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Abstract: Vibration failure in the pumping system is a significant issue for indus-
tries that rely on the pump as a critical device which requires regular maintenance.
To save energy and money, a new automated system must be developed that can
detect anomalies at an early stage. This paper presents a case study of a machine
learning (ML)-based computational technique for automatic fault detection in a
cascade pumping system based on variable frequency drive (VFD). Since the
intensity of the vibrational effect depends on which axis has the most significant
effect, a three-axis accelerometer is used to measure it in the pumping system. The
emphasis is on determining the vibration effect on different axes. For experiment,
various ML algorithms are investigated on collected vibratory data through
Matlab software in x, y, z axes and performances of the algorithms are compared
based on accuracy rate, prediction speed and training time. Based on the proposed
research results, the multiclass support vector machine (MSVM) is found to be the
best suitable algorithm compared to other algorithms. It has been demonstrated
that ML algorithms can detect faults automatically rather than conventional meth-
ods. MSVM is used for the proposed work because it is less complex and pro-
duces better results with a limited data set.

Keywords: Fault diagnosis; machine learning; pump; vibration analysis; variable
frequency drive

1 Introduction

Flow in a pumping system has random frequency characteristics generally. It is determined by various
fluid machinery components such as a pump, compressor, impeller, valves, pipes and their interaction with
flow rate may cause the frequency component to vary. The oscillations in the flow can be seen when the
acoustic frequency component matches a specific frequency. Vibration in the pumping system occurs for
various reasons, including cavitation, water hammering, pressure pulsation, bearing fault, impeller
breaking and various electrical faults. Lightweight materials and a high-speed pump unit increase
vibration excitation sources, resulting in severe vibration issues. So, vibration analysis is necessary to
detect pumping system faults. As a result of hydraulic, mechanical, electrical and structural issues in the
system, excessive vibration can occur. These results in significant energy loss, system damage, reduced
pump performance and increased operational costs. In general, the centrifugal pump operates at a

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.028704

Article

echT PressScience

mailto:kpalanisamy@vit.ac.in
http://dx.doi.org/10.32604/iasc.2023.028704
http://dx.doi.org/10.32604/iasc.2023.028704


constant flow rate, and the pipeline remains stable during operation. One of the pump’s characteristics is the
periodic fluctuation of flow rate. The frequency components of centrifugal pump pressure fluctuations are
measured using the fast Fourier transformation (FFT) method [1]. These frequency components are
rotation frequency, blade passing frequency and harmonic frequency under operating conditions [2].
Normal FFT analysis fails to collect all of the harmonic data resulting in noise in the system.

Because of the change in impeller rotational speed at the time of valve closure, the pump’s pressure
rapidly rises [3]. For the rapid change in rotational speed of the impeller at the beginning stage, the
pump’s flow rate gradually decreases at the time of valve closing. The flow rate of the pump gradually
increases during the valve opening stage and the fluid flow is complex because it changes quickly and
becomes unstable during the operating condition. The relationship between monitoring data and machine
health is essential for fault diagnosis and is a source of great concern. Fault detection is possible based on
abnormal machine sounds or using advanced signal processing methods and sometimes by vibration
analysis. With the application of artificial intelligence (AI) techniques, fault diagnosis is expected to be
intelligent. Because of the pipeline’s nonlinear stability, it aids in the automatic detection of faults in the
pumping system and fluid transients can receive extensive transients.

Based on the AI method, classification algorithms are used to identify faults in the pumping system, and
four faults such as bearing fault, seal, impeller breaking and cavitation, are detected by classification
algorithms such as support vector machine (SVM), k-Nearest Neighbor (K-NN), Naive Bayes, Bayes Net
and Decision Tree.

Previous studies have used various automatic technologies, but each technology has some drawbacks.
To address these shortcomings, the MSVM algorithm is used in the proposed research for simple binary
classification, and it is compared to other ML algorithms to demonstrate that MSVM is more suitable
than other ML algorithms. MSVM requires less computational time and generally performs well in small
and large datasets. The proposed research focuses on which axis vibration effect is more significant by
collecting vibration data in three axes; then ML algorithms are applied to the collected vibration data
through Matlab, from which the best suited algorithm MSVM is chosen based on performance and the
performances of other algorithms are compared, as well as comparisons between existing researches and
the proposed method have been done.

The entire paper is framed on related existing works where various researches on fault detection both in
the conventional way and automated way have been discussed, theoretical background where basic
mathematical equations used in the proposed research have been discussed, discussion on proposed
method, statistical feature extraction where all kinds of statistical formulae which are used for ML
application in the work, experimental procedures, result and discussion where experimental data
collections and both hardware and simulation results are discussed, comparison is made with existing
works with proposed work followed by conclusion.

