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Abstract: In recent years, cloud computing has provided a Software As A Service
(SaaS) platform where the software can be reused and applied to fulfill compli-
cated user demands according to specific Quality of Services (QoS) constraints.
The user requirements are formulated as a workflow consisting of a set of
tasks. However, many services may satisfy the functionality of each task; thus,
searching for the composition of the optimal service while maximizing the QoS
is formulated as an NP-hard problem. This work will introduce a hybrid Artificial
Bee Colony (ABC) with a Cuckoo Search (CS) algorithm to untangle service
composition problem. The ABC is a well-known metaheuristic algorithm that
can be applied when dealing with different NP-hard problems with an outstanding
record of performance. However, the ABC suffers from a slow convergence
problem. Therefore, the CS is used to overcome the ABC’s limitations by
allowing the abandoned bees to enhance their search and override the local
optimum. The proposed hybrid algorithm has been tested on 19 datasets and then
compared with two standard algorithms (ABC and CS) and three state-of-the-art
swarm-based composition algorithms. In addition, extensive parameter study
experiments were conducted to set up the proposed algorithm’s parameters. The
results indicate that the proposed algorithm outperforms the standard algorithms
in the three comparison criteria (best fitness value, average fitness value, and
average execution time) overall datasets in 30 different runs. Furthermore, the
proposed algorithm also exhibits better performance than the state–of–the–art
algorithms in the three comparison criteria over 30 different runs.

Keywords: Cloud computing; web service composition; artificial bee colony;
cuckoo search

1 Introduction

Over recent times, most computations have been done on the cloud rather than by local computers. The
servers are located in cloud data centers in the cloud environment, where the infrastructures, software, and
platforms are introduced as an internet-based service [1]. The main purpose of cloud computing is to facilitate
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integration regarding both software and hardware services to produce a final product introduced to clients [2].
Cloud computing has developed rapidly, so this advance has enticed service providers into publishing
worldwide. Nowadays, the published web services in the cloud appear to be a service-based system
solution, and various protocols are designed to describe, search, and invoke the service-based software
across the cloud. This solution was introduced to build the application for enterprises under the term of
Web Service Composition (WSC) [3].

In WSC, the process is initiated through the decomposition of the clients’ requests, where this request is
formed as a workflow, including several different tasks subject to quality of services (QoS) constraints. As a
result, optimization algorithms play a vital role in selecting an efficient QoS and achieving customer
satisfaction. Several web services can be chosen for clients’ requests where these services are called
candidates. However, these several web services perform a similar function to the various non-functions
called QoS. The QoS can be defined as non-functional requirements of the web services, such as cost,
response time, and availability. The flow of the WSC process is illustrated in Fig. 1.

Searching for optimal/near-optimal solutions is crucial in WSC. All possible web services/task could be
selected in an exhaustive manner to form the best path. However, selecting the best paths in this way is
inapplicable for large workflow. If the workflow contains X tasks and Y web services/tasks, then Yx

paths should be evaluated at an extremely huge computational cost. Therefore, searching for the optimal
solution for WSC is formulated as an NP-hard problem. Recently, metaheuristic algorithms have
presented an efficient and effective option when solving NP-hard problems [4]. The metaheuristic
algorithms are mostly inspired by nature [5], the inspiration of their source being evolutionary (e.g.,
genetic algorithm), swarm (e.g., artificial bee colony optimization), and physical (e.g., simulated
annealing) [6]. Metaheuristic algorithms have two contradictory searching mechanisms: Exploration
(exploring the search space) and exploitation (exploiting the past knowledge of the best solutions found
so far).

The artificial bee colony (ABC) is a metaheuristic algorithm that has been developed and inspired by the
behavior of honey bees while foraging [7]. The ABC has the advantages of being easy to implement, few
parameters needing to be controlled, competitive performance [8], and it is widely used in many

Figure 1: WSC process flow
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problems such as traveling salesman, multiple knapsack, and job shop scheduling. Meanwhile, it has the
disadvantage of being poor in exploration because its searching mechanism is based on neighborhood
search. Therefore, it has a fast convergence speed, so it is easily trapped in a premature convergence [9].
For such an algorithm, its performance can be enhanced by hybridizing with other algorithms with slow
convergence speed, such as cuckoo search (CS).

