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Abstract: Studies have established that hybrid models outperform single models.
The particle swarm algorithm (PSO)-based PID (proportional-integral-derivative)
controller control system is used in this study to determine the parameters that
directly impact the speed and performance of the Electro Search (ESO) algorithm
to obtain the global optimum point. ESPID algorithm was created by integrating
this system with the ESO algorithm. The improved ESPID algorithm has been
applied to 7 multi-modal benchmark test functions. The acquired results were
compared to those derived using the ESO, PSO, Atom Search Optimization
(ASO), and Vector Space Model (VSM) algorithms. As a consequence, it was
determined that the ESPID algorithm’s mean score was superior in all functions.
Additionally, while comparing the mean duration value and standard deviations, it
is observed that it is faster than the ESO algorithm and produces more accurate
results than other algorithms. ESPID algorithm has been used for the least cost
problem in the production of pressure vessels, which is one of the real-life pro-
blems. Statistical results were compared with ESO, Genetic algorithm and
ASO. ESPID was found to be superior to other methods with the least production
cost value of 5885.452.

Keywords: Electro search algorithm; intelligent PID; optimization; multi-optimization

1 Introduction

The term “optimization” refers to the process of determining the best case in a space defined by a set of
problems [1]. Since the advent of computer science, humans have invented algorithms that instantly find the
most appropriate solution to problems and make life easier [2]. Particularly till the 1960s, traditional problems
have been encountered as unimodal, differentiable, continuous, and linear. Unlike in the past, problems might
be non-differentiable, multimodal, discontinuous, and nonlinear now [3]. Optimization algorithms that can
facilitate the solutions in which several situations may be assessed concurrently, not only one, have been
developed [4]. These algorithms are predominantly known as population-based meta-heuristic algorithms [5].

Since they are inspired by nature, meta-heuristic algorithms are composed of a set of rules and
randomness [6]. While meta-heuristic algorithms employ a single solution, population-based algorithms
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deploy a population of potential solutions. Among those, evolutionary and swarm-based algorithms are the
most used ones [7]. When a problem includes several optimum points, the starting point selection is critical,
and the best solution may not represent the precise optimum result. Numerous methods have been developed
to address this issue [8]. Some of them are as follows: Genetic Algorithms (GA) [9], Particle Swarm
Optimization (PSO) [10], Firefly swarm optimization (FA) [11], Bacterial Foraging Optimization
Algorithm [12] and Atom Search Algorithm (ASO) [13].

To ensure that algorithms attain their optimum points, it is critical to understand which parameters in the
designed systems have a significant impact on the algorithm’s performance and behavior. As a result,
extensive experiments and analyses are often conducted to calibrate the algorithms’ parameters [14]. For
example, Alfi’s work intended to promote the algorithm’s efficiency by employing adaptive parameters
rather than fixed cognitive parameters in the PSO algorithm [15].

Tabari et al. (2017) attempted to obtain the global optimum point by self-tuning the parameters without
inserting the proper starting value in the Electro Search Algorithm (ESO), which they designed by the
inspiration of the radiation movements of electrons in orbits around the nucleus of the atom [8]. Hussein
et al. (2019) employed ESO to provide the optimum online gain tuning for the microgrid in their research
published. The ESO algorithm’s performance was compared to that of the conventional integral controller
and PSO algorithms in this gain tuning. It has been found that the adaptive ESO system was better [16].
Tabatabaei et al. (2017) applied the ESO algorithm to address system supply issues caused by the
widespread usage of wind energy in power grids [17]. They devised the “balloon effect” as a technique
for adaptive load frequency control (LFC) in power systems with the assistance of this algorithm. It has
been found that the values of input and control variables have an effect on all objectives in this system
[18]. The studies were conducted to attempt to rapidly resolve issues that emerge as a result of the high
profit and low cost provided by optimization algorithms [19].