2 Background of Related Works

Various works on anomaly detection in various machineries have been done by researchers using both
traditional and automated computational methods. This section focuses on the background research on
existing works on fault detection and identification methods. Vibrational faults can occur due to bearing
damage, an electrical fault, or an abrupt valve closing. Among these, the operation of the pump’s valve
plays an important role in creating a fault [4]. Unbalanced rotating components, damaged impellers, non-
concentric shaft sleeve, bent or wrapped shaft, pump and driver misalignment, thermal growth of various
components, poor foundations and loose bearings are mechanical causes of vibration problems [5]. The
hydraulic problems that cause excessive vibration are pump operation beyond the best efficiency point,
water hammer, fluid vaporization, impeller vane running too close to pipeline, volute tongue, internal
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recirculation and turbulence in the system. The vibration problem is visible if the pump operates at the critical
speed [6]. Multiple frequencies can be seen with the rotating and blade passing frequencies if the pump has
an excessive vibration problem [7]. The primary tools for analyzing vibration data are FFT analysis, motor
current signature analysis and vibration analysis [8]. An expert system was considered for designing a
simulation model based on a fuzzy logic regulator to control the system and maintain a definite delay in
service. However, fuzzy logic has the limitation of dealing with imprecise data and inherited human
thinking inference [9]. Using an intelligent system, a software-defined network system was introduced to
support future network functions. The lion optimization algorithm (LOA) evaluated the offline system
through packet optimization software, the system’s performance, and computational time. Since the LOA
is a bio-inspired algorithm, it does not tolerate cooperative interaction and can sometimes make the
problem more robust. LOA will not function properly if the data size is insufficient [10]. The system’s
diagnosis and analysis were carried out using a genetic algorithm (GA) and case-based reasoning (CBR).
Evaluation criteria of CBR shell is better than numerical models, and GA is less expensive and applicable
to complex solutions. Since GA requires more computational time, it is generally used in a hybrid fashion
[11]. The internet of drone vehicle things (IoDv) was introduced to improve traffic conditions in urban
areas. The research showed that the workload assigned is 15% more optimal than the existing model. The
research goal was to reduce response time, which was a combination of network, computation security
and fault tolerant delay. Adopting various communication technologies was a significant challenge for
IoDv, and it occasionally encountered issues due to limited energy resources [12]. Based on the
application of various soft computing techniques, an adaptive-network-based fuzzy inference system
(ANFIS) model was used to determine the induction motor fault. The discrete wavelet transform function
was used to detect the stator inter-turn fault. Discrete wavelet transformation has the limitations of shift
sensitivity, poor directionality and a lack of proper information, whereas the ANFIS model is complex
and lacks dimension [13]. The basic toolkit assistance software failed to diagnose the car’s malfunction
and the location of the fault. As a result, the automated car failure diagnosis assistance (ACFDA) had
been used to achieve maximum efficiency in locating the fault and used as a separate gadget to assist car
drivers in detecting car failure. The limitation of ACFDA is that it is only applicable to specific cars and
that users must first learn the car’s structure [14]. A convolutional neural network (CNN) was used for
the investigation based on multiresolution analysis and images were obtained using Deep Learning (DL)
and wavelet tools. CNN fails to identify faults if the data set is insufficient and it takes a long time due to
its complexity and a lack of a good graphics processing unit (GPU) in the computer [15]. The layered
adjustable autonomy (LAA) model was used to manage humans and agents. Unnamed arial vehicle
(UAV) system performed various experimental scenarios to develop a suitable test plan for making the
system more automatic. The layers and duplication of data processing are the greater risks for LAA [16].
Case based reasoning (CBR) is one of the fault diagnosis systems by which several mobile phone faults
can be identified combined with GA. The GA and CBR (GCBR) showed the highest accuracy for mobile
phone anomaly detection. The algorithm only works in the same hierarchy [17], which is a limitation of
this study. Vibration analysis was performed with the help of a three-axis accelerometer to monitor
cutting tool wear and an automatic detector was also introduced to detect the cutting tool’s lifespan. The
research employed an evaluation system for automatic fault detection, which employed a mean power
system for analysis; however, this mean power system is an old and time-consuming method [18]. The
K-NN classifier employed a single simple face recognition technique that exploited multiple features and
identified vectors based on distance measurement to assess its relevance. K-NN is a better choice for face
recognition than the current state-of-the-art method. If the data set is larger, K-NN fails to detect
anomalies, it struggles with high-dimensional data, and K-NN is sensitive to noise and requires feature
scaling [19]. Various optimization algorithms, such as particle swarm optimization (PSO), Cat swarm
optimization (CSO), Bat, Cuckoo search algorithm and Whale optimization (WOA), were used for
balancing load, energy efficiency and an efficient cloud environment that computed and manipulated data
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online over the web. WOA was used in the study, but it had some limitations, such as slow convergence
speed, low accuracy and easy failure of local optimum [20]. The conventional approaches for fault
detection are FFT analysis and vibration analysis using the motor current signature method [21]. It is
possible to consider a deep statistical feature learning method for fault diagnosis of rotating machinery
using vibration measurements. The signals of the actuators were analysed using time domain analysis,
vibration analysis and both were compared. It is clear that vibration analysis is a cost-effective solution
for fault detection and system monitoring [22]. Classification algorithms are common methods for
automatic fault detection and there are many previous fault detection techniques of which the
classification method is the more accurate method for fault detection [23].

Various researchers have published numerous papers on fault detection in machines and automated fault
detection systems. Tab. 1 describes some related works on fault detection and automated systems and the
outcomes of those works.

Table 1: Work on anomalies detection by various automated and conventional techniques

Author Research technology AIM of the research Research outcome

Tobi et al.
[24]

Multilayer Feedforward
Perceptron Neural Network
with GA, back propagation
and continuous wavelet
transformation (CWT).

Fault diagnosis of
centrifugal pump

MLP-BP had better
performance for fault detection
than MLP-GABP.
SVM performed better in
polynomial kernel function and
it used minimum features.

Jiaxing
et al. [25]

Numerical calculation and
experimental analysis

Investigation of vibration
flow instability by
cavitation in centrifugal
pump

Development of cavitation to
find the instability of the flow.
Virtual incipient of cavitation
was smaller than traditional
critical point.

