles as a proxy while communicating with the Bluetooth devices. These routing
methods are more feasible and best suited for processing and power constraints [25–31].

3 Methodology

An elaborate discussion is made tdo project the significance of the anticipat idea over the IoT
environment. The functionality of the cooperative nodes over the IoT environment is discussed, and the
primary contribution provided by bi-directional LSTM and stacked LSTM. Both these model plays a
substantial role in the IoT environment, and the analysis is done with MATLAB simulation environment.
The outcomes of the approach are compared with various existing methods like Linear Regression (LR),
Support Vector Machine (SVM), Decision Tree (DT), k-Nearest Neighbour (k-NN), and Artificial Neural
Networks (ANN), respectively [32–35].

3.1 Network Model

Let the nodes over the network possess fixed transmission power, and the entire link establishes
communication in a bi-directional manner, i.e., i→ j; and j→ i. The channel among the sender ‘i’ and

receiver ‘j’ is provided with a delay ‘θ’ and attenuation is given as ∝ i,j which is expressed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�k
i;j ; hi;j

q
where di,j is the distance among the nodes, ‘k’ is path loss exponent and hi,j is channel coefficients among
the nodes… The linkage model is provided in two different manners. They are the direct link and
cooperative model link model. In the direct link, the node ‘x’ is the sender and ‘y’. is the receiver. It is
expressed as in Eq. (1):

rðtÞ ¼/x;z e
jh sðtÞ þ nðtÞ (1)

In cooperative node-based transmission, ‘x’ is a sender, ‘y’ is cooperative node, and ‘z’ is the receiver.
The node ‘z’ s receives both the signals from the ‘x’ s and cooperative node ‘y’ where the packets are
generated from ‘x’. In a simplified manner, the nodes consider both ‘x’ and ‘y’ for transmitting packets
with a transmission power of PT. The receiver signal is modelled as in Eq. (2):

rðtÞ ¼ ð/x;z þ y;zÞejh sðtÞ þ nðtÞ (2)

3.2 Cooperative Route Selection Strategy

Generally, AODV is a reactive routing protocol that initiates route in a dynamic manner. Here, a
productive solution with the trust value of the nodes and the energy of cooperative nodes are evaluated.
In general, cooperative routing is performed in two major phases: 1) Route discovery-based on best route
prediction; and 2) Route maintenance process

3.2.1 Route Discovery-based on Best Route Prediction
The source needs to generate Route Request and forwards based on the information from the routing

table. The destination computes the average trust establishment value, and the response is forwarded to
the packet generator (source). It is expressed as in Eq. (3):

Average trust ¼
XN
i¼1

Trust value
ni þ 1

ni

� �

N

0
BB@

1
CCA (3)

Here, ‘N’ is several hops in the routing table, and
�
niþ1
ni

�
is the initial trust value of nodes. The destination

generates multiple routes with the response and broadcasts it to the destination. When the timer expires, the
source set times to drop the remaining response to select the final routing model. It is explained in Algorithm 1.
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Algorithm 1: Route selection

{ Source node sets timer as Te, after receiving the initial request;

If Te→ 0;

{

Target node drops request, then.

It computers average hops with
PN
i¼1

Trust value
niþ1
ni

� �
N

0
@

1
A;

Generate response

Target forwards the response to the source with route entry over the routing table.

} }

3.2.2 Route Maintenance Process
The route maintenance process is used explicitly for two diverse purposes, i.e., when the links are broken

among the cooperative nodes due to mobility factor and the node’s behaviour’s trust value. In another
situation, when the connection among the cooperative node is wrecked or the route lifetime gets expires,
then an error notification is transferred to the source. The cooperative nodes’ trust value is reduced to less
than 0.5, and the information is transferred to the source. Based on this, the source needs to discover a
newer route to the target using the cooperative nodes (See Fig. 1).

