
Honey Badger Algorithm Based Clustering with Routing Protocol for Wireless
Sensor Networks

K. Arutchelvan1, R. Sathiya Priya1,* and C. Bhuvaneswari2

1Department of Computer and Information Science, Annamalai University, Chidambaram, Tamilnadu, India
2Department of Computer Science, Government Arts and Science College, Thiruvennainallur, Tamil Nadu, India

*Corresponding Author: R. Sathiya Priya. Email: spmraj0607@gmail.com
Received: 11 March 2022; Accepted: 19 April 2022

Abstract: Wireless sensor network (WSN) includes a set of self-organizing and
homogenous nodes employed for data collection and tracking applications. It
comprises a massive set of nodes with restricted energy and processing abilities.
Energy dissipation is a major concern involved in the design of WSN. Clustering
and routing protocols are considered effective ways to reduce the quantity of
energy dissipation using metaheuristic algorithms. In order to design an energy
aware cluster-based route planning scheme, this study introduces a novel Honey
Badger Based Clustering with African Vulture Optimization based Routing
(HBAC-AVOR) protocol for WSN. The presented HBAC-AVOR model mainly
aims to cluster the nodes in WSN effectually and organize the routes in an
energy-efficient way. The presented HBAC-AVOR model follows a two stage
process. At the initial stage, the HBAC technique is exploited to choose an opti-
mal set of cluster heads (CHs) utilizing a fitness function involving many input
parameters. Next, the AVOR approach was executed for determining the optimal
routes to BS and thereby lengthens the lifetime of WSN. A detailed simulation
analysis was executed to highlight the increased outcomes of the HBAC-AVOR
protocol. On comparing with existing techniques, the HBAC-AVOR model has
outperformed existing techniques with maximum lifetime.

Keywords: Cluster based routing; wireless sensor networks; objective function;
lifetime; metaheuristics

1 Introduction

As an emerging paradigm of computing and networking, wireless sensor network (WSN) has been
applicable and relevant in different areas namely military, medicine, climate forecasting, surveillance,
environmental control, and so on [1]. Advances in networks and consistent development have empowered
wide-ranging application of WSN. In recent times, WSN has been incorporated with other concepts, such
as internet of things (IoT) [2]. A WSN is a network structure that comprises massive amount of
diminutive, minuscule, low-cost autonomous devices represented as sensors that detect and monitor the
environments for compiling information [3]. The information that is gathered from the environment is
later transmitted to the sink node, a destination where information is redirected or processed locally to
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other networks for diverse applications [4]. Because of the node communication, accessible deployment,
self-organization, and data transfer, WSN has various usage and advances, but also, they face certain
difficulties [5].

A homogeneous network comprises nodes taking similar energy, physical, and software characteristics,
whereas a heterogeneous network comprises nodes with distinct characteristics [6]. It is further effective
to implement the installation of heterogeneous network for balancing the load and energy of the networks
and to offer various features and amount of energy utilization of the node from the networks. The
clustering is an organized group of sensors in the network according to provided features [7]. All the
groups are determined as a cluster; A Cluster Head (CH) is presented in all the clusters i.e., accountable
for cluster members (CMs) and collect information from other CMs and forward them to a static or
Mobile Sink node (MS). An MS acts as a Base Station (BS) or BS might be distinct device with higher-
level ability. Fig. 1 displays the overview of WSN.

The clustering is very effectual in guaranteeing the energy utilization balance of WSN [8]. In that regard,
CH reduces energy utilization by preventing each node from contributing to data communication because
cluster node gathers the information they attain from the physical area. Simultaneously, CH delivers each
information they gather to BS on neighboring CH or in a single-hop transmission. In the homogeneous
WSN, communication ability of all the nodes is similar [9]. Since sensors have constraint balance
between the energy, direct communication of the gathered information in the CH to the sink isn’t an
energy effective solution for the largescale WSN. Therefore, multihop routing protocol is needed for
inter-cluster transmission and transport of the gathered information from the CH to the sink. Defining the
energy balanced shortest way for these purposes is an NP-hard problem. In the current work, routing and
clustering problems have been distinctly considered by many research workers [10].