Furthermore, the CS is a metaheuristic algorithm that was recently introduced by Yang et al. [10]. It
simulates the behavior of some cuckoo species, which parasitize the host nests by laying their eggs in
them. The possible parasitism cases are: The host distinguishes the cuckoo eggs and will then abandon
the nest or dispose of these eggs. Elsewhere, the host doesn’t differentiate the cuckoo eggs, and these
eggs then survive and become mature. In this work, a hybrid variant of the ABC and CS was developed
to solve the WSC problem. The proposed ABC variant combines the CS algorithm exploration with the
ABC’s exploitation. In this case, the scout bees adopt the Lévy flight before abandoning the bad
solutions. The cuckoos collaborate with scout bees to avoid ABC getting stuck in a local minimum,
where a set of cuckoos receives the poor bees and tries to enhance them. In the case of no improvement,
the scout bees abandon these solutions.

The rest of this work is structured as follows: Section 2 focuses on related works. Sections 3 and
4 provide an overview of the standard ABC and CS algorithms. In Section 5, the proposed algorithms
will be described. Section 6 shows the experiments ‘results. The conclusion is presented in Section 7.

2 Related Works

Many swarm-based algorithms are proposed to deal with WSC problems, achieving good performances.
In the literature, many review studies introduced extensive reviews of swarm-based and other optimization
algorithms applied to WSC, such as [11,12]. In this section, a review of recent web service composition ABC
and CS research will be presented, and the research’s contribution in improving the metaheuristic searching
mechanisms (exploration and exploitation) of the ABC variants will be highlighted.

Seghir [13] proposed a fuzzy artificial bee colony where the ranking method and fuzzy distance are
integrated to keep the solution diversity of an artificial bee colony. The proposed algorithm proposed a
trapezoidal fuzzy to deal with QoS constraints’ ambiguity and didn’t improve on any of the metaheuristic
searching mechanisms of ABC (exploration and exploitation). Zhang et al. [14] introduced a
neighborhood search to enhance the search abilities of artificial bee colonies and used opposition learning
to maintain initialization diversity. Regarding metaheuristic searching mechanisms, the proposed work
enhanced the ABC exploration by applying opposition learning to enhance the ABC initial population
and the ABC exploitation using the dynamic adjust search range. Arunachalam et al. [15] added the
integrated probability and acceptance rule-based approaches to optimize artificial bee colony search. The
proposed enhancement supports exploration and exploitation balancing using acceptance rules and three
probabilistic searches. The acceptance rule is used to support exploitation in the employee and onlooker
phases, while three probabilistic searches are used to support exploration in the employee phase.
Meanwhile, Dahan et al. [4] proposed ABC enhancement based neighborhood searches where the farthest
nodes are preferred in the early stages (support exploration) while the near nodes are preferred in the later
stages (support exploitation). The aforementioned research has been improved on [16] whereby a second
step was added based on the swapping method to exploit the search space knowledge of the best bees.
Chandra et al. [17] then introduced a modified instance of the ABC with the new search procedure
applied to employed bees, and differential evolution instance applied to onlooker bees. The search
procedure supports the exploration of the ABC, while exploitation is enhanced by differential evolution.
Seghir et al. [18] proposed a novel interval-based method to enhance the ABC’s performance. A
neighborhood selection method was subsequently proposed to enhance ABC exploitation. Arunachalam
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et al. [19] introduced ABC enhancement based on cosine similarity and combinatorial strategical method.
This cosine similarity is used to support ABC exploitation combinatorial strategical search for exploration.

Zhou et al. [9] utilized the Pareto dominance to optimize the ABC using the CS Lévy flight for
optimizing the employed bee search. The proposed work aimed to balance exploration and exploitation
by designing a comprehensive learning strategy for onlooker search. Furthermore, Zhou et al. [20]
introduced another hybrid algorithm of the ABC and CS. In the proposed algorithm, the CS Lévy flight is
used by onlookers to improve exploitation, and the Lévy flight perturbation rate and step size are adjusted
using a parameter adaptive strategy. Karthikeyan et al. [21] proposed a hybrid artificial bee colony to
optimize web services search. The genetic algorithm utilized in this work to generate new solutions was
set by composing the web services randomly.