3.3 Relaying among the Cooperative Nodes

When a route selection is performed with the available cluster model, AODV starts transferring the
packets among the cooperative nodes. The relay among the cooperative nodes in the IoT environment

Network nodes predict the ability of the cooperative 
nodes to establish communication

Measure the cooperative node-link using metrics like 
throughput and evaluate the competency of the node

Compare the max, min and average throughput 
value from the optimal cooperative node

Construct the cooperative link among the nodes to 
establish successive hopping

Build direct connection to 
cooperative nodes for next-hop 

nodes

Is the potential of 
cooperative node empty?

Yes
No

Figure 1: Cooperative node selection process
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executes a cooperative relay selection process to establish the link for successive hops to reach the
destination. The pseudo-code for this process is explained below:

Pseudo-code: relay among the cooperative nodes

1: Determine the central cooperative node ‘y’ from all the nodes that establish communication between ‘x’
and ‘z’ and evaluates the throughput of the cooperative nodes (x, y, z) for successive hopping.

2: If the cooperative node does not have any potential to transfer the packets, the source ‘x’ directly
communicates with ‘z’ for forwarding the data packet;

3: Else move to step 4;

4: Compare the throughput attained with the maximal throughput value, consider the maximal throughput
value, and obtain the optimal cooperative node ‘y’.

5: Repeat step 1 to step 4 until the optimal cooperative nodes are measured.

6: Use the chosen cooperative link ðx; y�; zÞ to the successive hop using the connected, cooperative
nodes y�;

7: Compute E2E throughput of the established route ‘ω’ using throughputx ¼ min
xiEx

throughputxi where
0x0

i is
the cooperative link among the routes.

3.4 Bi-directional Long Short Term Memory (b − LSTM)

In the learning model, some sequential neural network models like Recurrent Neural Networks (RNN),
Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) are used for analyzing and capturing
the long-distance dependencies among the sequential information. Here, LSTM is considered for analyzing
the routing information among the cooperative nodes to reduce the complexity and preserves essential packet
information for subsequent processing over the dense IoT network model. In the conventional LSTM, the
network model encounters some biasing issues and therefore, to overcome them, the proposed model
considers stacked LSTM to provide promising outcomes.

The bi-directional LSTM architecture is composed of certain units known as memory blocks. These
blocks comprise memory cells with self-connection (store/remember), the temporal network state, and
multiplicative units termed as gates to monitor the flow of routing information over the network model,
as in Fig. 2. The memory block comprises input gate, output gate and forgets gate to handle the flow of
activations (input) over the memory cells, cell activations’ output flow, and scales the internal cell state
via the bidirectional connection. This model is used for learning the precise timing information of the
packet transmission information-based outputs. The activation and the stochastic gradient computation are
performed to extract the error gradients used to train the network model. The data forwarding pass is
evaluated with a packet length ‘T’ over an input sequence ‘x’ and recursively incrementally applies the
updated equation. Similarly, the backwards pass (response to a request) is evaluated with t = T and
computes the unit derivatives in a decremented manner. The weighted derivation based on packet
transmission time step is modelled as in Eq. (4):

dtj ¼
@O

@atj
: (4)

Here, ‘O’ is objective function adopted for training purpose. The forward passes of the input, output, and
forget gates are expressed in Eqs. (5)–(7):
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atL ¼
XI

i¼1

wilx
t
i þ

XH
h¼1

whlb
t�1
h þ

XC
c¼1

wcls
t�1
c (5)

atx ¼
XI

i¼1

wixx
t
i þ

XH
h¼1

whxb
t�1
h þ

XC
c¼1

wcxs
t�1
c (6)

at[ ¼ wi[x
t
i þ

XH
h¼1

wh[b
t�1
h þ

XC
c¼1

wc[s
t�1
c (7)

The cell output (forward pass) of the bi-directional LSTM is expressed as in Eq. (8):

btc ¼ btwhðstcÞ (8)

In backward pass, the input, output and the forget gates are expressed as in Eqs. (9)–(11):

Ets ¼
XK
k¼1

wckd
t
k þ

XH
h¼1

wchd
ðtþ1Þ
h (9)

dt[ ¼ f 0ðat[Þ
XC
c¼1

st�1
c 2t

s (10)

dtx ¼ f 0ðatxÞ
XC
c¼1

hðstcÞEtc (11)