Hybrid systems, which are the new optimization heuristics, are defined as systems that employ two or more
algorithms to solve an optimization problem [20]. Hybrid models have been demonstrated to outperform single
models [21]. HESGA (Hybrid Electro Search Genetic Algorithm) has been proposed by Velliangiri et al. for use
in hybrid studies that include the ESO algorithm and genetic algorithms. In these hybrid studies, the ESO and
genetic algorithms work together to determine the parameters for calculating the cost of cloud computing,
which is represented as global internet-based computing. The performances obtained by the ESO, GA
(Genetic algorithm), Ant Colony Optimization (ACO), and Hybrid Particle Swarm Algorithm and Genetic
Algorithm (HPSOGA) were compared and results showed that the proposed method had better results [22].
Esa et al. who created the ESO-FPA algorithm based on the ESO algorithm’s local search capability and the
FPA’s (Flower Pollination Algorithm) global search capability, revealed that the algorithm had a higher
performance as a result of their investigation [23]. Apart from their ability to provide intelligent solutions to
global real-world problems, these studies demonstrate that they may leverage the capabilities of swarm
intelligence algorithms to boost performance [24,25].

In this study, a hybrid system design was established in place of the orbital tuner approach for
determining the ESO algorithm’s parameters. In this designed system, a PID control system is employed
to calculate these parameters, which have a direct effect on the algorithm’s speed and performance in
determining the global optimum point. The most difficult part of PID design is the determination of its
parameters. This situation gets even more challenging in nonlinear systems. Some methods have been
developed to calculate the PID gain tuning [26]. One of these developed methods was the use of
optimization algorithms [27]. In this design, a particle swarm algorithm (PSO) was used for optimal PID
gain [28]. By examining the hybrid studies published in the literature, one may determine that a second
algorithm was added to the output algorithms [29]. Rather than using the orbital tuner approach, the
study added a PID control system based on the particle swarm algorithm into the algorithm.
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This article is organized as follows: Part I is an introduction, while Part II is an overview of the ESO
method, PID control systems and the PSO algorithm used for PID gain. Part III contains thorough
information on the integration of the PID-PSO control system into the ESO algorithm, which is utilized
in place of the orbital tuner approach. Part IV presents simulation results acquired utilizing the designed
ESPID algorithm and the Benchmark [30] test functions for the ESO [8], PSO [10], Atom Search (ASO)
[13] and Vector Space Model (VSM) [31] algorithms. It also includes calculating the minimum cost in
the pressure vessel design problem. The last part compares the ESPID algorithm’s performance to that of
other algorithms.

2 Method
2.1 PID Control Systems

James Watt invented the first negative feedback device in 1769 [32]. Feedback systems have persisted to
the present day owing to their progression. Proportional-Integral-Derivative (PID) control is the most widely
used feedback control strategy today. To illustrate, 90% of academic and industrial fields apply control
systems [33]. Standard PID control system:

de(t) 1 (!
u(t) =K, [e(l‘) + Ty o +f’/o e(t)dt (1)

Here u(¢) is control variable, e(t) = d,(¢) — 6(¢) is the system error, (d,(¢) is input value while 6(¢) is
output value), K, is the proportional gain, 7, is the derivative time constant, and 7; is the integral time
constant. See Eq. (1) [34]

de(t)
dt

u(t) = Koe(t) + K / e(t)dt + Ky 2

K, shows proportional gain, while K; shows the integral gain and the K; shows the derivative gain. Eq.
(2) [35].

There are multiple methods for PID controller tuning. The conventional methods are said to be the
simplest and quickest. Due to the fact that it is dependent on assumptions and trial and error, precise
results cannot be attained [32]. Even today, designing optimal PID gain in nonlinear systems remains a
difficult task [36]. To this end, recently, K, K;, K; values are determined by optimization. GA and PSO
are the most commonly used algorithms for optimizing [10].

By optimizing the PID controller settings, it provides self-detection of dynamics. It is also possible to
determine the values with the perceived dynamics. The advantages of this situation are [37]:

— Determination of suitable parameters for the system

— Pre-detection of errors that may occur for the system and adapting it to the system
— No need to predetermine controller values

— The resulting system can be integrated into different systems.