Zahoor
et al. [26]

Discriminant feature
extraction

Centrifugal pump fault
diagnosis

Vibration signals were
preprocessed.
Statistical features were
extracted for calculation of
healthy and faulty signal.
Discriminant feature extraction
had 98.4% accuracy over any
other techniques.

Yaguo
et al. [27]

Intelligent fault diagnosis Machine fault detection The challenges of intelligent
fault diagnosis were discussed.
Applications of ML algorithms
were reviewed.

Francesco
et al. [28]

Multilayer perception (MLP)
and SVM algorithm

Fault prediction in
centrifugal pump in oil and
gas industry.

Early fault prediction of
centrifugal pump.
Validated the MLP and SVM
method comparison, where
SVM showed higher precision
and MLP showed better
classification.

(Continued)
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Table 1 (continued)

Author Research technology AIM of the research Research outcome

Nabanita
et al. [29]

Support Vector Machine
(SVM)

Cavitation detection
through ML algorithms in a
centrifugal pump.

At different speeds, cavitation
problems were identified.
After 2800 RPM cavitation
problem was seen.

Shankar
et al. [30]

PLECS simulation in Matlab
was used for the modelling

Real time simulation of
variable speed parallel
pumping system.

At different speeds, the output
parameters of the pump, like
flow rate and pressure were
discussed.
The servo response of the pump
system efficiency was observed.

Shankar
et al. [31]

Power signature analysis Power signature analysis of
cavitation and water
hammering in industrial
pump

Power quality signatures of
cavitation and water hammering
condition of the pump were
compared with normal
operation.
Power quality issues of VFD
based cascade pumps were
observed.

Saeid [32] FFT and adaptive neuro
Fuzzy inference system
(ANFIS)

Vibration based fault
detection of centrifugal
pump

The total accuracy was achieved
at 90.67%.
System had excellent potential
to serve as intelligent fault
diagnosis system.

Li et al.
[33]

Four water column separation
method

Experimental study on the
water hammer with cavity
collapse under multiple
interruptions

The transient state was
observed.
The flow state was determined.

Albraik
et al. [34]

Vibration analysis To study the effect of
pressure fluctuations due to
different impeller faults in
the pumping system

The paper investigated the
correlation between various
pump parameters like flow rate,
head, pressure, efficiency etc.
Various impeller faults were
observed.

Abdulaziz
et al. [35]

Vibration signature analysis Cavitation fault detection in
the centrifugal pump by
vibration analysis.

As the pump operation changed
from non-cavitating to
cavitating conditions, the
vibration level increased at the
rotational speed frequency.
The sharp fluctuations were the
indicator of vibration detection.
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3 Theoretical Background

The kinetic energy of the liquid that comes out from the impeller is utilized to create resistance to the
flow. In this way the pump volute, casing functions and the resistance of the flow of the liquid are
controlled. According to the Bernoulli’s principle, the discharge nozzle also operates and the velocity is
converted to the pressure [36].

The head value of the pump can be expressed as.

H ¼ v2

2g
(1)

Here H is the total head measured in meter and velocity is represented by v (m/s) and the acceleration
gravity is g which is 9.81 m/s^2. The peripheral velocity can be expressed as

v ¼ N � D

229
(2)

In this case v is the velocity of the fluid and N is the speed of the pump measured in RPM, D is the
impeller diameter measured in meter. By the spring mass damper system a simple machine vibration can
be expressed and the source of vibration must be detected [37,38]. The relationship between frequency
and period of time is

f ¼ 1

t
(3)

Here f is the frequency measured in Hz and period of time t is measured in second.

Time waveform is the simplest method for representing raw data of the vibration signal. For analysis
purposes, the FFT method and power spectral density (PSD) can be used for better representation.

4 Proposed Method

The current research is based on a VFD-based cascade pumping system in which two pumps are
operated at different speeds in hands-on mode, and a valve is suddenly closed to create a fault for testing
the faulty condition within 10 to 15 s. The entire experiment is conducted as a case study. The paper
investigates the performance of various ML algorithms such as MSVM, K-NN, Naive Bayes and
Decision Tree. It determines the best algorithm for detecting faults in a pumping system [39,40].
Excessive vibration damages the pump, VFD, the pipelines and electric motor. When the flow rate
changes abruptly due to a sudden valve closing, the power flow in the motor and drives is also impacted.
If the flow rate decreases, the power and current will decrease. So identification of excess vibration due
to hydraulic, mechanical and electrical fault is important. Continuous monitoring is problematic in
various industrial areas where pumps are operated manually, but it is possible where the system is
operated via remote control automatic system [41]. So condition based ML is required to predict the fault
situation at the early stage and to predict the lifetime of the pumping system. In this study, an experiment
has been conducted, followed by an analysis to determine the performances of ML algorithms. The
proposed study is divided into three sections. The entire procedure has been carried out in steps.

Step 1: Vibration data have been collected healthily by running the pump at different speeds and using an
accelerometer to collect three axes vibratory data. The same procedure is used to create a fault by closing the
valve abruptly in a fraction of second and vibratory data are collected at various speeds.
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Step 2: This is a hardware experiment that has been used as a case study to analyse and plot the
frequency spectrum curve using FFT analysis.

Step 3: ML algorithms are applied to vibratory data, and their results are compared.

Step 4: The best-suited algorithm has been chosen based on the results.