Figure 2: Generic view of the proposed model
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The cell output (backward pass) of the bi-directional LSTM is expressed as in Eq. (12):

dtl ¼ f 0ðatlÞ
XC
c¼1

gðatcÞEts (12)

Here, wij is the weight of the connected nodes from i ! j; ati is network input (packet and transmission
information) at the time ‘t o, bti is the value of unit after activation function, l ! input; [ ! forget and
w→ output gate, ‘C’ is memory cells, stc is the state of packet information over the network at the time
‘t’, ‘f’ is gates activation function, ‘g’ and ‘h’ are cell activation function (input and output), ‘I’ is the
number of inputs, ‘K’ is the number of outputs and ‘H’ is the number of cells over the hidden layer. The
dynamical features of the routing information are extracted with the bi-directional LSTM architecture and
predict the future routing information matrix. The proposed stacked LSTM model shows the mutual
dependence among the source node, destination node and cooperative nodes. Consider that ‘N’ is the
number of nodes over the network. The routing information based matrix is represented by ‘Y’ as the
entry (data packets) yij specifies the volume of routing information that flows from i→ j, ‘T’ is the total
number of time slots, ‘S’ is the structure of the network model where the information flow from i→ j.
Assume YT holds the series of historical and present routing information (Yt−1, Yt−2, Yt−3, …, Yt−T). The
principal goal is to measure the inherent relationship among the cooperative nodes to transfer the routing
information to reduce the routing complexity (overhead). To effectual feed the bi-directional LSTM, the
matrix YT is transformed to vector Xt (based on the coverage region) of the model. XT is the trust value
established among the cooperative nodes, i.e., xn is the total number of entries mapped over the original
yi→j with the relationship n = i * N + j. XT specifies the series of historical routing information over the
routing table, and it is expressed as (Xt−1, Xt−2, …, Xt−T). The routing information needs to be predicted
with the components xtn while feeding stacked LSTM at ‘t’ time. It is based on the assumption of an
independent routing model from all the connected nodes over the network where the previous routing
information is essential to predict all the routing information accurately. The prominent prediction process
requires constant feeding and learning. The number of time-slots is higher than it outcomes in higher
computational complexities (routing overhead). Here, a learning window is used to handle the complex
issues with a fixed set of time-slots for predicting the present state of routing information.

3.5 Stacked Long Short Term Memory for Cooperative Nodes Information Management

The stacked LSTM is efficiently used for resolving the gradient explosion with the set of memory units
as in Fig. 2. It facilitates the network to learn the trust value of cooperative neighbourhood nodes and when to
forget the prior network information of the memory unit (it holds the cooperative node details) and provides
the fact regarding when to update the memory unit with further new information. The memory unit preserves
the details of all the historical network information (pattern analysis, traffic flow, source and destination
nodes, related information, cooperative node details, previous network connection and details of further
connection establishment). All three gates manage it. This model is well suited for incoming data analysis
and previously available network dataset, which holds activity logs, network records, and sensor data).
The relationship and the dependencies among the incoming data are analyzed with time-steps. To perform
this function, any network dataset can be considered. The dataset is partitioned into training and
validation set with (Dregular data (Abnormal and Dvalid) and holds some abnormal data (Dabnormal). In the
real-time IoT environment, anomalous samples are relatively lesser in number. The stacked LSTM model
predominantly uses regular data for the training of hyper-parameter determined by the validation set. The
prediction outcomes of the normal and abnormal data are attained concurrently. The difference between
the real and predicted data is made, and the errors are identified. Consider error at every point in the test
samples as the attributes of those error dataset. Here, the error dataset is partitioned into a training and
testing set. The labels specify ‘0’ as normal network flow without any error or interruption, and ‘1’
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specify the abnormal functionality over the network to identify the route and fail to provide the prior routing
details. The fault or error over the incoming data flow is subjected to the Gaussian distribution. However, the
storage assumptions are extremely efficient and provide robust outcomes. Here, Gaussian probability
distribution is used to identify the attributes in the presence of a certain class label. It is expressed as p(x|
y = 1) where ‘x’ and ‘y’ specifies the samples and corresponding labels. The LSTM generated sequence
vector and used as an input to the successive layers of LSTM. The previous time step feedback is used to
capture the routing details (from the memory)/network patterns. The dropout layer of the network
excludes 5% of neurons to avoid the under-fitting and over-fitting issues. The proposed stacked LSTM
model ingests various network variables like routing information, source_ID, destination_ID, packet
information, file formats, routing protocol information, network pattern analysis, traffic analysis,
neighbourhood connectivity, cooperative nodes movement, trust value and so on.