Subbulakshmi et al. [22] optimized the service quality using a genetic algorithm, and cuckoo search is
used to search for an optimal combination of web services. Ghobaei-Arani et al. [1] presented a cuckoo
search algorithm while considering a distributed network. The quality with the credibility of service was
considered in [23]. In addition, local optimization and the cuckoo search were integrated to search for
optimal solutions. An adaptive cuckoo search was proposed in [24]. A new feature was added to optimize
the exploration in the proposed algorithm, such as parameter adaption and linear population reduction.
Thangaraj et al. [25] used the cuckoo search algorithm to search for an optimal services combination. A
multi cuckoo [26] was proposed to solve the composition problem. Kouchi et al. [27] used the CS to
solve the WSC problem over the cloud computing environment.

Recently, many swarm-based algorithms have been introduced to untangle the service composition
problem. Allali et al. [28] presented a framework to address the WSC problem based on the ant colony
optimization and the mobile agents. A hybrid algorithm ant colony optimization and the genetic
algorithm is introduced in [29]. Li et al. [30] improved the convergence speed of the artificial bee
colony algorithm using the genetic algorithm. Teng et al. [31] proposed enhancing the whale optimization
algorithm based on the logarithmic convergence factor and aggregation potential energy. The improved
eagle algorithm is introduced in [32]. Dogani et al. [33] introduced a hybrid particle swarm optimization
and genetic algorithm where the genetic algorithm is used to enhance the exploration and exploitation of
particle swarm optimization.

Due to swarm-based algorithms’ stochastic nature, these algorithms cannot guarantee the best path for
WSC problems. Moreover, the optimization No-Lunch-Free theorem (NLF) [34] emphasizes the disability of
fining an optimizer good enough to settle all optimization problems. As a result, the current swarm-based
algorithms for the WSC problem can suffer from degraded performance. This idea motivates the
proposed work to introduce and investigate the efficiency of swarm-based hybridization.

3 Artificial Bee Colony

The ABC belongs to the population-based metaheuristic algorithms proposed by Karaboga [7,8]. It
mimics the behavior of honey bees during their foraging. The ABC algorithm initializes the bees with
random solutions using Eq. (1). Afterward, it measures solution quality according to the fitness function,
which varies based on problems to memorize only the one best solution. Then, it dispatches three
different types of bees (employee, onlooker, and scouts) that aim to search for global optimum using
neighborhood search. The ABC algorithm is easy to use and has a few control parameters to tune
(population size (N), maximum iterations (T), and searching limitations (limits)).

xij ¼ xmin;j þ randð0; 1Þðxmax;j�xmin;jÞ (1)

where xij ( i = 1, 2,…,N is the source number, j = 1, 2,…,D is the optimized parameters) is the new jth food
source for ith bees. xmax;j; xmin;j are the maximum and minimum of the jth food source.

3388 IASC, 2023, vol.35, no.3



At first, the ABC dispatches a group of bees (employee bees) to explore the search space and share the
information with another group of bees (onlooker bees). Employee bees search for new solutions in
accordance with the current solution neighborhood search, as shown in Eq. (2). Afterward, the fitness of
each employee bee is computed, and ABC compares the current best solution with the best solution
found so far and memorizes only the one best solution.

vij ¼ xij þ ’ðxij � xkjÞ (2)

where xij is the current solution, xkj (k = 1, 2,…,N is the food source) is a solution based on the neighborhood
search, and ’ 2 ½�1; 1�.

Secondly, the onlooker bees wait for the employee bees to finish searching for new solutions to select
one to follow. They likewise search for new solutions relating to the current solution neighborhood search, as
shown in Eq. (2) The selection mechanism is based on the probability of the solution quality of the employee
bees, as shown in Eq. (3) Afterward, the fitness of each onlooker bee is computed, and the ABC compares the
current best solution with the best solution found so far and memorizes only the one best solution.

pi ¼ fitðxiÞPN
l¼1 firðxlÞ

(3)

where fit represents the solution quality of ith food source, N is the source number.

Finally, the scout bees monitor the solution improvement of each employee and onlooker bees, and they
increase the improvement counter (limit) when these bees have no improvement. In the case of the employee
and onlooker bees exceeding searching limitations (limits), the scout bees abandon the bad solutions and
initialize poor bees with random solutions using Eq. (1).

The aforementioned steps will be repeated until ABC reaches the maximum iterations (T). Then, ABC
will stop and return the best solution.