In Fig. 2a, the Aci parameter has a fast rise time. In the designed system, it can be said that the Aci
parameter has achieved to have the appropriate output value by oscillating in a short time.

In Fig. 2b, although the Rei parameter starts with a small oscillating movement at the beginning, it then
overshoots. However, in a short time, the system recovers the state and brings it to the most suitable PID
controller settings. The fact that the Aci and Rei parameters reach their appropriate output values in a
short time increases the performance of the algorithm.



2558 IASC, 2023, vol.35, no.3

2.2 Particle Swarm Algorithm (PSO)

It was Kennedy and Eberhart who first presented the PSO algorithm in 1995, which is a population-
based algorithm [10]. To find the optimum solution, the particle’s position and velocity are updated using
the search and movement capabilities of the particles, whose positions and velocities are randomly spread
across the search area [38,39]. The speed of the particle is tuned by the experience gained with each
iteration [39].

P Ky -e(t)
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Figure 1: PID block diagram [39]

Aci Step Response ” Rei Step Response
10
0.046 _m
0.044 _==E
0.042
0.04 1010
0.038 i
2 2
2 0.036 =2
Q. o
& &
0.034 10°
0.032
0.03
108
0.028
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration
(a) Oscillation graph of Aci (b) Oscillation graph of Rei
parameter with optimized PID controller parameter with optimized PID controller

Figure 2: (a) Oscillation graph of Aci parameter with optimized PID controller. (b) Oscillation graph of Rei
parameter with optimized PID controller
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n candidate solution population is created. x; and V; represents the position of the vector and the velocity
vector in the i. iteration respectively [38]. At each step, the particle’s velocity is updated (Eq. (5)). Thus,
the position of the particle is also updated (Eq. (6)) [39].
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Vier = C1.Vi 4 Cory (Ppest — i) + (C3.73) (Gpest — Xi) 5)
xi=x;i + Vip (6)

C) parameter shows the inertia weight. This value controls the speed of the particle determined in the
previous iteration. C; and C3 parameters are constant acceleration [38]. 7, and r; are randomly selected
numbers in the [0,1] range [39]. The best particle position is expressed as Ppeg - Gpesr Shows the global
best position achieved so far [10]. When Clerc and Kennedy have taken C, and C; parameters as
2.05 and the inertia weight value as 0.729, they achieved the best results [40]. In this study, C, and C;
parameter values presented by Clerc and Kennedy were used.

2.3 Electro Search Algorithm (ESO)

Tabari and Ahmad’s algorithm was inspired by electrons moving in orbitals around the nucleus of an
atom. It’s based on the atom Bohr model of the atom and the Rydberg formula. The Rydberg formula
specifies the wavelength of the photon during the transition between energy levels by emitting photons of
electrons in orbitals around the nucleus.

1 1 1
X:R.(?_?) ™)

In the Rydberg formula specified in Eq. (7), A contains the wavelength of the wave, n; contains the
energy level of the electron in the last orbit, and »n; contains the orbital information of the electron to be
transitioned. The algorithm developed with this information consists of three stages. The self-tuning
Orbital Tunner method was used to determine the parameters [8]. The stages of ESO are given in the
following sections.

2.3.1 Dispersion of Atoms

As is the case with metaheuristic search algorithms, candidate solutions are randomly dispersed
throughout the search space (Fig. 3). Each candidate represents n atoms (particles) consisting of a nucleus
encircled by an electron orbital. Electrons are associated with orbits around the nucleus and are capable
of switching between them by absorbing or soaking specific qualities of energy (Bohr Model). As can be
seen from this, atoms (particles) represent candidate solutions to the optimization problem by exploring
fitness functions [8].

Figure 3: Atom dispersion [6]
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2.3.2 Orbital Transfer
Electrons around each nucleus migrate toward larger orbitals with greater energy levels. The concept of
quantized energy serves as the inspiration for this orbital transition [8].