The model extracts the hidden patterns from the available variables and efficiently identifies the routing
establishment factors. The proposed stacked model has the competency of dealing with long and short term
dependency based on the network lifetime (validate the active and passive nodes over the network). The
convergence rate is based on the input it, output ot, and forget ft gate. It is expressed as in Eqs. (13)–(17):

ft ¼ gðWf :xt þ Uf :ht�1 þ bf Þ (13)

it ¼ gðWi:xi þ Ui:ht�1 þ biÞ (14)

ct ¼ ft:ct�1 þ it:kt (15)

ot ¼ gðW0:xt þ Uo:ht�1 þ b0Þ (16)

ht ¼ ot: tanhðctÞ (17)

Here, it is input vector; g is activation function; W is a weighted vector, and Ct is a memory cell. The
generic view of the anticipated model is shown in Fig. 2.

4 Numerical Results

The proposed model is implemented, and the outcomes of the proposed idea for efficient routing over
IoT are discussed in this section. The simulation is done in a MATLAB environment to measure the changing
topologies and analyze the routing data. The network functionality is calculated using various standard
routing algorithms like Ad-Hoc On Demand Vector (AODV), Dynamic Source Routing (DSR),
Destination Sequenced Distance Vector Routing (DSDV), and Optimized Link State Routing (OLSR) to
evaluate the delay, PDR, and throughput. Some other parameters like node expiry time, buffer time,
buffer size, threshold measure, packet dropping and packet drop rates are evaluated. The estimation with
these protocols helps predict the PDR, throughput, and delay, which is best suited to bi-directional and
stacked LSTM. The parameter setup shows propagation loss model, Constant Bit Rate (CBR) traffic type,
UDP protocol, random model mobility, 64 bytes packet size, Carrier-Snense Multiple Access with
Collision Avoidance (CSMA/CA) media access, 1000 s execution time, pause time is 0, setting time is
50 s, and 7.5 dB.

4.1 Network Density

The network size relies on the total nodes over the network, commonly known as network density. It
shows a direct effect on PDR, throughput, and E2E delay over the denser IoT network environment,
which leads to re-transmission, signal interference, and congestion. Here, the nodes density and the
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related information are provided as the input to the stacked-LSTM and need to observe the network response
and preserves all the essential data related to PDR, throughput, and E2E delay. Density ranges from 5 to
100 nodes from source to cooperative nodes to destination.

4.2 Node Speed

The transmission speeds among the cooperative nodes are based on the upper-velocity limit to the nodes
movement. It shows some consequences over the QoS. When the speed varies (low (not below 1 MPs) and
high (not higher than 100 MPs)), then it tends to show some negative effect over the delay, PDR, and
throughput.

4.3 Coverage Region

The physical coverage region of the IoT network is considered in both ‘x’ and ‘y’ coordinates and
represents in meter square. It shows a tremendous impact on QoS metrics as the nodes scatter far away
from one another. Sometimes it leads to node congestion, delay, PDR, and throughput.

4.4 Performance Evaluation Metrics

Some evaluation metrics like E2E delay, throughput, and PDR are evaluated. The results are reviewed
with changing network topologies and compared with various existing approaches.