4 Cuckoo Search Algorithm

CS also belongs to the population-based metaheuristic algorithms proposed by Yang et al. [34]. In
nature, some cuckoo species parasitize the host nests by laying their eggs in them. The possible
parasitism cases are: The host distinguishes the cuckoo eggs, and it will then abandon the nest or dispose
of these eggs. Elsewhere, the host doesn’t differentiate the cuckoo eggs, and these eggs then survive and
become mature.

The CS mimics the brood parasitism behavior of some cuckoo species. Firstly, the CS algorithm
initializes the cuckoos with random solutions. Afterward, it measures the solution quality in accordance
with the fitness function, which varies based on the problem of memorizing only the one best solution.
Secondly, it randomly gets a cuckoo (solution) and uses Lévy flight to generate a new solution using Eq.
(4). Finally, the CS algorithm abandons the worst solutions with a fraction Pa 2 ½0; 1�.
xtþ1
i ¼ xti þ a� Lðs; kÞ (4)

where xti ( i = 1, 2,…, n is the nest number, t is the egg number) is the randomly selected solution, a > 0
represents the step size, and Lðs; kÞ is the Lévy flight that is calculated as follows:

Lðs; kÞ ¼
k�ðkÞsin pk

2

� �

p
1

s1þk
; ðs � s0 . 0Þ (5)
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The step size a can be calculated as follows:

a ¼ a0ðxti � xbestÞ (6)

where a0 is a constant. xbest which represents the best local solution.

The aforementioned steps will be repeated until the CS reaches the stopping criteria. Then, it will return
the best solution.

5 The Proposed Algorithm

In ABC, the three types of bees (employee, onlooker, and scout) are responsible for searching for the
best solution and likewise balancing exploration and exploitation mechanisms. The employee and
onlooker bees search for the best solution based on the neighborhood search, representing the ABC
algorithm’s exploitation mechanism. Scout bees abandon the bad solutions and reinitialize the poor bees;
this process represents the exploration of the ABC algorithm. In fact, the ABC has a strong exploitation
mechanism but a poor exploration mechanism, therefore easily getting stuck in a local minimum
(premature convergence) [9]. In contrast, the CS uses Lévy flight to generate new solutions and perform
the global search [35]. Then, a fraction of the new solutions will be abandoned and re-built randomly far-
field from the current solution. Therefore, the CS is stronger in exploration, where it can’t get easily stuck
in a local minimum (Slow convergence). This work introduces a hybrid algorithm that combines the CS
algorithm’s exploration with ABC’s exploitation. The scout bees adopt the Lévy flight before abandoning
the bad solutions in the proposed algorithm. The cuckoos collaborate with scout bees to avoid ABC
getting stuck in a local minimum, where a set of cuckoos receives the poor bees and tries to enhance
them. In the case of no improvement, the scout bees abandon these solutions.

Normally, the proposed algorithm (ABC_CS for short that shown in Fig. 2) follows the standard ABC
algorithm with employee and onlooker procedures and differs in terms of scout procedure. It starts with
initializing each bee with a random solution. Then, each solution is evaluated using the fitness function
(see next subsections). Next, it dispatches employee bees to search for better solutions and shares the new
solutions’ information with other onlooker bees using Eq. (2) Afterward, the fitness of each employee bee
is computed, and the ABC compares the current best solution with the best solution found so far and
memorizes only the one best solution. Each onlooker bee selects an employed bee to follow; then, it
searches for a new solution using Eq. (2) Afterward, the fitness of each onlooker bee is computed, and
the ABC compares the current best solution with the best solution found so far and memorizes only the
one best solution.

In ABC_CS, the scout bees monitor the exhausted solutions, and rather than abandon them, they
collaborate with cuckoos with Mantegna’s algorithm to give these bees a chance to visit different
solutions. The abounded solutions mean that the corresponding bees get stuck in the local minimum and
the enhancement will help these bees avoid this problem while collaborating with the cuckoos. The
proposed enhancement of the scout procedure contains the following steps:

Step1: The cuckoos receive the poor bees from the scout bees and use the Lévy flight in Mantegna’s
algorithm to give these bees a chance to visit different solutions. In Mantegna’s algorithm, the step
lengths can be drawn using Lévy flight as:

s ¼ u

jvj1b
(7)

where v, u are calculated as shown in Eq. (8) and Eqs. (7) and (9), respectively.
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v � Nð0; r2vÞ; where rv ¼ 1 (8)

u � Nð0; r2uÞ (9)

where ru is calculated as follows:

ru ¼ �ð1þ bÞsinðpb=2Þ
�½ð1þ bÞ=2�b2ðpb=2Þ

� �1
b

(10)

where � represents the Gamma function.