Kiani et al. [11] progresses 3 meta-heuristic based techniques; gray wolf optimizer (GWO), incremental
GWO, and expanded GWO. These techniques carry out different difficult procedures with high efficiency
and much quicker. It contains cluster setup and data transmission stages. A primary stage concentrates on
clusters formation and CHs selective, and the secondary stage attempts for determining routes for data
broadcast. The researchers in [12] present a hybrid meta-heuristic approach in which optimum feature of

Figure 1: Overview of WSN
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Artificial Bee Colony (ACO) and Differential Evolution (DE) is integrated for evaluating the optimum group
of load-balanced CHs. The authors in [13] present a novel routing technique dependent upon teaching and
learning based optimization algorithm (TLBO) that is an existing and robust model containing 2 important
phases as Teacher and Learner. As TLBO is presented to continuous optimized problem, this case presents
the first utilize of TLBO for distinct problems of WSN routing.

Wang et al. [14] presented an effectual routing technique dependent upon the elite hybrid meta-heuristic
optimized technique. The presented technique comes as an original technique that newly brings together the
global search capabilities of particle swarm optimization (PSO) technique, variance operator of differential
technique, and pheromone of ant colony optimization (ACO) technique for avoiding local search and
maintaining diversity of populations. In [15], a novel Mobile Clustering Routing Protocol (MCRP)
dependent upon Thermal Exchange Optimization (TEO) simulated as Newton’s cooling law is named as
TEO-MCRP was projected for heterogeneous WSN. During the present protocol, 2 distinct techniques are
presented for CH selective and MS way recognition with main function containing independent fitness
parameters.

This study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based
Routing (HBAC-AVOR) protocol for WSN. The presented HBAC-AVOR model mainly aims to cluster the
nodes in WSN effectually and organize the routes in an energy-efficient way. The presented HBAC-AVOR
model follows a two stage procedure. At the initial stage, the HBAC technique is exploited to choose an
optimal set of CHs utilizing a fitness function containing many input parameters. Next, the AVOR
algorithm was executed for determining the optimal routes to BS and thereby lengthens the lifetime of
WSN. A detailed simulation analysis was executed for highlighting the enhanced outcomes of the
HBAC-AVOR protocol.

2 The Proposed Model

In this study, a new HBAC-AVOR algorithm was developed for energy aware cluster-based route
planning process in WSN. The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN
effectually and organize the routes in an energy-efficient way. The presented HBAC-AVOR model
follows a two stage process such as HBAC for cluster construction and AVOR based route selection.

2.1 Design of HBAC Technique

At the primary stage, the nodes in the WSN are initialized and communicated together. Then, the HBAC
technique was executed to cluster the network and elect CHs [16,17]. The Honey badger algorithm (HBA) is
a new meta-heuristic technique presented by Hashim et al. [16] dependent upon the hunting performance of
honey badgers. This technique seeks for creating a balance amongst the exploration as well as exploitation
stages by traveling the searching space rapidly and avoiding local optimal solutions. In addition, the HBA is
proven effective from resolve empirical problems with difficult searching space. Important stages of HBA
technique are summarized as follows:

During the exploration stage, the honey badger follows a honey guide bird for beehive and is estimated as:

xnew ¼ xprey þ F � r1 � a� dj (1)

whereas xnew refers the novel place of honey badger, xprey signifies the optimum prey place, F stands for the
flag which promotes exploration, di represents the distance amongst the prey and jth badger, and r1 defines the
arbitrary value amongst zero and one. In addition, a demonstrates the arbitrary control variable which
reduces the diversity of population and is computed as:
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a ¼ 2� exp
�t

Max It

� �
(2)

During the exploitation stage, the honey badger digs from the cardioid-shaped motion and is
estimated as:

xnew ¼ xprey þ F � b� Ij � xprey þ F � r2 � a� di

� cos 2pr3ð Þ � 1� cos 2pr4ð Þ½ �j j (3)

In which Ij refers the intensity factor that is dependent upon the distance amongst all 2 neighboring
searching agents and distance amongst the prey and honey badger. In addition, r2; r3 and r4 are arbitrary
variables in zero to one. The capability of honey badger for obtaining food was demonstrated as the
parameter b that is taken as 6 under this case. An essential stage of the HBA technique is summarized as
follows:

i) Initializing the amount of honey badgers (population size) with arbitrary places.
ii) Fixed the parameters MaxIt; d; and intensity factor I :
iii) Upgrade the reducing factor a.
iv) Estimate the fitness function (FF) of all honey badgers places.
v) Compute the honey badger place xnew.
vi) Estimate a novel place and allocate a novel FF fnew:
vii) Upgrade fnew still, the maximal count of iterations is obtained.