4.4.1 E2E Delay
The time consumed by the packets to reach the destination using cooperative nodes is measured as E2E

delay. It is depicted as the sum of delays like propagation and transfers delay, queuing delays, re-transmission
delay, request processing delay and buffering delay while predicting the route discovery. It is the average sum
of the difference between the packet received and the time of packet is sent. It measures the protocol’s ability
to communicate among the nodes indeed of media access mode and noise profile. Here, the delay is measured
in seconds and calculated in Eq. (18):

E2E ¼
Xn
i¼0

packet recived time� packet sent time

Total no:of packets received

� �
(18)

4.4.2 Throughput
It is the average data rate of the packet received at destination nodes. It is measured as the channel

bandwidth (kbps). Here, the bytes are converted to bit. It is expressed as in Eq. (19):

Throughput ¼ ðpackets received ðbytesÞ=last packet ðsÞ � first packet ðsÞ (19)

4.4.3 Packet Delivery Ratio
It is the measure of resourceful data delivery at the destination. It is also adopted to measure network

efficiency. When PDR is lower, it leads congestion environment due to incomplete/re-transmission data
transmission. It is expressed as in Eq. (20):

PDR ¼ Packet received

Packets transferred
� 100 (20)

This work automates various parameters for higher performance in an IoT network environment. This
work intends to perform parameter automation and QoS metric enhancement using learning approaches. For
this purpose, some parameters like upper bounds, drop rates, and the threshold is chosen and automated. The
parameter ranges are manually selected from the prediction results and trained with DL algorithms.
Automation is a complete task and needs further explanation.
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4.4.4 Buffer Size
The network nodes have queuing buffer that maintains packets while processing for routing purpose.

When the network modes transfer the higher rate packets and the processing, and it consume a long time
before the buffer overflow occurs owing to congestion. It leads to packet loss before queuing. The
maximal node limit is specified using routing protocol, i.e., maximum buffer limit. It is mathematically
expressed as in Eq. (21):

Buffersize ¼ Bufferlength � Bufferpackets (21)

Here, Buffersize is the buffer capacity, Bufferlength is the maximum buffer limit during the routing process,
Bufferpackets is the number of packets occupied already.

4.4.5 Waiting Time
When the packet reaches the intermediate node, it is queued over the node buffer. It needs to wait for the

processing of outstanding time. The packets are enabled to wait for maximum buffer time; later, the packets
are dropped for re-transmission. It is also known as queue buffering or waiting time, as it is accountable for
queuing delays. When the packets wait over the buffer for a longer time due to congestion, it leads to the
further worst situation (DoS or packet drop). It is expressed as in Eq. (22):

Twaiting ¼ Tmax � Tarrival � TCurrent (22)

Here, TAwaiting is residual time; Tmax is total allowed arrival time; Tarrival is the arrival time of packets, and
TCurrent is the time during the residual time computed.

4.4.6 Cooperative Nodes-based Route Discovery
The sender pretends to transfer the packet via the cooperative nodes towards the destination or the

number of times the target performs single or multiple attempts to reach the destination. When the
cooperative nodes do not provide any route reply with the specified time, the source needs to replay
waiting for a specific time and re-transmits it. It facilitates re-transmission and leads to congestion due to
high network density. In an IoT environment, the number of re-transmission is enabled for a fixed set of
time. It tries to re-transmit the copy of transmitted packets, and it is expressed in Eq. (23):

Route ðcooperative nodesÞ ¼ Route ðre� transmissionÞ þ 1 (23)

4.4.7 Number of Hops Between the Cooperative Nodes
The number of hops (cooperative nodes), i.e., the packets are dispatched from the sender. The hopping

among the cooperative nodes is maintained by the header incrementally from one node to another. When the
packet consumes more time during data transmission, it leads to higher bandwidth consumption and
outcomes in congestion. It is mathematically expressed as in Eq. (24):

Hopcountðcooperative nodesÞ ¼ Hopcount þ 1 (24)

4.4.8 Expiry Time
When the packets start moving over the network among the cooperative nodes to reach the destination

and remain over there for a certain time, it is termed packet expiry time. It needs to maintain by the routing
protocol, i.e., the packet leaves and the time keeps on decrementing until it reaches the destination. It is
mathematically expressed as in Eq. (25):

Texpiry ¼ Tstart þ TTTL � TCurrent (25)

Here, Texpiry is packet expiry time; Tstart is when packets commence; TTTL is the total time of network
packet; TCurrent is the current time of the packet. The performance of the anticipated model is
quantitatively assessed with Mean Square Error (MSE). It is used for evaluating the prediction accuracy
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with scale-dependent metrics. It shows the difference among the predicted and the actual values using the
average sum of squared errors:

MSE ¼ 1

N

XN
i¼1

ðyi � ŷiÞ ^ 2 (26)

Here, yi is the observed value, ŷi is the predicted value, and ‘N’ is the total number of predictions.