Step2: The best solution is kept in the CS algorithm while drawing the new best solution, as shown in
Eq. (6). However, this process doesn’t support the ABC_CS claim, where it aims to diversify the search

Figure 2: The proposed method (ABC_CS) flowchart
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solutions. Therefore, the step size calculation is modified, and the ABC_CS gives a chance to build a solution
relating to the participation of current solutions and the best solution or randomly selected ones. The step size
formula is shown in Eq. (6) updates to:

a ¼ a0ðxti � xbestÞ if ðr � thÞ
a0ðxti � xkÞ if ðr, thÞ

�
(11)

where r is a random variable between 0 and 1. k = 1, 2,…, N is a randomly selected source of food. th is a
threshold constant.

Step3: The above-mentioned steps will be repeated until the CS reaches the stopping criteria.

Step4: In the case of no enhancement being obtained by cuckoos, the scout bees abandon the bad
solutions and reinitialize the poor bees with a random solution using Eq. (1).

5.1 Solution Representation

The solution representation is a challenge when designing population-based metaheuristic algorithms. In
this work, each bee/cuckoo represents the solution using a one-dimensional vector that includes X (represents
the number of tasks) elements. Each column in the vector contains a value of “1” to “Y” (represents the
number of candidate services for each task), indicating that the corresponding services are selected to
fulfill the task functionality. An example of solution representation is shown below:

xi ¼ ðWð1;1Þ; Wð2;5Þ; Wð3;Y Þ; . . . ; WðX ;7ÞÞ (12)

where i represents the bee/cuckoo. Wð3;YÞ represents the Y web services selected for the 3rd task.

5.2 Fitness Function

The fitness function in the service composition should be designed to consider the problem constraints.
These constraints include the QoS properties. In addition, the nature of these properties is based on their
objectives, where they either need to be maximized or minimized. Therefore, the service composition
problem is represented as a multi-objective optimization problem. To cover this aspect, we adopted four
different QoS properties in this work, which are the Cost (C), the Response Time (RT), Reliability (R),
and Throughput (T). The objective value is for cost and response time to be minimized and the objective
value of reliability and throughput to be minimized. In this work, the fitness function that covers the
objective problem constraints is:

Fi ¼ ð
YX
j¼1

Tjbþ
YX
j¼1

Rjb �
XX
j¼1

Cjb �
XX
j¼1

RTjb Þ (13)

where Fi represents the solution fitness of ith bee/cuckoo. X represents the task number.

6 Experimental Result and Discussion

6.1 Experimental Setup

The proposed algorithm (ABC_CS for short) was implemented using Java. Nineteen datasets with tasks
and web services/task settings, as used in [16], were utilized to evaluate the efficiency of the proposed hybrid
algorithm. Tab. 1 presents the datasets where the first column is an index, the second presents the dataset
name, the third presents the number of tasks, and the fourth presents the number of web services/task.
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These datasets can be categorized, based on the size of tasks and web services, into three different types
(small, medium, and large). Small size datasets contain: Dataset1, dataset2, dataset3, dataset4, dataset5,
dataset6, dataset7, dataset8, dataset9, dataset10, and dataset11. Medium size: Datasets contain dataset12,
dataset13, dataset14, dataset15, and dataset16. Large size datasets contain: Dataset17, dataset18, and
dataset19. The QoS constraints (C, A, RT, and R) values are generated arbitrarily from 1 to 1000 for each
web service.

The experiments are implemented using a processor Intel(R) Core(TM) i5–3470 CPU @ 3.20 GHz,
3201 MHz, 4 Core(s), 4 Logical Processor(s) and 8.00 GB RAM. The control parameters were set to the
values of 100, 400, and 10 for the ABC population size, maximum iteration, and CS population size,
respectively. The parameters’ values are chosen after extensive experiments, shown in the next subsection.

The ABC_CS is compared with two standard algorithms (ABC and CS) and three state-of-the-art
swarm-based algorithms (OABC [14], MOHABC [9], SABC [16]) based on the following criteria:

� Best Fitness Value (BFV): Each algorithm was implemented for 30 different runs, where the best
fitness value was obtained over all the runs.

� Average Fitness Value (AFV): Each algorithm was implemented for 30 different runs where the
average fitness value was obtained.