1
e; = N; + (2 x rand — Z)<1 —t—2>r rand|0,1] t € {2,3,4,5} (8)

Here e; shows the position of the electron belonging to the ith nucleus, N; shows the current position of
the ith atom, rand refers to the random number from 0 to 1, while / shows the vector in which all components
are equal to 1, and t represents the energy level of 2,3,4,5 [41].

2.3.3 The Displacement of Nuclei
The new position of the nucleus is calculated in this stage using the difference in energy levels (Rydberg

formula) between the two atoms. In each iteration, the new position of the nucleus is calculated as shown in
Egs. (9) and (10) [8].

1

— — —

Dst;, = (beste - bestN) +Rep @ (—75 — _,—2)) )
besty Ny

Nyew = Ny — Acy x Dsty (10)

k shows the number of iteraiigr}s, DTfk refers to the displacement distancggf each nucleus compared to
their current position, while the best, is the best electron around the nucleus, besty is the best nucleus in the
iteration, N,., indicates the new location of the nucleus. Re and Ac represent the randomly selected
accelerator coefficients in the first iteration. So, the convergence rate depends on Re and Ac coefficients
[8] (See Fig. 4).

s S A N

global optimum

Figure 4: Displacement of nuclei [6]

2.3.4 Orbital-Tuner Method

Re and Ac algorithm coefficients used in Egs. (9) and (10) to determine the current position of the new
nucleus are necessary. First, these coefficients are chosen randomly. Following the initial iteration, the orbital
tuner method is used to recalculate these coefficients [8]. See Eqs. (11) and (12).



IASC, 2023, vol.35, no.3 2561

Re,‘
i Ni|Re;
Rey 1 = Rey + (Rebest + Zjizlﬁv |1 )/2 (ih
Svi|Rei
. AC,‘
\ l‘AC,’
Acpy = Acy + (Acbest + Zfl‘:]fzv |1 )/2 (12)
IilAc;

While j is the number of atoms and k is the number of iterations; Re; and Ac; show the algorithm
coefficients in iteration, fy;|Re; and fy;|Ac; show the fitness function values of the nucleus and lastly,
Repesy and Acp.s; represent the algorithm coefficients of the nucleus in the best position.

The orbital tuner method is used to iteratively orient all atoms towards the global optimum as shown in

(Fig. 5) [6].
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Figure 5: Orbital tunner method diagram

2.3.5 Improved ESO(ESPID) Algorithm Parameter Control System

It is intended to quickly and precisely locate the atom’s global best location using the intelligent PID
control system integrated into the ESPID algorithm parameter control system rather than the orbital tuner
approach used in the ESO algorithm. When the PID gain is set too far away from the target value in
control systems, the total error rate increases, and the system approaches the optimum point faster [42].
However, its continuous increase will raise the oscillation after a while. In order to prevent this issue, the
intelligent PID system is used. The primary aim of this approach is to determine the continuous error rate
and automatically apply the correction as in the PID systems [43].

In order to calculate the PID gain, it is necessary to define an error fitness function. Commonly used error
fitness functions are [43,44]:

T

1
Mean Squared Error (MSE) : ‘ / e(t))*dt (13)
0

T
Integral Time Absolute Error (ITAE) : / tle(t)|dt (14)
0

T
Integral of Absolute Error (IAE) : / le(t)|dt (15)
0
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T
Integral Square Error (ISE) : / e(t)*dt (16)
0

T
Integral Time Square Error (ITSE) : / te(t)*dt (17)
0

The error rate, e(¢), is calculated with Eq. (18).
(1) = da(t) — 6(1) (18)

Here e(t) refers to error rate, while d,(¢) shows target point and d(¢) indicates the current situation. The
target point is taken as the algorithm coefficients (Rep.ss and Acpes) corresponding to the best atom in the
algorithm (Egs. (19) and (22)). The current state is equivalent to the algorithm coefficients being formed
as the initial number of randomly chosen atoms. The mean squared error function (MSE) (Eq. (13)) was
used as the error fitness function. When the fitness function’s error is minimized, the desired outcome can
be accomplished [45].