Tab. 1 depicts E2E delay computation among the cooperative nodes, and evaluation is done with various
other routing protocols like AODV, OLSR, DSDV, DSR, and AERBA-AODV. Parameters like node density
and speed analyzed with three different stages like Dmin, Dmax and Dave. Here, the delay analyzed with the
execution of the AODV routing protocol is 2.40, 5.6, and 3.40, respectively. The speed measured with
AODV is 2.40, 7.3, and 4.35 (See Figs. 3a and 3b). Tab. 1 depicts the PDR computation among the
cooperative nodes based on threshold measure (Thresholdmin, Thresholdmax, and Thresholdavg). The
threshold value based on speed parameter for AODV is 15.08, 22.90, and 19.5 and node density is 5.5,
48.05, and 25.45, respectively (See Figs. 4a and 4b). Tab. 1 depicts the PDR computation among the
cooperative nodes based on threshold measure (Pmin, Pmax and Paving). The threshold value based on
speed parameter for AODV is 68.35, 95.95, and 83.66 and node density is 80.7, 85.23, and 82.93,
respectively (See Figs. 5a and 5b). Tab. 2 depicts RMSE and MAE computation among the cooperative
nodes. Here, RMSE (see Fig. 6) for the delay, PDR and throughput are 0.28, 0.20 and 0.12 and MAE
(See Fig. 7) of delay, PDR, and throughput of 0.22 0.13, and 0.10 respectively.

Table 1: PDR computation among the cooperative nodes (power, threshold and delay)

Parameters Routing protocols Pin Pmax Paving Tmin Tmax Ting Dmin Dmax Dave

Speed ADV
OLDER
DSDV
DSR
AERBA-AODV

68.35
85.72
51.01
58.45
86.4

95.95
95.78
76.25
86.52
98.98

83.66
92.80
64.75
73.56
96.85

15.08
17.50
12.60
17.5
21

22.90
19.98
18.75
23.5
23.9

19.5
18.5
16.35
20.98
22.15

2.40
13.8
15.9
22.3
2.5

7.3
30
112
28
13.5

4.35
23.5
60.30
24.7
8.52

Node density ADV
OLDER
DSDV
DSR
AERBA-AODV

80.7
86.2
70.01
84.4
88.9

85.23
90.06
70.85
89
97

82.93
88.8
70.15
85.6
91.6

5.5
5.6
5.9
5.89
5.50

48.05
41.18
35.60
46.8
54

25.45
22.74
20.71
24.8
27.13

2.40
26.40
33
10.9
1.3

5.6
37
38.5
27.89
3.8

3.40
24.5
36.30
16.15
1.80

(a) Node density (E2E delay) (b) Speed density (E2E delay) (a) Node density_PDR (threshold)

Figure 3: (a) Node density (E2E delay) (b) Speed density (E2E delay) (a) Node density_PDR (threshold)
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Tab. 3 shows the comparison of throughput of proposed vs. Existing approaches. The proposed LSTM
shows 0.2015 for AODV, which is comparatively higher than other approaches. The evaluation is done
among LR, SVM, ANN, k-NN, DT and LSTM. The throughput value of these approaches w.r.t. AODV is
0.1280, 0.1303, 0.1326, 0.1506, and 0.1375 respectively (See Fig. 7). Tab. 4 depicts the comparison of
PDR over other approaches. The delay of LSTM is lesser than LR, SVM, ANN, k-NN, and DT,
respectively. The delay analyzed with LSTM is 0.1568 and other models are 0.3099, 0.3278, 0.2786,
0.2786, and 0.2770 respectively (See Fig. 8). Tab. 4 depicts the PDR comparison of the proposed vs.
Existing approaches. The delivery ratio of LSTM is 0.3567 and other models are 0.1986, 0.1985, 0.2615,
0.2280, and 0.2567 respectively (See Fig. 9). From the observation, it is known that the model works
efficiently than the prevailing approaches with the adoption of the AODV routing protocol.