� Average Execution Time (AET): It is obtained for each algorithm for the 30 different runs in
MilliSeconds (MS).

Table 1: List of datasets used in this work

Dataset No. tasks No. WSs/task

1 dataset1 10 100

2 dataset2 10 200

3 dataset3 10 300

4 dataset4 10 400

5 dataset5 10 500

6 dataset6 10 600

7 dataset7 10 700

8 dataset8 10 800

9 dataset9 10 900

10 dataset10 10 1000

11 dataset11 20 100

12 dataset12 30 100

13 dataset13 40 100

14 dataset14 50 100

15 dataset15 60 100

16 dataset16 70 100

17 dataset17 80 100

18 dataset18 90 100

19 dataset19 100 100
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6.2 Parameters Study

To test the main parameters’ impact on the proposed algorithm, extensive experiments have been
conducted with different values of the ABC’s population size, maximum iteration, and the CS’s
population size. Three datasets were used (one for each dataset type) to examine the different
combinations of these three parameters, which are dataset1 (represented by the small size datasets),
dataset12 (represented by the medium-size datasets), and dataset19 (represented by the large size
datasets). The ABC population (N) is allowed to test four different values: 50, 70, 100, or 150, and the
maximum iteration (T) is allowed to test five different values: 100, 200, 300, 400, or 500, and the CS
population (n) is allowed to test six different values: 5, 10, 15, 20, 25, or 30.

For each dataset, independent experiments were conducted with varying values of N, T, and n
simultaneously to show the parameters’ effect on the ABC_CS performance. Therefore, the total
combinations of 120 parameter values were considered on each dataset. The ABC_CS was run for three
independent times on each dataset for every combination, where the AFV and AET in MS were obtained.

Figs. 3–5 show how the ABC_CS performance was affected by the value selection of N while varying
the value of other parameters T and n on small, medium, and large datasets. The parameters’ effect on these
experiments was studied and show that:

– Small size dataset: The performance of different combinations is so close because the problem is not
complicated, and all combinations are able to achieve better results.

–Medium and large size datasets: The performance of the different combinations is variable, so we will
highlight the main finding in the following.

Figs. 4–5 shows that the best result was obtained when N = 70, T = 400, and n = 10 for the medium-sized
dataset. The best result was obtained for the large size dataset when N = 70, T = 500, and n = 5. Moreover, the
table shows that while the value of N, T, and n increases, the AET increases simultaneously. Therefore, the
value of N, T, and n were set to 100, 400, and 5 for the next experiments to obtain a sufficient tradeoff
between fitness value and execution time.

Figure 3: AFV and AET for dataset 1 when the ABC population size parameter is changed
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Tab. 2 shows the rest of the control parameters.

6.3 Result and Discussion

To benchmark the ABC_CS performance, two comparison methodologies were adopted. Firstly, the
comparisons were conducted between the ABC_CS and set against two standard algorithms (ABC and
CS), and these comparisons’ results are shown in Tab. 3. Secondly, the comparisons were conducted
between the ABC_CS and three state–of–the–art algorithms from the literature (OABC [14], MOHABC
[9], and SABC [16]), and these comparisons’ results are shown in Tab. 4.

Figure 4: AFV and AET for dataset 12 when the ABC population size parameter is changed

Figure 5: AFV and AET for dataset 19 when the ABC population size parameter is changed
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6.3.1 Comparison of the ABC_CS and Standard Algorithms
In this work, a set of comparisons were carried out to benchmark the ABC_CS performance compared to

the ABC and CS’s. The values of the algorithms’ control parameters were set as in the ABC_CS, which gives
clarity and accuracy in evaluating the algorithms. Each algorithm was run for 30 times, and the BFV, AVF,
and AET were noted for all the runs. The performance of the ABC_CS, ABC, and CS over the BFV, AFV,
and AET are outlined in Tab. 3 (the best results are highlighted in bold).