The aim of HBAC objective function (OF) is to allocate the node with minimal cost as CH and fitness
parameter is determined in the following [17]. The residual energy (RE) is the fitness parameter, Fres. The
amount of the ratio of RE of node i is related to Eri and the overall energy of network Et. It can be
essential to estimate the RE of all the nodes for every iteration. Consequently, a balanced energy
depletion can be accomplished from the networks.

Fres ¼
Xn
i¼1

Eri

Et
(4)

In which n represent the overall amount of nodes. A node having lower Fres rises the possibility of
selecting as a CH : Alternative of the fitness parameter is the average energy Famg of node. This variable
represents that node with higher primary energy are highly possibly that chosen CH. Famg can be
estimated in the following equation and normalized within the range of [0,1]. Now Ei represent the RE of
node i:

Favg ¼ 1

n

Xn
i¼1

Ei (5)

Another fitness parameter is the distance Fdistð Þ of node in the MS. The node nearer to the MS consumes
lesser energy when transmitting information. Thus, it can be essential to take this variable as basis such that
further accurate OF is estimated. Fdist can be shown as follows.

Fdist ¼
Xn
i¼1

d nitoMSð Þ
d navgitoMSð Þ (6)

In which d navgitoMSð Þ and d nitoMSð Þ denotes the average and euclidean distance of node i to the MS,
correspondingly. The next parameter is the amount of neighbors near the node from the cluster. When the
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amount of nodes from the cluster rises, the data transmission problem rises. Then, there is need to consider
the amount of neighbors near the node in CH selection. The fitness variable Fneig express the amount of
neighbors of a node.

Fneig ¼
Pncl
i¼1

d i; jð Þ
ncl

(7)

whereas d i; jð Þ denotes the distance amongst nodes i and j, and nd indicates the amount of nodes in the cluster.
At last, combining the objective function with fitness parameter is estimated by the following equation.

Fobj ¼ f � Fres þ c � Favg þ d � Fdisf þ h � Fneig (8)

Now f; c; d and h weight coefficient is multiplied with the fitness parameter and the sum is 1
fþ cþ dþ h ¼ 1ð Þ.

2.2 Design of AVOR Technique

Next to CH selection, the routes are optimally chosen by the use of AVOR technique. The AVO is a
current metaheuristic approach is presented depending on the navigation and foraging behaviors of
African vultures [18]. Furthermore, the AVO approach has lower computation difficulty and is more
adaptable when compared to other metaheuristic approaches. As well, the exploration and exploitation
stages of the AVO are given in the following:

In exploration phase, the probability of choosing the vulture to bring the other vultures to one of the
optimal solutions in all the groups is calculated by:

P iþ 1ð Þ ¼ R ið Þ � X � R ið Þ � P ið Þj j � F if P1 � randp1
R ið Þ � F þ r1 � U � Lð Þ � r2 þ Lð Þ if P1 , randp1

�
(9)

whereas P ið Þ; P iþ 1ð Þ represents the location of the vulture in the existing and the subsequent iteration,
correspondingly. Furthermore, F represent the satiation rate of vulture, U ; and L indicates the upper and
lower bounds of the searching agent, correspondingly, r1; r2 and X denotes arbitrary parameters and
vector represents the arbitrary movement of vulture. Moreover, randp1 denotes an arbitrary value within
[0,1] i.e., generated for selecting the approach in the exploration stage, and R ið Þ is represented by:

R ið Þ ¼ Best Vulture1 if Pi ¼ L1
Best Vulture2 if Pi ¼ L2

�
(10)

whereas Best Vulture1 and Best Vulture2 denotes the optimal solution of the 1st and 2nd groups in the
existing iteration, correspondingly. The variables L1 and L2 are initialized beforehand the optimization
search, within [0,1] and the sum of these two variables is 1. Fig. 2 showcases the steps involved in
AVOR technique.