In this study, the parameters in the PID control system, K, K;, K; are determined as a particle in the PSO
algorithm. Firstly, a random population was formed that had the parameters. Each iteration, the created
particles are assessed in the fitness function. The velocities and particles with the least value are identified
as the best ones in the swarm. Egs. (5) and (6) are also applied, and the particles are updated. This
situation continues for up to 10 iterations. The values obtained as a result of this are K,,K;, Ky
parameters. These parameters were used in Egs. (20) and (23). As per the equation results, the nucleus
algorithm coefficients required for the ESO algorithm (Re and Ac) are updated and included in the
algorithm (Eqgs. (21) and (24)). This process is continued until the conditions are fulfilled. Fig. 6 depicts
the block diagram of the ESPID algorithm, whereas Fig. 7 shows the algorithm itself.

errorRe (1) = Repex (1) — Re(1) (19)
Reu(t) = KyerrorRe(t) + Ki / errorRe(t)dt + Ky d”%rfem (20)
Re(t+ 1) = Re(t) + Re,(?) (1)
errorAc(t) = Acpes(t) — Ac(t) (22)
de(t) = Kyerrorde(t) + K; / errordc(t)dt + Kdd”%rf"@ (23)
Ac(t+ 1) = Ac(t) + Ae, (1) (24)

3 Discussion
3.1 Performance Evaluation
To evaluate the usability of the proposed ESPID algorithm, it is subjected to multi-modal benchmark test

functions. The results are compared with ESO, PSO, Atom Search, and VSM algorithms. A computer with a
dual-core 1.8 GHz CPU and 6 GB RAM was chosen for this comparison.

3.1.1 Benchmark Test Functions

To compare the performances of the algorithms, the literature review contains multi-modal test functions
that account for the difficulties inherent in global optimization problems. The formulation and optimum
values of a few of these tests were displayed in Tab. 1 [46].
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Figure 6: ESPID block diagram

3.1.2 Statistical Results

The tests belonging to benchmark test functions shown in Tab. 1 were performed for the five meta-
heuristic algorithms in the same conditions. The population of the algorithms was determined as 30. Each
was performed 30 times in 200 iterations using Matlab’s R2017b version. Because the objective is to
obtain the best outcome with the minimum possible populations and iterations. Additionally, each
iteration of the algorithm included a 0.1 s pause. The average result, standard deviation, best result, and
average duration values of the study are reported in Tab. 2.

When the ESPID and ESO algorithms were evaluated using the given statistical data, it was determined
that ESPID outperformed ESO in terms of the mean and standard deviation values for the Hartman 6,
Shubert, GoldStein-Price, Ackley, and Rosenbrock functions (Fig. 8). Additionally, when the mean CPU
durations are compared, Tab. 1 shows that the ESPID method converges to the correct result earlier.

While examined under the same conditions, the statistical results of these algorithms were compared to the
results of the other three meta-heuristic algorithms, namely PSO, Atom Search (ASO), and VSM. As a
consequence of the provided population and iteration, it was discovered that all algorithms were unable to
achieve the desired result. Even though no algorithm was able to achieve the optimal value of zero in the
Rosenbrock and Ackley functions, ESPID algorithms (4,43E—14) and PSO algorithms (8,45E—16) came the
closest to achieving the optimal value. In the multidimensional Hartman and Shekel 5 functions, it was
discovered that all methods achieved the optimal value at a certain point. When the mean values are
considered, however, it can be concluded that the ASO and ESO algorithms provide the worst values. All
algorithms reached the best value in the Foxholes function. The ESPID algorithm outperforms the
competition in this function, with a mean CPU time of 2,55 s. While VSM and ASO algorithms obtained the
optimum mean value of 3 in the GoldStein-Price function, the PSO method had the poorest outcome (See Fig. 9).
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3.1.3 Pressure Vessel Design Problem