The table shows that the ABC_CS outperforms the ABC and CS in terms of the BFVand AFVover all
datasets. From the results, it is evident that combining the exploitation behavior of the ABC and exploration

Table 3: BFV, AFV, and AET values for ABC_CS compared to ABC, and CS

Dataset Best fitness value Average fitness value Average execution
time

ABC CS ABC_CS ABC CS ABC_CS ABC CS ABC_CS

dataset1 14034.43 14034.43 14034.43 13582.96 13082.6 14012.10 82 85 87

dataset2 13785.03 13785.03 14307.40 13267.33 13196.26 14142.7 89 85 101

dataset3 14264.25 14445.11 14790.41 13787.93 13848.65 14648.16 101 95 110

dataset4 14331.34 14621.24 14844.86 13600.17 13817.50 14518.81 93 101 120

dataset5 14457.69 14745.66 15336.22 14010.36 14320.61 14991.79 96 120 126

dataset6 15062.73 15080.35 16099.90 14713.19 14522.23 15832.94 95 103 130

dataset7 14891.64 14981.46 15574.31 14223.51 14342.24 15385.48 107 106 136

dataset8 14720.78 14862.54 15771.44 14279.82 14725.79 15464.69 100 109 137

dataset9 15005.45 15342.21 16384.25 14591.42 14452.99 15964.31 86 98 142

dataset10 15019.29 15339.22 16359.06 14457.35 14674.57 15888.11 95 102 143

dataset11 26433.71 26334.54 27447.15 25459.35 25592. 59 26987.15 137 126 150

dataset12 39229.49 39139.52 41303.38 38274.40 38287.50 40584.81 211 210 162

dataset13 50728.70 50835.56 53339.69 48614.73 48726.14 52178.45 286 254 224

dataset14 59303.92 58533.25 64557.34 57654.94 57533.49 63096.24 378 370 366

dataset15 71373.31 73543.25 76847.28 69116.94 69326.53 74982.56 480 465 441

dataset16 82515.75 83205.85 90320.09 80284.58 81265.85 88003.73 591 562 552

dataset17 95730.93 96029.35 104215.63 93189.27 93029.28 101667.51 715 703 658

dataset18 104142.91 112369.76 115029.29 100369.57 101639.77 110363.55 791 801 797

dataset19 115235.25 115295.35 127963.64 112289.22 112978.23 124389.67 927 935 929

Table 2: Control parameters’ value

Parameter Value

Limits 100

th 0.5

Pa 0.5
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of behavior of the CS has improved the ABC_CS performance. This good performance of ABC_CS results
from avoiding the ABC getting stuck in a local minimum using the proposed enhancement. Furthermore, the
results show that finding a good tradeoff between exploitation and exploration is very important when
designing population-based metaheuristic algorithms. In terms of AVT, the ABC needs less execution
time in nine datasets than both algorithms, and the CS needs less execution time in four datasets because
of the fast convergence of ABC compared to the slow convergence speed of CS. In comparison, the
ABC_CS needs less execution time on six datasets. These results support the above-mentioned claim that
the ABC can get easily stuck in a local minimum while the CS does not. In addition, the proposed
enhancement has the advantages of the ABC and CS, so it can achieve better results in a short time.

From the table, we can notice that the CS outperformed the ABC in thirteen datasets, while the ABC
outperformed the CS in 6 datasets. These results show that the CS is more convenient for the WSC
problem because of the global search mechanism that it has.

6.3.2 Comparison of the ABC_CS and State-of-the-art Algorithms
The performance of the ABC_CS compared to three state-of-the-art algorithms over the three evaluation

criteria (best fitness values, average fitness values, and execution time values) are outlined in Tab. 4.

To make a fair comparison, the values of the algorithms’ control parameters were set in the algorithms’
preferences mentioned in their works.

The table shows that the ABC_CS obtains the BFV in 16 datasets, while SABC in three datasets. For the
AFV, the results show that the ABC_CS outperforms other competitors in 14 datasets while SABC does so in
five datasets. For the AVT, the results vary among the competitors. However, if we compare AET regarding
the best results obtained for AFV between the ABC_CS and SABC, we can observe the following:

– The ABC_CS obtains the best results in terms of the AFV for 14 faster than SABC.
– The SABC obtains the best results in terms of the AFV for five datasets (dataset1, dataset12, dataset13,
dataset14, and dataset15), but it needs more execution time compared to the ABC_CS. Furthermore,
Tab. 5 depicts the normalization of the results of these five datasets in terms of AFVand AET. From the
table, the enhancement percentage in AFV does not exceed 1% overall the datasets, while the different
percentages in the AET are 1.9%, 14.6%, 15.7%, 8.1%, and 7.2% for dataset1, dataset12, dataset13,
dataset14, and dataset15 respectively. These results show that the SABC is slower than the ABC_CS
because of the extra procedures that have been added for the SABC to search the neighboring nodes. In
fact, we can see that the ABC_CS is still the best if we consider the ratio of the results enhancement
compared to time.