Step 5: Then testing data in different speeds have been applied on MSVM to classify the faulty and no
faulty points through Matlab simulation. Confusion matrix, evaluation matrix and receiver operating
characteristic (ROC) have been formed for overall performance analysis of the MSVM.

The proposed research has chosen MSVM algorithm for pump fault detection based on its performance
and it has several steps from data collection to data evaluation. The whole process has been described in
Fig. 1.

Fig. 2 represents the basic flow chart of the fault detection of the pump. One part of the research is to find
that in which axis intensity of the vibration is more. Some statistical steps have been taken in the other part of
the research where ML algorithms are used. Fig. 3 shows the generic diagram of ML algorithm for fault
detection which is followed by data collection, feature extraction, data cleaning and data evaluation by
training and testing way and lastly data modelling.

The predictive control technique will determine whether or not a pump fault occurs and whether or not
there is future possibility of failure. The failure prediction is performed to determine the machine’s remaining
useful life. This prediction is possible using the classification technique. Two classes are typically chosen for
this prediction: one positive and one negative. In general, the positive class denotes the failure prediction
class chosen for 240 time steps and in this experiment, the positive class is denoted as −1.

In contrast, the negative class denotes the normal operating condition, denoted as 1. The predicted
attributes will be used to build the model and evaluation will be done through the training and testing
process. In the data splitting per 100 samples, 70% of the value is used for training and 30% for testing.
Data cleaning, also known as rule-based filter mode, is also essential. The ML model is optimised using
k-fold cross validation. This is done to avoid the overfitting problem. The k parameter defines the
excellent representation of the input dataset by training and validation groups. In this experiment, the
value of k is set to 30. To avoid an unbalanced dataset, the number of minor class samples is chosen in
proportion to the number of samples from the major class.

Figure 1: The process of MSVM through flow chart
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5 Statistical Feature Extraction

The primary function of the ML algorithm is feature extraction. The extraction of features is an
important step that aids in classifying training and testing data for analysis. The most hybrid features are
root mean square (RMS), kurtosis value (KV), root amplitude, peak-to-peak value (PPV), standard
deviation (SD), skewness value (SV), clearance factor, crest factor (CF), impulse factor (IF), shape factor

Figure 2: The basic flow chart for fault detection in centrifugal pump

Figure 3: Generic diagram of ML algorithm for fault detection
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(SF) and mean value (MV). These statistical features assist in the analysis of vibrational signals, allowing
users to gain a clear picture of the effect of vibration on the system. Fig. 4 depicts the feature extraction
classification process. The proposed model has done most of the feature extraction in class 0, making it
easy to classify faulty points and thus increasing accuracy.

6 Experimental Procedure

The experiment uses a VFD-based cascade pumping system connected to the Siemens test bed
supervisory control and data acquisition (SCADA) for vibration data collection. The pump has been
operated at different speeds, once in a healthy state and in a faulty state by sudden valve closure. The
sudden vibration has been created to test the faulty situation. Two cascade pumps are used, and an
accelerometer mounted on each pump is connected to the SCADA system. The centrifugal pump system
consists of a motor (415 volt, 2 poles, 50 Hz AC induction motor), a flow meter with a maximum flow
rate of 2000 lph, a pressure gauge with a maximum set pressure of 2 bar and a control panel with speed
controller (Danfoss model VFD with speed controller and display screen, switch (OFF/ON) and
emergency shutdown). The pump head has a maximum length of 25 meters, a power of 0.55 kW, a speed
of 2800 RPM, a pipe diameter of 25 mm and a current of 1.7 A. Accelerometers have sensitivity values
of 10.12 and 9.84 mV/g respectively and a frequency range of 1.5 to 25 kHz. The vibration signals are
measured in both normal and abnormal conditions. Vibration data in the form of acceleration have been
collected with respect to time. Initially, a signal of normal condition is acquired without any fault
condition of the pump. The sudden closing of the valve creates a faulty condition. Water hammering and
cavitation fault may be created as a result of this. The proposed research mainly focuses on water
hammering fault as through MSVM hydraulic fault not has been tested before. The data are then further
analysed using Matlab simulation and ML algorithms. Fig. 5 depicts the test setup block diagram, while
Fig. 6 depicts the hardware setup test bed.

Figure 4: Classification process of feature extraction

Figure 5: Block diagram of test setup
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7 Results and Discussion

7.1 Experimental Data Collection

From 500 to 2800 RPM at six different speeds, vibration data are collected with respect to time in both
the healthy and faulty conditions. Generally, the pump operates normally, but within 10 to 15 s, the valve has
been closed to create the fault for each speed condition. Excessive vibration has been generated in this
situation, implying that the intensity of vibrational amplitude is greater. The pressure value rises abruptly,
and thus the flow rate falls abruptly. After data collection, a frequency spectrum analysis has been
performed and a graph of frequency and amplitude has been plotted. The graphs show that for most of
the cases in every speed condition, the amplitude of pump 1 is high in the frequency range of 1 to 1.5 Hz
and the amplitude of pump 2 is high in the frequency range of 1 to 1.5 Hz, as well as for 0.5 Hz
[Figs. 7a–7c]. The horizontal measurement has a higher amplitude than the vertical measurement in the
majority of cases. The vibration data have been collected in the x, y and z axes, among which the x-axis
amplitude is greater than the y and z axes (Tabs. 2.1–2.2). It indicates that the system is becoming more
unbalanced. In general, the pump performs well with low vibration levels. Since the accelerometer scale
range is 10 points, any experimental values taken are scaled down. When a valve closes suddenly, water
hammering occurs, and if the pressure head falls below the vapour pressure head, cavitation occurs. The
frequency spectrum data of the vibration signal at different speeds are shown in Tab. 2.1 and 2.2.
Figs. 7a–7c show the frequency spectrum of the signal in different speed conditions which are
experimental results. The proposed work contributes by using a three-axis accelerometer to measure the
vibration and effect of the pumping system, applying ML algorithms to find the appropriate algorithm for
fault detection and comparing the performances of the ML algorithms with related works. Almost all of
the feature extractions are seen in class 0, and they are compared to those in class 1 using precision,