In the pressure vessel design problem shown in (Fig. 10), the aim is to minimize the total production
cost. There are 4 decision variables in this design. These are body thickness T, head thickness 7}, inner

radius R and section length L [47].

x = Ts(x1), Tn(x2), R(x3), L(x4) objective function using the design vector [47]:

minf(x) = 0,6224 x;x3x5 + 1,778 X263 + 3,1661 x3x4 + 19, 84 x7x3

The constraints on this objective function are:
21(x) = —x; +0,0193x; <0
2 (x) = —x +0,009541x3 <0

4
23(x) = —max; — gnxg + 1296000 < 0

g4(x) =x4+240 <0

The simple limits of the problem are 0,0625 < x,x; <99 ve 10 < x3,x4 <200 [47].

(25)

(26)
@7

(28)

(29)
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Table 2: Comparison of meta-heuristics algorithms

Func. Statistics ESPID ESO VSM Atom Search PSO

Hartman 6  Average result  —3,3219862  —3,316550 —3,25431 —3,322837335 —3,24082088
Standard 0,001572226 0,0129707 0,075773 0,000268 0,12612
deviation
Best result —3,322368002 —3,322368009 —3,322368007 —3,22368011 —3,2236811
Mean duration  16,80314 18,10163 9,178157 8,93791 10,73448
value

Shekel 5 Average result  —10,15319193 —10,00124882 —7,55908280 —6,005657 —6,98243125
Standard 2,5999E-05  0,3917103 3,1191744 3,706758 13,5243223
deviation
Best result —10,15319968 —10,1531986 —10,15319968 —10,15319968 —10,5319968
Mean duration  21,40511 19,8128 -10,83375 10,98528 10,74098
value

Shubert Average result  —186,7308896 —186,715916 —186,7309088 —181,9153874 —186,7309088
Standard 9,3657E-05  0,068705501 3,50565E—10 9,306708127 1,23059E—-11
deviation
Best result —186,7309088 —186,7309008 —186,7309088 —186,70309088 —186,7309088
Mean duration  7,2292 7,356671 9,00824 10,85745 6,768558
value

Foxholes Average result  0,9980038 0,9980038 141,1557 0,998005 0,9980038
Standard 3,05068E—10 2,27528E—16 220,17144 5,93436E—06 3,45E-16
deviation
Best result 0,9980038 0,9980038 0,9980038 0,9980038 0,998003838
Mean duration  2.55 2,2967 10,83449 3,047294 10,737
value

GoldStein-  Average result  3,004974 3,013967 3 3 5,7

price Standard 0,024872 0,067238 2,66836E—12 1,54106E—12  14,78850
deviation
Best result 3 3 3 3 3
Mean duration 16,83 20,6310 10,83449 10,85567 10,73181
value

Ackley Average result  2.75E-06 1,69E-05 7,605932 10,85567 1,84E—08
Standard 4,3767E-06  4,3006E-05 1,261199 3,23E-08 2,02276E—-08
deviation
Best result 1,39E—-08 3,26E—07 5,50E—08 5,24492E-08  —5,80E—10
Mean duration 17,055 20,69132 7,6059 10,89497 10,73189
value

Rosenbrock Average result  1,86E—08 7,04E-01 7,93E-01 1,12E-01 1,47085E—13
Standard 7,716113E-08 1.2038075 3,007975 0,122303 5,89641E—13
deviation
Best result 4,43E—-14 5,85E—-12 5,50E-08 1,73E-05 8,45E-16
Mean duration 21,405 20,47905 10,838551 10,89497 10,73589

value




TASC, 2023, vol.35, no.3

Hartman 6

-3, 1
3,31655 650

13,32237
33219802 |
352237 I

-3,324 -3,322 -3,32 -3,318 -3,316 -3,314 -3,312
ESPID ESO
= Favg -3,3219862 -3,31655
M Fmin -3,32237 -3,32237