In exploitation phase, two approaches are proposed according to the satiation rate of the vulture (F). If
F � 0:5, the vulture would compete for food in a rotational movement that is estimated as follows:

P iþ 1ð Þ ¼ X � R ið Þ � P ið Þj j � F þ r3ð Þ � R ið Þ � P ið Þð Þ if P2 � randp2
R ið Þ � S1 þ S2ð Þ if P2 < randp2

�
(11)
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whereas S1 and S2 denotes the spiral flight movement and it is shown below:

S1 ¼ R ið Þ � r4 � P ið Þ
2p

� �
� cos P ið Þð Þ (12)

S2 ¼ R ið Þ � r5 � P ið Þ
2p

� �
� sin P ið Þð Þ (13)

In which r3; r4 and r5 denotes arbitrary parameters, and R ið Þ can be shown below. As well, randp2 and
randp3 denotes arbitrary values within [0,1] that are generated for selecting the appropriate approach in the
exploitation state. Furthermore, another vulture becomes aggressive at the time of foraging if F < 0:5 and it
is estimated by the following formula:

P iþ 1ð Þ ¼
A1 þ A2

2
if P3 � randp3

R ið Þ � R ið Þ � P ið Þj j2 � F � Levy X � R ið Þð Þ if P3, randp3

8<
: (14)

whereas A1 and A2 represents the movement of vultures and it is shown below:

A1 ¼ Best Vulture1 ið Þ � Best Vulture1 ið Þ � P ið Þ
Best Vulture1 ið Þ � PðiÞ2 � F (15)

A2 ¼ Best Vulture2 ið Þ � Best Vulture2 ið Þ � P ið Þ
BestvVulture2 ið Þ � PðiÞ2 � F (16)

Additionally, the Levy motion is utilized for increasing the efficacy of the AVO approach. At last, the
AVO approach has proved efficient in resolving distinct optimization issues.

For determining the optimum group of routes, the dimensional of every AV is initiated that is equivalent
to CH, and more place is located from the BS. Assume, hi ¼ ðhi1; hi2jhipþ1Þ is ith fish, hini represents the real
value lies from the interval of zero and one. Afterward, the provided function was utilized for determining the
following hop to destination and is determined as:

Figure 2: Steps involved in AVOR technique
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f xð Þ ¼ fi; for which i

k
� Xif j

� �����
����is minimum; 8i1 � i � k (17)

The purpose is for determining the optimum group of routes in CH for destination utilizing a FF
including 2 parameters such as energy and distance. Primarily, the RE of next-hop node was defined and
the node with maximal energy is preserved as relay node. The first sub-objective f 1 is given as:

f 1 ¼
Xm
i¼1

ECHi (18)

In addition, Euclidean distance was executed for determining the distance in CHs to destination. The
minimization of energy dissipation was mostly dependent upon the communication distance. Thus, the
next sub-objective by means of distance is f 2 that is demonstrated as:

f 2 ¼ 1Pm
i¼1 dis CHi; NHð Þ þ dis NH ; BSð Þ (19)

The aforementioned sub-objectives are summarized as to a FF as provided under in which a1 and a2
refers the weighted allocation to all sub-objectives.

Fitness ¼ a1 f 1ð Þ þ a2 f 2ð Þ; where
X2
i¼1

ai ¼ 1aie 0; 1ð Þ; (20)

3 Results and Discussion

In this section, a detailed investigation of the results obtained by the HBAC-AVOR model is performed
using two scenarios based on the position of sink. The position of sinks in scenarios 1 and 2 are (100, 100)
and (200, 200) respectively. A comparative analysis is made with genetic algorithm (GA), ACO, PSO, and
thermal exchange optimization-based clustering routing protocol (TEOMCRP).