Figure 6: Hardware setup test bed
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F1 score and recall where the accuracy rate is high. In addition to the overall accuracy rate, training time and
prediction speed are considered when determining which algorithm is best suited for this experiment. The
entire project is statistically evaluated.

7.2 Experimental Result and Discussion

Table 2.1: Frequency spectrum data

500 RPM Amplitude (meter) 1000 RPM Amplitude (meter) 1500 RPM Amplitude (meter)

Pump1 Pump2 Pump1 Pump2 Pump1 Pump2

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z axis

0.307 0.041 0.23 1.176 0.20 0.201 1.018 0.04 0.056 1.086 0.26 0.28 1.07 0.29 0.30 2.114 0.36 0.475

0.302 0.286 0.30 3.679 0.69 0.704 1.079 0.32 0.348 2.172 0.45 0.46 2.16 1.51 1.54 2.266 0.65 0.789

0.695 0.536 0.67 4.701 0.71 0.769 2.163 1.14 1.157 1.344 0.42 0.44 1.03 1.23 1.26 4.459 0.69 0.895

1.237 0.929 1.21 3.913 0.92 0.937 3.069 0.21 0.223 3.964 0.98 1.12 3.48 1.64 1.97 1.536 0.78 0.986

1.342 1.098 1.30 4.126 1.13 1.165 3.326 0.45 0.487 3.104 1.14 1.23 3.73 1.98 2.13 3.802 0.98 0.990

1.387 1.299 1.36 3.399 1.46 1.591 2.139 1.25 1.329 3.306 1.51 1.59 3.81 1.20 1.36 3.125 1.10 1.230

1.798 1.528 1.76 2.756 1.76 1.832 4.302 1.42 1.548 4.821 1.84 1.94 4.43 2.23 2.38 2.548 1.37 1.398

2.256 1.987 2.23 3.377 2.37 2.861 3.953 2.34 2.439 3.306 1.45 1.50 4.37 2.28 2.59 3.789 1.89 1.976

Table 2.2: Frequency spectrum data

2000 RPM Amplitude (meter) 2500 RPM Amplitude (meter) 2800 RPM Amplitude (meter)

Pump1 Pump2 Pump1 Pump2 Pump1 Pump2

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

X
axis

Y
axis

Z
axis

1.07 0.22 0.34 1.03 0.25 0.34 1.085 0.10 0.142 1.15 3.12 4.21 1.106 1.192 1.21 4.08 0.093 0.09

2.13 0.36 0.59 1.06 0.16 0.17 2.162 0.18 0.219 2.06 1.23 1.86 2.101 1.410 1.54 3.00 0.012 0.03

3.32 0.40 0.58 2.23 0.34 0.38 1.283 0.31 0.439 3.20 0.89 1.43 3.069 2.115 2.34 3.00 0.082 0.04

3.22 1.49 1.56 3.16 0.50 0.67 3.394 1.38 1.400 3.24 0.61 0.98 4.019 1.223 1.89 2.00 0.093 0.06

4.24 1.84 1.98 2.10 1.46 1.68 4.148 1.12 1.201 2.44 0.55 0.78 3.047 2.241 2.56 1.00 0.023 0.05

4.40 1.55 1.66 3.78 1.30 1.52 4.412 1.23 1.287 3.56 1.21 1.35 3.226 1.267 1.43 4.00 0.065 0.98

3.67 2.89 2.97 4.71 1.79 2.34 3.074 1.97 2.119 4.70 1.65 1.87 2.149 0.876 1.02 4.00 0.097 0.11

3.76 2.14 2.45 3.56 1.98 2.58 3.309 2.13 2.231 4.36 1.20 1.45 3.188 0.986 1.23 3.00 0.063 0.23

2.54 1.62 3.12 3.15 2.11 3.12 3.117 2.76 2.861 4.87 1.43 1.58 3.065 0.231 1.42 2.12 0.239 0.31
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Figure 7a: Frequency spectrum for 500 and 1000 RPM speed

Figure 7b: (Continued)
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Figure 7b: Frequency spectrum for 1500 and 2000 RPM speed

Figure 7c: Frequency spectrum for 2500 and 2800 RPM speed
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Another method of research performance validation is continuous wavelet transformation (CWT) which
is similar to FFT but uses the number of wavelets as a function rather than the sine and cosine functions. The
wavelet is composed of two parameters, scale and translation, and the signal is displayed in a two-
dimensional time scale plane rather than a one-dimensional plane. The CWT function is

Wxðaþ b; fÞ ¼ a
�1
2

Z
xðtÞf� t � b

a

� �
dt (4)

HereWx is the wavelet transform linked with two parameters like a is the scale parameter and b shows as
time parameter. ∅ is wavelet function, and x (t) is the original signal. In this experiment, vibration data have
been collected under six different speed conditions. The wavelet transform produces 60 features in each case.
For each feature, 480 features for the signal from each case are computed. These features are used to train
classification algorithms such as MSVM, K-NN, Naive Bayes and the Decision Tree. ML algorithms are
used to classify fault and no-fault points based on high and low vibration rates. Tab. 3 displays the real-
time pressure, flow rate and current value at various speeds in healthy and faulty conditions. The table
shows that pressure increases in the faulty condition, and flow rate and current value decrease as pressure
increases. Figs. 8a–8f depict the classification results of fault and no fault points at various speeds. The
red points are faulty, while the green points are not faulty. This classification’s goal is to successfully
predict the label of unknown data or a test data instance consisting of only attributes. This aids in
determining the system’s fault position.

