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Abstract: Encephalitis is a brain inflammation disease. Encephalitis can yield to
seizures, motor disability, or some loss of vision or hearing. Sometimes, encepha-
litis can be a life-threatening and proper diagnosis in an early stage is very crucial.
Therefore, in this paper, we are proposing a deep learning model for computerized
detection of Encephalitis from the electroencephalogram data (EEG). Also, we
propose a Density-Based Clustering model to classify the distinctive waves of
Encephalitis. Customary clustering models usually employ a computed single
centroid virtual point to define the cluster configuration, but this single point does
not contain adequate information. To precisely extract accurate inner structural
data, a multiple centroids approach is employed and defined in this paper, which
defines the cluster configuration by allocating weights to each state in the cluster.
The multiple EEG view fuzzy learning approach incorporates data from every sin-
gle view to enhance the model's clustering performance. Also a fuzzy Density-
Based Clustering model with multiple centroids (FDBC) is presented. This model
employs multiple real state centroids to define clusters using Partitioning Around
Centroids algorithm. The Experimental results validate the medical importance of
the proposed clustering model.
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1 Introduction

Encephalitis is a brain disorder that yields dysfunction in sensation, mentality, motion, and
consciousness, instigating pain and physical damage [1]. Seizures can be cauterized by the abnormal
activity in brain neurons [2–5]. EEG is a significant technique that is utilized in the classification of the
electrophysiological functions of the brain. Encephalitis strikes 10–15 people per 100,000 each year.
Hence, the study of EEGs waves of patients has a true value for the detection of Encephalitis and the
ruling of seizure type. Nevertheless, comprehending EEG is still grounded on the subjective opinion of
the medical personnel via visual examination. Depending on that, issues such as subjectivity and
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unreliable inspection take manpower and can induce errors. Hence, it is essential to utilize computerized
methods to analyze EEG waves [6–9]. The EEG features are depicted in Tab. 1.

The current EEG waves analysis techniques are the time domain models [10], frequency analysis
techniques [11], time-frequency spectrum analysis [12–14] and nonlinear analysis method [15]. The time-
domain model evaluates the time spectrum of the EEG data and computes period and periodic rhythm to
detect seizures caused by Encephalitis. Its perception has a clear physical interpretation. Frequency
analysis of EEG waves is computed by the Fourier spectrum computation power of the EEG data in all
frequency spectrums. EEG data is random and fluctuating, Time and frequency-spectrum analysis do not
deliver the joint information required to describe the relationship between the frequency with time.
Hence, a time-frequency analysis model is employed for Encephalitis EEG feature selection. The EEG
waves acquired by various analysis techniques have several characteristics.

Currently, the methods utilized for the diagnosis of Encephalitis mainly incorporate convolutional neural
networks [2–5]; time analysis algorithms [6–8]; and clustering techniques [9–14], and multiple EEG view-
tasking clustering [14–19]. The authors in [20] projected a radial neural architecture and studied Encephalitis
EEGs to increase the method stability. The authors in [21] utilized support vector machines (SVM) and used
this technique to multiple channel EEGs to detect Encephalitis. Authors in [22] utilized wavelet discrete
transforms to identify Encephalitis. In [23], they presented the entropy based neural networks to
categorize Encephalitis EEG data. In [24], they utilized a discrete cosine transform for preprocessing and
classification to enhance the performance. In [25] they studied the fluctuations variations between the
wave frequencies and the EEG backgrounds. This technique can classify Encephalitis with higher
specificity and sensitivity. In [26] they preprocessed the waves and then utilized neural computing to
classify the EEG. The benefit of this method was a rise the speed of computations. In [27] they presented
a new time-series spike computation technique and verified it in EEG data with high performance results.
Fuzzy Clustering models can diagnose Encephalitis by predicting EEG waves of seizure cases. In [28],
they employed the fuzzy c-means clustering model to Encephalitis detection. In [29] they presented a
self-attention fuzzy Clustering model and used the model for brain disorder recognition. The
segmentation attained by the model were highly adaptive. In [30] the authors compared the performance
of Encephalitis detection by k-means clustering models. All of the aforementioned models utilized
computed single EEG center to define the cluster, which is not an actual instance. Hence, drift could
happen under the impact of outliers, deeming this model unable to capture the internal state of the cluster.
Also, for medical scans, the simulated center does not represent tissues.

Table 1: EEG features

Feature Time-domain

Time domain The EEG wave is a time series that fluctuates with time. The discrete values in the
EEG depict the energy values at a specific time or the power dissipated value at that
tie. In our paper, the EEG wave is utilized as the feature map in the time domain.

Spectrum feature The EEG wave has frequency of levels: λ1 (0–3 Hz), λ2 (3–6 Hz), λ3 (6–10 Hz), λ4
(10–16 Hz), λ5 (16–32 Hz), and λ6 (32–60 Hz). Where, λi is the wavelength at level i,
and HZ represents Hertz. The spectral parameters of seizures are ranged between
5 and 30 Hz.

Time-frequency
feature

Wavelet decomposition is done in the time-spectrum to compute time features from a
frequency spectrum. The sampling of the high frequency is set to 2.5 Hz, with six
layers of wavelets. This frequency feature ranges between 5 and 30 Hz.
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To address the aforementioned issues, an FDBC model is proposed, and the model utilizes Encephalitis
EEG. The key contributions are depicted as follows:

� Utilizing a single state centroid in defining the cluster configuration is disposed to lacking
information. To precisely get more accurate inner cluster representational information, a cluster
configuration expression approach based on multiple state centroid points is proposed.

� A new multiple EEG view Density-Based Clustering model that studies each view and assigns
conforming weights depending on each view, which improves the clustering model performance.