Tab. 1 and Fig. 3 investigates the network lifetime (NLFT) examination of the HBAC-AVOR model with
existing models under two scenarios. The experimental results indicated that the HBAC-AVOR model has
resulted in improved NLFT over the other methods under two distinct scenarios. For instance, with
scenarios 1 and 100 nodes, the HBAC-AVOR model has offered increased NLFT of 33712 rounds whereas
the GA, ACO, PSO, and TEOMCRP algorithms have obtained reduced NLFT of 20109, 25159, 28869, and
31239 respectively. At the same time, with 200 nodes, the HBAC-AVOR model has provided maximum
NLFT of 43709 rounds whereas the GA, ACO, PSO, and TEOMCRP algorithms have attained reduced
NLFT of 31960, 35258, 39071, and 40411 respectively. Similarly, with 500 nodes, the HBAC-AVOR
model has resulted in increased NLFT of 59683 rounds whereas the GA, ACO, PSO, and TEOMCRP
algorithms have accomplished decreased NLFT of 52881, 55663, 57312, and 58137 rounds respectively.

Tab. 2 and Fig. 4 explore the comparative energy consumption (ECM) results of the HBAC-AVOR model
and existing techniques. The achieved results specified that the HBAC-AVOR model has found reduced ECM
under two scenarios and node count. For instance, with scenarios 1 and 5000 rounds, the HBAC-AVOR model
has presented least ECM of 20 J whereas the GA, ACO, PSO, and TEOMCRP algorithms have gained
increased ECM of 27, 24, 23, and 21 J respectively. Besides, with 25000 rounds, the HBAC-AVOR model
has resulted in lower ECM of 94J whereas the GA, ACO, PSO, and TEOMCRP algorithms have reached
higher ECM of 108, 104, 101, and 98 J respectively. Moreover, with 45000 rounds, the HBAC-AVOR
model has led to minimal ECM of 132 J whereas the GA, ACO, PSO, and TEOMCRP algorithms have
resulted in maximum ECM of 155, 150, 148, and 145 J respectively.
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Table 1: Network lifetime analysis of HBAC-AVOR technique with existing algorithms under two scenarios

Network lifetime (Rounds)

No. of nodes Genetic alg. Ant colony opt. Particle swarm opt. TEOMCRP HBAC-AVOR

Scenario-1 (Sink at (100, 100))

100 20109 25159 28869 31239 33712

150 26395 30415 34434 36083 39587

200 31960 35258 39071 40411 43709

250 37422 39071 43194 45461 48553

300 40926 43709 46388 47728 50511

350 42472 46388 52056 52881 55148

400 47522 51850 54221 55663 58549

450 51026 54427 56797 57725 58858

500 52881 55663 57312 58137 59683

Scenario-2 (Sink at (200, 200))

100 18368 22708 26578 29276 34085

150 23529 27986 32208 34788 39363

200 28220 33029 35492 39363 44523

250 31973 37251 41122 43819 47573

300 37251 40770 44758 46517 50270

350 40184 45579 48276 52147 55079

400 42998 47925 50739 54258 56838

450 45579 49684 53085 56017 57777

500 49332 52382 54727 57659 58598

Figure 3: NLFT analysis of HBAC-AVOR technique under two scenarios
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Table 2: Energy consumption analysis of HBAC-AVOR technique with existing algorithms under two scenarios

Energy consumption (J)

No. of rounds Genetic alg. Ant colony opt. Particle swarm opt. TEOMCRP HBAC-AVOR

Scenario-1 (Sink at (100, 100))

0 0 0 0 0 0

5000 27 24 23 21 20

10000 44 43 42 40 38

15000 66 63 63 61 57

20000 88 87 85 82 79

25000 108 104 101 98 94

30000 130 128 125 120 111

35000 150 148 145 140 124

40000 155 150 148 145 132

Scenario-2 (Sink at (200, 200))