MSVM classification has been applied using three cases which are 480 features (normalized and non-
normalized), 80-normalized features and 60 non-normalized features. These are extracted using CWT. The
MSVM has been investigated using three kernels: linear, polynomial and radial basis function (RBF). K-NN
also extracts 480 features and three neighbour distances like Hamming, Euclidian and Chebychev. Similarly
Naïve Bayes and Decision Tree methods also extract 480 features. Here for the K-NN k value has been
chosen by number of data points in training set.

There are some conventional methods that can be used for fault detection in pumping systems, such as
the characteristics method, column separation method, model predictive control, time frequency analysis,
and wave characteristics method [42], which can be compared to ML-based technologies. Most
conventional methods cannot predict anomalies until the system is completely damaged. They are
incapable of handling the continuous monitoring process and most algorithms have complex
mathematical models.

Table 3: Real time results of pressure, flow rate and current

Speed Pressure (bar ) Flow rate (lph ) Current (Amp)

Healthy
condition

Faulty
condition

Healthy
condition

Faulty
condition

Healthy
condition

Faulty
condition

500 RPM 0.48 0.50 750 350 1.51 1.42

1000 RPM 0.60 0.55 1150 1020 1.54 1.48

1500 RPM 0.61 0.70 1250 1100 1.55 1.51

2000 RPM 0.71 0.80 1560 1350 1.59 1.53

2500 RPM 0.91 1.12 1850 1590 1.62 1.55

2800 RPM 1.25 1. 55 2000 1540 1.59 1.51
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Each algorithm’s accuracy rate, prediction speed, and training time have now been analysed and
compared using the classifier learner app. It is seen from the Tabs. 4.1 and 4.2 that with the increment of
speed value the training time of each algorithm increases and prediction speed also increases in most of
the cases. Accuracy rates of MSVM in almost all the cases are high.

Figure 8: (a) Classification of faulty and no faulty points for 500 RPM speed (b) Classification of faulty and
no faulty points for 1000 RPM speed (c) Classification of faulty and no faulty points for 1500 RPM speed (d)
Classification of faulty and no faulty points for 1500 RPM speed(e) Classification of faulty and no faulty
points for 2500 RPM speed (f) Classification of faulty and no faulty points for 2800 RPM speed
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Table 5 discusses the advantages and limitations of various ML algorithms which are used for this
experiment and Fig. 9 shows the comparison of overall accuracy of different algorithms.

Table 4.1: Comparison of accuracy, prediction speed and training time of algorithms in different speed

Algorithms 500 RPM 1000 RPM 1500 RPM

Accuracy
rate
(percentage)

Prediction
Speed (obs/
sec)

Training
time
(Sec)

Accuracy
rate
(percentage)

Prediction
speed (obs/
sec)

Training
time
(Sec)

Accuracy
rate
(percentage)

Prediction
speed (obs/
sec)

Training
time
(Sec)

MSVM 92.1% 260 0.013 92.4% 280 0.015 96.5% 300 0.024

K-NN 54% 170 0.113 51% 185 0.214 50% 220 0.312

Naïve
Bayes

32% 160 0.415 37% 171 0.435 42% 190 0.486

Decision
Tree

63% 195 0.329 69% 200 0.387 61% 180 0.541

Table 4.2: Comparison of accuracy, prediction speed and training time of algorithms in different speed

Algorithms 2000 RPM 2500 RPM 2800 RPM

Accuracy
rate
(percentage)

Prediction
Speed (obs/
sec)

Training
time
(Sec)

Accuracy
rate
(percentage)

Prediction
speed (obs/
sec)

Training
time
(Sec)

Accuracy
rate
(percentage)

Prediction
speed (obs/
sec)

Training
time
(Sec)

MSVM 98.2% 370 0.119 99.1% 310 0.126 99.8% 340 0.139

K-NN 23% 230 0.289 24% 150 0.294 26% 155 0.310

Naïve
Bayes

35% 176 0.591 31% 169 0.532 39% 160 0.493

Decision
Tree

49% 180 0.451 40% 176 0.419 50% 189 0.261

Table 5: Overall analysis of advantages and limitations of the algorithms

Algorithms Advantages Limitations

K-NN Easy implementation and both classification and
regression can be applied.

Computation is large and lazy learning

Naïve
Bayes

Robust for missing values, little storage is
required and good physical experience.

Shortage of prior assumption and
complex computation need prior
probability.

MSVM Deals with high dimensional features and high
accuracy rate, work well for nonlinear functions.

Fails in big data solution and absence of
physical meaning

Decision
Tree

Feature scaling is not required and works well
both for linear and nonlinear function.