= Favg mFmin

Shubert

-186,715916
7 ESO
1567300 I
-186,7308896

186,735  -186,73  -186,725 -186,72 -186,715 -185,71 -186,705
ESPID ESO

u Favg -186,7308896 -186,715916

HFmin -186,7309 -186,7309

HFavg HFmin

GoldStein-Price

sorsse) I
3

3,02 3,015 3,01 3,005 3 2,995 2:99:
ESPID ESO
HFavg 3,004974 3,013967
B Fmin 3 3
M Favg EFmin
Rosenbrock
ESO
0
1,86E-08
ESPID
0
0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 )
ESPID ESO
™ Favg 1,86E-08 7,04E-01
= Fmin 0 0

W Favg EFmin

Shekel 5
-10,00124882
o | 05
-10,15319193
9,9 -9,95 -10 -10,05 -10,1 -10,15 -10,2
ESPID ESO
m Favg -10,15319193 -10,00124882
B Fmin -10,1532 -10,1532
®m Favg mFmin
Foxholes
ESO 0,9980038

0,998

0,9980038
ESPID —0,998

0,997998 0,997999 0,998 0,998001 0,998002 0,998003 0,998004 0,998005
ESPID ESO
m Favg 0,9980038 0,9980038
B Fmin 0,998 0,998
B Favg EFmin
Ackley
£SO 0_ 1,69€-05

espo I 2.756-06
0

0 0,0000020,0000040,0000060,0000080,000010,0000120,0000140,000016),000018

ESPID ESO
®Favg 2,75E-06 1,69E-05
= Fmin 0 0

mFavg mFmin
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Figure 10: Pressure vessel design problem [47]

While applying to the pressure vessel design problem, the population number was determined as 30 and
the number of iterations as 2000. Each population was run 30 times. The comparison of the performances of
the ESPID algorithm and the ESO algorithm is shown in Tab. 3. When the table is examined, the ESPID
algorithm is more successful with the decision variables x;_4 = (0.78020, 0.39240,40.32340, 198.38120)
and the lowest cost function value of 5885,452. In addition, when compared with other optimization
methods for the pressure vessel design problem in Tab. 4, it has been seen that it is more successful than
other methods in terms of worst, average and best values.

Table 3: Comparison of results for pressure vessel design problem

Method Decision variables Seost

X1 X2 X3 X4
ESO 0.81230 0.43130 43.09735 192.52650 5923,1522
ESPID 0.78020 0.39240 40.32340 198.38120 5885,452

Table 4: Pressure vessel design problem algorithm performance statistics

Method Worst value Best value Average value Standard deviation
GA 6364.4397 6198.8235 6253.4331 9.3221

ASO 6253.0225 6093.2783 6135.722 102,458

ESO 6728.4563 5923,1522 6314,468 222,047

ESPID 6149,458 5885,452 5984,147 84,393

4 Conclusions

A comparison has been made between the ESO algorithm and ESPID algorithm, which was developed
by including an intelligent PID control system rather than the self-tuning orbital-tuner method used in the
ESO algorithm. In this comparison, the population of the algorithms was decided to be 30, and the
number of iterations was determined as 200. Seven different constrained test functions were applied.
After the test was completed, it was discovered that the mean value of the ESPID algorithm performed
much better in all functions. Furthermore, when the average durations are taken into account, it can be
argued that it produces results faster than the ESO algorithm. When compared to other meta-heuristic
algorithms, such as PSO, ASO, and VSM, the ESPID algorithm produced closer results to the benchmark
test results. The ESPID algorithm has been applied to the pressure vessel design problem, which is a real-
life problem. According to the ESO algorithm, the production cost value gave the least cost with
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5885,452. Also, ESPID, when compared to GA, ASO and ESO algorithms, it has the least average
production cost with 5984,147 in problem solving.

The performance of the ESPID algorithm in real-life engineering problems can be compared to that of
other metaheuristic algorithms in the future.
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