6.3.3 Result Significance Test
In this section, Tab. 6 presents the statistical test results with a p-value in order to be sure whether the

results obtained by the ABC_CS compared to other algorithms differ or not using a Wilcoxon signed-rank
test with a 0.05 significance level on AFV. In the table, “-”, “+”, “=” denotes that the competitors’
performance is worse than, better than, or equal to the version of IBA, respectively. For the small size
datasets, the difference between the ABC_CS compared to the ABC, CS, and OABC is statistically
significant regarding small size datasets. However, the AFV of the ABC_CS significantly differs from the
MOHABC, and SABC with 10, and 9 datasets, respectively. For medium-size datasets, the difference
between the ABC_CS compared to ABC, CS, and OABC is statistically significant regarding medium
size datasets. However, the AFVof the ABC_CS significantly differ from the MOHABC with three datasets.
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Regarding the SABC, as shown in Tab. 4, it outperforms the ABC_CS on four datasets out of five. From
Tab. 6, the difference between the ABC_CS compared to the SABC is statistically significant in dataset16
(where the ABC_CS outperforms SABC). For the other datasets where the SABC outperforms the
ABC_CS, the difference between the SABC compared to the ABC_CS is statistically significant over the
three datasets only (dataset12, dataset13, and dataset15). For large-size datasets, the difference between
the ABC_CS compared to the ABC, CS, OABC, and MOHABC is statistically significant overall in
terms of large-size datasets. However, the AFV of the ABC_CS doesn’t significantly differ. According to
the Wilcoxon test, we can conclude that the ABC_CS provides significantly better performance compared
to other algorithms with a 0.05 significance level on AFV.

Regarding the experiments above’ results, the ABC_CS exhibits better performance, which proves the
ability of the proposed enhancement to overcome the ABC exploration drawback, introducing an outstanding
balancing mechanism between exploration and exploitation. The results show the ability of the proposed
enhancement to obtain better results relating to different problem sizes.

7 Conclusion

A hybrid variant of the ABC and CS was developed in this work to solve the WSC problem. The ABC is
a well-known metaheuristic algorithm that is applied in different NP-hard problems with an outstanding level
of performance. However, the ABC suffers from a slow convergence problem. The proposed ABC variant
combines the CS algorithm exploration with the ABC’s exploitation. In this case, the scout bees adopt the

Table 5: The results normalization for ABC_CS and SABC

Average of fitness values Average of execution time

SABC ABC_CS SABC ABC_CS

dataset1 50.03% 49.97% 51.93% 48.07%

dataset12 50.18% 49.82% 64.55% 35.45%

dataset13 50.26% 49.74% 65.75% 34.25%

dataset14 50.03% 49.97% 58.08% 41.92%

dataset15 50.24% 49.76% 57.18% 42.82%

Table 6: The wilcoxon signed-rank significance test between ABC_CS compared to other algorithms

ABC CS OABC MOHABC SABC

Small datasets - 11 11 11 10 9

+ 0 0 0 1 2

= 0 0 0 0 0

Medium datasets - 5 5 5 3 4

+ 0 0 0 2 1

= 0 0 0 0 0

Large datasets - 3 3 3 3 0

+ 0 0 0 0 3

= 0 0 0 0 0
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Lévy flight before abandoning the bad solutions. The cuckoos collaborate with scout bees to avoid ABC
getting stuck in a local minimum, where a set of cuckoos receives the poor bees and tries to enhance
them. In the case of no improvement, the scout bees abandon these solutions. Nineteen datasets were
used to evaluate the performance of the proposed algorithm. The experimental results were compared
with two standard algorithms and three state-of-the-art swarm-based algorithms from the literature: The
OABC, MOHABC, and OABC. The results showed that the hybrid algorithm is able to find better
solutions than other algorithms in most of the datasets.

Moreover, we can see that when we added the Lévy flight to enhance the ABC searching (exploration) in
the ABC_CS, the performance becomes better than a standard ABC algorithm. Therefore, the ABC
algorithm searching for optimal/near-optimal solutions becomes more efficient at a lower execution time.
In future, this work can be extended by employing different nature-inspired algorithms and their
hybridization.
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