Poor results on small dataset and over
fitting can be seen most of the times.
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The proposed method evaluates true positive and true negative classes, and the MSVM algorithm
achieves 98.3% accuracy for class 0% and 100% accuracy for class 1 based on confusion matrix scores.
The scorer node outputs confusion matrix and evaluation matrix statistics have been shown in Tabs. 6
and 7. The columns represent the predicted class in Tab. 6, and the actual class is represented by the
rows. According to Tab. 7, MSVM can accurately predict the fault for this experimental analysis. The
MSVM’s overall accuracy is 99.8% which is nearly 100%. Through experimental analysis, recall,
F1 score and precision are also obtained from this table. MSVM is used for binary classification and in
this paper radial basis function (RBF) is used. In MSVM, optimal separating hyperplane is used that
creates maximum distance between the plane and the nearest data. Here RBF kernel hyper parameter γ
and SVM penalty parameter C have been chosen optimally for better performance. In this research C is
chosen as 65 and γ is 0. High value of precision over class 0 to class 1 has been achieved for actual value
of true positive and true negative class. Again value of recall is higher for class 0 over class 1. Similarly
F1 score also is higher for class 0.

Another option for judging the ML model is the area under the curve (AUC) of the ROC curve. The
ROC curve is a popular tool for evaluating binary classification performance. The ROC curve has been
obtained in this result at different speeds, and the average value 1 of the AUC shows that the ROC curve

Figure 9: Comparison of overall accuracy of performance of different algorithms

Table 6: Confusion matrix dataset for MSVM algorithm (proposed method)

Class 0 Class 1

Class 0 60789 176

Class 1 563 235

Table 7: Evaluation matrix of performance analysis of proposed method

Recall Precision F1 score Accuracy

Class 0 99.2% 98.4% 99.5% -

Class 1 55.8% 71.2% 63.2% -

Overall - 99.8%
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of MSVM is the best classifier for this proposed work [Fig. 10]. As the data is limited, even if the
synthetic minority oversampling technique (SMOTE) is applied, the class 1 result is not achieved
satisfactorily as class 0.

The ROC curve shows that the AUC value is 1, which helps to reduce the number of false-positive (FP)
without affecting true-positive (TP). All of the failure events are incomplete. The dataset contains three non-
ambiguous fault events that are very small, and if there is a data imbalance between the classes during
training, it can be corrected using the SMOTE. The quality of synthetic data is not as high as that of real-
time data. If the amount of data is large, the sampling frequency can be set to a high value.

8 Comparison of Related Work and Proposed Work

Previously, various studies on pump fault detection using ML algorithms were conducted. Those studies
are also based on various parameters for selecting the best algorithm. Centrifugal pump fault diagnosis was
possible using discriminant feature extraction. In that experiment, single axis vibration data were collected in
the time and frequency domains to identify mechanical seal failure. The principal component analysis (PCA)
algorithm was used to predict the pump fault. The experiment was conducted using a 20-times random
comparison of training and testing data. In this case, the MSVM method was compared to the PCA
method. MSVM is used in the proposed experiment and it is compared to SVM and PCA analysis done
in previous work. Only one axis vibration data were collected in the feature extraction experiment. In the
proposed experiment, three axes vibration data are collected and performances for fault detection have
been prominently compared. In another research, the best-suited algorithm was chosen. The performances
of other algorithms were compared using the discriminant feature extraction method with the help of a
confusion matrix, standard deviation and average true-positive rate [43]. The experiment did not cover
the hydraulic fault, whereas in the proposed experiment, the hydraulic fault is detected via vibration fault,
and the experiment has been done to create a water hammering problem for analysis of pump fault

Figure 10: ROC curve of the proposed MSVM algorithm
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detection. Though confusion matrix and k-fold cross validation techniques have been used in the proposed
experiment, accuracy rate, prediction speed, training time, precision, F1 score, and recall are also considered
to determine the best-suited algorithm.

In the oil and gas industry, ML algorithms were used to detect faults in centrifugal pumps and the best
suited algorithm was chosen for the experiment based on F1 score, recall, precision and Cohen kappa value.
However, in the proposed method, parameters such as accuracy rate, prediction speed, training time,
F1 score, recall and precision are considered to obtain a more accurate result. In the previous research by
comparing SVM and MLP based on true-positive and true-negative values and accuracy rates, it was seen
that accuracy of MLP was better than SVM for that experiment. Similarly, MSVM is chosen as the best
suited algorithm among various ML algorithms in the proposed method. The ANFIS model was also used
in another research, and MLP was used to detect stator inter turn faults. However, the algorithm is less
sensitive and more complex. The proposed study is simpler and has a high sensitivity. Cavitation and
water hammering faults were detected by collecting vibration data for a centrifugal pump and using
power signature analysis. Only the parameter changes for three pumps with varying pressures were
examined in this study [44]. In the proposed method, vibration data have been collected by Siemens test
lab SCADA system at different speeds, and ML algorithms have done fault prediction with the changes
of parameters. Although vibration analysis was performed to detect cutting tool wear, the use of mean
power analysis is an old technique, whereas the proposed research employs high statistical features for
the detection of pump fault.

Vibration data were collected at different pressures using the vibsensor app, and a linear regression
algorithm was used to predict the water hammering fault in the VFD-based cascade pump. The Vibsensor
app failed to record a large amount of data whereas in the proposed experiment, a data acquisition system
(DAQ) has been used and sufficient data have been recorded for better analysis. In another study, pump
fault was detected using SVM, MLP and GA and hidden layer features were extracted and compared
using a confusion matrix. GA necessitates computational time, which is insufficient for all researches.