 (b) Speed_PDR (threshold) (a) Node density_PDR (transmission) (b) Speed_PDR (transmission)

Figure 4: (a) Node density_PDR (transmission) (b) Speed_PDR (threshold) (b) Speed_PDR (transmission)

Figure 5: RMSE computation

Table 2: RMSE and MAE computation among the cooperative nodes

Protocol ADV DSDV OLDER DSR AERBA-AODV

Parameters RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Delay
PDR
Throughput

0.28
0.20
0.12

0.22
0.13
0.10

0.20
0.18
0.11

0.14
0.12
0.08

0.19
0.198
0.0407

0.12
0.13
0.078

0.18
0.23
0.10

0.117
0.140
0.068

0.23
0.18
0.102

0.114
0.124
0.096

IASC, 2023, vol.35, no.3 2869



Figure 7: Throughput comparison of proposed vs. existing approaches

Figure 6: MAE computation

Table 3: Throughput and delay comparison of proposed vs. existing

Routing
protocol

Throughput Delay

LR SVM ANN k-NN DT LSTM LR SVM ANN k-NN DT LSTM

OLDER 0.1333 0.1413 0.1044 0.0715 0.0899 0.0880 0.2237 0.2230 0.1960 0.1854 0.2706 0.1589

AODV 0.1280 0.1303 0.1326 0.1506 0.1375 0.2015 0.3099 0.3278 0.2786 0.2786 0.2770 0.1568

DSDV 0.1305 0.1325 0.1020 0.1380 0.1659 0.1660 0.2353 0.2828 0.2414 0.2000 0.2607 0.1586

DSR 0.1203 0.1233 0.1140 0.096 0.099 0.100 0.2653 0.2878 0.2405 0.1719 0.2609 0.1578

AERBA-
AODV

0.1445 0.146 0.1540 0.1560 0.1450 0.1460 0.2837 0.146 0.2608 0.3656 0.3079 0.1589
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Table 4: PDR comparison of proposed vs. existing

Routing protocol LR SVM ANN k-NN DT LSTM

OLDER 0.2018 0.196 0.2242 0.1880 0.2624 0.3564

AODV 0.1986 0.1985 0.2615 0.2280 0.2567 0.3567

DSDV 0.2124 0.2350 0.1925 0.1880 0.2507 0.3510

DSR 0.2273 0.2470 0.2545 0.2203 0.250 0.3125

AERBA-AODV 0.2217 0.2290 0.2382 0.1998 0.1998 0.3120

Figure 8: E2E delay comparison of proposed vs. existing

Figure 9: PDR comparison of proposed vs. existing approaches
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5 Conclusion

This work provides an extensive analysis on routing information of the cooperative node over the IoT
environment. With the advent of learning approaches over multiple fields, this work uses a learning model to
handle real-time issues. Here, a novel s − LSTM is proposed to handle the routing information. Bi-direction
(b − LSTM) is used to perform random routing and these method works efficiently to fulfil the research
objectives. The functionality of the proposed stacked LSTM and bi-directional LSTM is analyzed using
metrics like PDR, delay, throughput, RMSE and MAE. The error rate of the model is reduced with better
convergence. The model intends to avoid over-fitting issues and reduces computational complexity. The
theoretical evaluation of the model is slightly tougher; however, the model efficiently achieves the target
outcome. Here, the AODV routing protocol is adopted to validate the network performance. The
throughput attained with the proposed model is 0.2015, PDR is 0.3567, and delay is 0.1568. The model
gives better outcomes in preserving the routing information and the decision to perform random routing
with the analysis of active and passive nodes over the network. In future, the LSTM model is cooperated
with various other network models to makes the training process more straightforward. Also, different
optimization approaches are available to derive the global solution of the network model.
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