0 0 0 0 0 0

5000 22 22 21 19 15

10000 46 44 42 36 27

15000 68 64 61 60 55

20000 89 87 85 79 74

25000 109 107 108 93 89

30000 133 129 128 125 114

35000 151 150 150 133 120

40000 156 152 150 140 128

Figure 4: ECM analysis of HBAC-AVOR technique under two scenarios
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Tab. 3 and Fig. 5 investigate the packet delivery ratio (PDR) and packet loss rate (PLR) examination of
the HBAC-AVOR technique with existing algorithms under two scenarios. The experimental results
demonstrated that the HBAC-AVOR model has resulted in improved PDR over the other methods under
two distinct scenarios. For instance, with scenarios 1 and 100 nodes, the HBAC-AVOR model has
offered increased PDR of 99.83% whereas the GA, ACO, PSO, and TEOMCRP systems have obtained
reduced PDR of 97.78%, 97.86%, 98.25%, and 99.68% correspondingly. Simultaneously, with
200 nodes, the HBAC-AVOR methodology has provided maximal PDR of 98.77% whereas the GA,
ACO, PSO, and TEOMCRP approaches have attained reduced PDR of 95.86%, 96.75%, 97.98%, and
98.20% correspondingly. Likewise, with 500 nodes, the HBAC-AVOR model has resulted in increased
PDR of 96.01% whereas the GA, ACO, PSO, and TEOMCRP algorithms have accomplished decreased
PDR of 90.59%, 92.49%, 94.04%, and 94.73% correspondingly. Followed by, the achieved results
specified that the HBAC-AVOR model has found reduced PLR under two scenarios and node count. For
instance, with scenarios 1 and 100 nodes, the HBAC-AVOR model has presented least PLR of 0.17% but
the GA, ACO, PSO, and TEOMCRP algorithms have gained increased PLR of 2.22%, 2.14%, 1.75%,
and 0.32% respectively. Moreover, with 250 nodes, the HBAC-AVOR system has resulted in lower PLR
of 1.77% whereas the GA, ACO, PSO, and TEOMCRP algorithms have reached higher PLR of 4.66%,
4.02%, 2.83%, and 2.05% correspondingly. In addition, with 500 nodes, the HBAC-AVOR model has led
to minimal PLR of 3.99% whereas the GA, ACO, PSO, and TEOMCRP algorithms have resulted in
maximal PLR of 9.41%, 7.51%, 5.96%, and 5.27% correspondingly.

Table 3: PDR and PLR analysis of HBAC-AVOR technique with existing algorithms under two scenarios

No. of nodes Genetic alg. Ant colony opt. Particle swarm opt. TEOMCRP HBAC-AVOR

Packet delivery ratio (%)

Scenario-1

100 97.78 97.86 98.25 99.68 99.83

150 96.21 96.94 98.15 98.89 99.04

200 95.86 96.75 97.98 98.20 98.77

250 95.34 95.98 97.17 97.95 98.23

300 94.41 95.34 96.16 97.29 97.78

350 94.11 94.73 95.71 96.77 97.09

400 93.18 93.92 95.27 96.11 96.53

450 91.90 93.05 94.46 95.66 96.11

500 90.59 92.49 94.04 94.73 96.01

Scenario-2 (Sink at (200, 200))

100 95.89 96.55 97.60 97.91 98.91

150 93.02 94.61 95.85 97.91 98.45

200 92.32 94.11 94.84 97.17 98.33

250 91.70 93.45 94.11 96.28 97.75

300 90.93 92.91 94.03 95.66 97.64

350 90.50 92.01 93.02 95.23 97.21

400 89.88 91.67 92.25 94.77 96.63

450 89.15 91.24 91.70 93.95 95.97

500 88.45 90.97 90.93 93.14 95.00
(Continued)
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Tab. 4 and Fig. 6 demonstrate the comparative ETED results of the HBAC-AVOR system and existing
techniques. The achieved results specified that the HBAC-AVOR methodology has found reduced ETED
under node counts. For sample, with 100 nodes, the HBAC-AVOR model has presented least ETED of
0.99 ms whereas the GA, ACO, PSO, and TEOMCRP algorithms have gained increased ETED of 7.50,
4.57, 3.27, and 1.96 ms correspondingly. Moreover, with 250 nodes, the HBAC-AVOR methodology has
resulted in lower ETED of 17.28 ms whereas the GA, ACO, PSO, and TEOMCRP algorithms have
reached higher ETED of 57.68, 44, 31.62, and 25.75 ms correspondingly. Moreover, with 500 nodes, the
HBAC-AVOR model has led to minimal ETED of 67.46 ms whereas the GA, ACO, PSO, and
TEOMCRP algorithms have resulted in maximum ETED of 129.37, 108.19, 88.96, and 77.56 ms
correspondingly.