With the help of adaptive neuro fuzzy system and Fourier transformation, pump fault was identified in a
research. ANFIS model was built to find out the accuracy of the model.

SVM and K-NN algorithms were compared in a work and it was identified that for small amount of data
K-NN worked well and when the data size was large SVM performed better than K-NN. K-NN is a lazy
learner and fails to work in high dimensions and with a large data set.

In the proposed experiment the classification accuracy has been computed for each class as

TPRm ¼ 1

k

Xk
j¼1

ðNj;m
TP Þ

Nj;m
TP þ Nj;m

FN

 !
� 100ð%Þ (5)

Here TPR is true positive rate, k represents number of cross validation of k-fold, Nj;m
TP presents number of

sample in each class, m and j show the number of iteration of k-fold cross validation. The overall accuracy of
the proposed algorithm depends on true-positive (TP), true-negative (TN), false-positive (FP), and false-
negative (FN) values.

Overall accuracy ¼ ðTP þ TNÞ
ðTP þ FP þ TN þ FNÞ (6)

The proper way to judge a matrix is to use precision, recall, F1 score value.

Precision ¼ TP

ðTP þ FPÞ (7)
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Recall ¼ TP

ðTP þ FNÞ (8)

F1score ¼ 2 � ðPr ecision � RecallÞ
ðPr ecisionþ RecallÞ (9)

The proposed work is compared to other reference works based on accuracy rate, F1 score, training time,
prediction speed, precision and recall. It is seen that the prediction speed is faster in the DL-based method,
and MSVM also works well for fault classification and all statistical values in the proposed method are better
than those in the reference works. Fig. 11 depicts the comparison.

To evaluate the performance of the MSVM algorithm in proposed work and other algorithms used in
reference works a comparison of performances have been discussed in Tab. 8 and in Fig. 12.

Figure 11: Comparison for evaluation of proposed work with reference works

Table 8: Performance comparison of proposed work and reference works

Methods Normal
condition
TPR (%)

Accuracy
Rate (%)

Inferences

Proposed (MSVM) 100% 100% FFT tool has been used in three axes and accuracy rate
of the proposed method is almost 100% and analysed
through recall, F1 score, precision, prediction speed,
training time and accuracy rate. Hydraulic fault also is
detected by this method.

MLP-SVM 100% 99.5% The polynomial kernel was chosen for its better
accuracy. GA was used for optimization purpose.

Discriminant feature
extraction through
PCA

100% 98.4% All the mechanical faults were detected and with the
help of confusion matrix true-positive class accuracy
rate was achieved.

Fault prediction
through GA and SVM

96.4% 98.2% SVM was chosen based on overall accuracy rate as it
performed better. ROC curve also was used for
analysis for fault prediction in pump.

(Continued)
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9 Conclusion

The present research is the experimental-based hardware setup for vibration analysis during fault
condition of the VFD-based master follower centrifugal pump. It focuses on various angles of the research.

a) Verification of parameter changes has been done during a fault condition. For fault detection, ML
algorithms such as MSVM, K-NN, Decision Tree and Naive Bayes are used and their
performances are compared using Matlab based on accuracy rate, prediction speed and training time.

b) The frequency spectrum data and graph show that the amplitude of the x-axis is greater than that of
the y and z axes in different speed conditions. As a result, the system appears to be more unbalanced.
The graph shows that the excess vibration is more noticeable in pump 2 than pump 1 at different
speeds.

c) The primary goal of the work is to examine the changes caused by vibrational effects in the master
follower pump when it is in a faulty state. In a faulty condition, the pressure value increases, the flow
rate decreases and the current decreases.

d) Another objective of this research is to compare the performances of ML algorithms used to detect
vibration faults in pumping systems and to determine the best algorithm for each experiment.

Figure 12: Performance analysis of proposed method and reference works

Table 8 (continued)

Methods Normal
condition
TPR (%)

Accuracy
Rate (%)

Inferences

Power signature
analysis

- - As the ML algorithm was not used, TPR and accuracy
rate were not applicable for this experiment. The
parameter changes after the fault were detected by this
method.

SVM-K-NN 68.5% 81.1% SVM performed better in large amounts of data size.
Compared to SVM, K-NN is lazy learner.

WPT-PCA-SVM 82.1% 90.5% PCA was chosen as accuracy rate was higher than
SVM. Vibration spectrum was analysed through
labview software.
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e) The proposed method has been compared to reference works, and the proposedMSVM algorithm has
been compared to other ML algorithms. Based on the performance analysis results, MSVM is found
to be more appropriate for this experiment than the other algorithms.

f) The MSVM algorithm’s accuracy rate is high in most of the speed conditions, and its prediction speed
is also high. MSVM requires less time to compute the training of the features.

g) The performance of the proposed method of the MSVM algorithm has also been evaluated using the
ROC curve. Vibration analysis is essential for monitoring the performance and conditions of
centrifugal pumps due to the assembly of the pump’s various components. Vibration analysis can
be used to detect general faults and be used as a predictive measure for future faults that the
pumps may encounter.

There are some limitations to the proposed research. It fails to work with large amounts of data like DL
and sometimes the performances of the classes are poor due to a lack of data. As a case study, the research
only focuses on the industrial pump application and is not cross-checked with other types of pump
applications. The proposed work’s practical implementation is that it can detect anomalies in industrial
multistage pumps that require continuous water supply. Later on, the algorithm can be tested in other
types of pump fault detection as well as in other machineries. In the near future, authors will focus more
on data management in order to conduct further research and improve performance.
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