Tab. 5 offers a brief examination of the results offered by the HBAC-AVOR model with existing models
on two scenarios. The experimental values indicated that the HBAC-AVOR model has accomplished
maximum number of received packets over the other methods. The HBAC-AVOR model enables to
receiving of 681249 and 663815 packets under two scenarios. The experimental analysis indicated that
the HBAC-AVOR model has resulted in effectual outcomes over the other methods.

Table 3 (continued)

No. of nodes Genetic alg. Ant colony opt. Particle swarm opt. TEOMCRP HBAC-AVOR

Packet loss rate (%)

Scenario-1

100 2.22 2.14 1.75 0.32 0.17

150 3.79 3.06 1.85 1.11 0.96

200 4.14 3.25 2.02 1.80 1.23

250 4.66 4.02 2.83 2.05 1.77

300 5.59 4.66 3.84 2.71 2.22

350 5.89 5.27 4.29 3.23 2.91

400 6.82 6.08 4.73 3.89 3.47

450 8.10 6.95 5.54 4.34 3.89

500 9.41 7.51 5.96 5.27 3.99

Scenario-2 (Sink at (200, 200))

100 4.11 3.45 2.40 2.09 1.09

150 6.98 5.39 4.15 2.09 1.55

200 7.68 5.89 5.16 2.83 1.67

250 8.30 6.55 5.89 3.72 2.25

300 9.07 7.09 5.97 4.34 2.36

350 9.50 7.99 6.98 4.77 2.79

400 10.12 8.33 7.75 5.23 3.37

450 10.85 8.76 8.30 6.05 4.03

500 11.55 9.03 9.07 6.86 5.00
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Figure 5: PDR and PLR analysis of HBAC-AVOR technique under two scenarios

Table 4: ETED analysis of HBAC-AVOR technique with existing algorithms

End to end delay (ms)

No. of nodes Genetic alg. Ant colony opt. Particle swarm opt. TEOMCRP HBAC-AVOR

100 7.50 4.57 3.27 1.96 0.99

150 23.47 16.63 12.72 8.16 4.90

200 30.96 25.10 22.49 12.72 8.81

250 57.68 44.00 31.62 25.75 17.28

300 62.57 53.12 41.07 32.27 24.77

350 74.63 58.99 46.28 37.16 30.31

400 81.47 66.48 57.03 44.65 38.46

450 100.69 85.38 68.44 60.29 52.47

500 129.37 108.19 88.96 77.56 67.46
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4 Conclusion

In this study, a new HBAC-AVOR algorithm was developed for energy aware cluster-based route
planning process in WSN. The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN
effectually and organize the routes in an energy-efficient way. At the primary stage, the nodes in the
WSN are initialized and communicated together. Then, the HBAC algorithm was executed for clustering
the network and elect CHs. Next to CH selection, the routes are optimally chosen by the use of AVOR
technique. The AVOR technique is applied for determining the optimal routes to BS and thereby
lengthens the lifetime of WSN. A detailed simulation analysis was implemented to highlight the increased
outcomes of the HBAC-AVOR protocol. On comparing with existing techniques, the HBAC-AVOR
model has outperformed recent algorithms with maximal energy efficiency and lifetime. In future, data
aggregation concepts can be improved for improving the overall performance.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Figure 6: ETED analysis of HBAC-AVOR technique with existing algorithms

Table 5: Comparative analysis of HBAC-AVOR technique with existing algorithm under two scenarios

No. of packets received by base station

Methods Scenario-1 Scenario-2

Genetic alg. 547584 501673

Ant colony opt. 594658 542935

Particle swarm opt. 647542 612092

TEOMCRP 669626 652192

HBAC-AVOR 681249 663815
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