� Experiments confirm that the efficiency of the FDBCmodel; expressing the cluster configuration with
real state centroids is more significant for medical data.

2 Related Work

2.1 Multiple Centroid State Point Model

The multiple centroid state point model deals with all instances as possible centers and allocates a weight to
each instance to specify the degree it characterizes the cluster. hence, the cluster configuration in the instance space
can be demonstrated by the involved instances, andmore cluster configuration information can be extracted by the
center being stated as a single state centroid. To generalize this model, it can be denoted that each instance in the
dataset may be defined as a state point of the considered cluster, and this probability can be computed into a
weight factor in the range [0,1]. Instance of higher weight will represent its cluster. The flow diagram of the
model is depicted in Fig. 1 which depicts the model of the instance graph of the single-centroid state cluster
configuration. Fig. 2 depicts an instance graph of the multiple centroid states cluster configuration. The cluster
centers depicted in Fig. 2 are all actual instance points, which can highly define the cluster configuration.

Figure 1: Instance graph of the single centroid (red circle) state point cluster configuration

Figure 2: Instance graph of the real multiple centroid state point (red circles) cluster configuration
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2.2 Multiple EEG View Fuzzy Learning Model

We propose the multiple EEG view fuzzy learning model for datasets with complex configurations or
many instances.is. The amplified complexity of the structure of the dataset leads to represent the dataset
via multiple EEG views to achieve multiple EEG view data. Multiple EEG views denote that some
objects might be represented by multiple features from various attribute spaces and multiple forms of
features from several views. The key feature of the multiple EEG view fuzzy learning model is the
evaluation of the evaluates data instances of the several features of the same entity. We then utilize the
interaction between the several perspectives to compute similar components and achieve a consistent
global decision. Fuzzy learning models broadly deliberate the representative information of the object
from different views, the achieved decision is more robust and consistent than the classical decision of a
single view. In the multiple EEG view fuzzy learning model, the worth of each view is diverse and
contributes differently to the result. The multiple EEG view problem is depicted as the first view splitting
quality and is better than the second and third views. The splitting quality of the second view is better
than the third view. To get better result, this research proposes the view weighting model, which
computes individual weights to the defined views based on the quality of the view splitting. The norm is
that high quality data state view will be assigned a high weight, and the data with a low quality state
view will be assigned a low weight.

The procedure of the classical clustering for handling multiple EEG view data is depicted by: Classical
models process each single view distinctly. The joining model [31] is utilized to attain the result. These
models split the multiple EEG view data into many view sets with bad impact on the final result. This
causes the difference in the clustering output of the several views and declines the final segmentation and
the results in unstable performance. The multiple EEG view fuzzy learning model solves these issues.
Many researchers studied many models using the multiple EEG view model. The authors in [32] utilized
a clustering model to lever multiple EEG view prospect. In [33], they extended the spectral data
clustering and introduced a multiple EEG view clustering model. In [34], they introduced a fuzzy
learning model and presented a helpful accurate method. The authors in [35] presented a multiple EEG
view C-means based on fuzzy clustering. In [36], the authors presented a lightweight neural network
based on transfer learning for Covid-19 diagnosis. In [37], the authors proposed a deformation expression
of soft tissue based on neural network.

3 The Proposed Multiple EEG View Fuzzy Density-Based Clustering Model with Multiple Centroid

EEG datasets impose great dimensions and high complexity. Such data typically has several clustering
patterns. Previous clustering models focused on solo pattern in the data, while multiple EEG view clustering
techniques can extract multiple patterns. Multiple EEG clustering enhances the clustering with no
redundancy.

The proposed multiple EEG view fuzzy learning model is depicted in the following equations.

A multiple EEG view fuzzy Density-Based Clustering model with multiple centroid (FDBC) is
proposed. Given a instance set S ¼ s; i ¼ 1; 2; . . . :; Mf g, F denotes the S′ fuzzy splitting, and R denotes
the inner configuration of a cluster. The objective function of FDBC is defined as:

ObjFDBC F;Rð Þ ¼
XN

x1¼1
Nrv

x1
XC

c¼1

XM

m¼1

XN

x2¼1
f x2 rmdn;c;m (1)

where;
XC

c¼1
f c ¼ 1 (2)
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XR

r¼1
rm ¼ 1 (3)

XM

m¼1
vm ¼ 1 (4)

Where, ObjFDBC F;Rð Þ is the objective function, N is the count of the multiple EEG views, Nr is the
computed weight of the view v, x1 and x2 are fuzzy parameters, K is the cluster order, M is the total
count of instances, f x2 represents the instance Sj affiliation to a cluster in view V, Vx2 is the instance Sj
exemplar weight in the cluster C, the parameter m is utilized to regulate the smoothness of the exemplar
distribution of the weights among all instances in cluster C, D is the variation matrix, and dn;c;m is the
dissimilarity difference of instances Si subtract Sj. FKxM is the member matrix fitting in K clusters for M
instances, RKxM defines the exemplar weights of M instances for K clusters. The Lagrangian [3] equation
is employed to solve Eq. (1), and are expressed as follows:

f j ¼ PM
j¼1

mjtV jmjt ¼ m
0
jt

QM�1

j¼1
ð1� m

0
jÞ

m
0
jt � mjt � Normal distrubition

(5)

rm ¼ PM
j¼1

f j dn;c;m dn;c;m ¼ dn
0 QM�1

i¼1
ð1� gdi

0 Þ
g � Beta distribution

(6)

Vm2 ¼
XM
j¼1

rmj dn;c;m (7)

The integration for the global splitting result is depicted as follows:

F ¼
XV

v¼1
WvFn;c;m (8)

This vector denotes the centroid of the Cth cluster, and each dimension defines the weight of each state
instance and characterizes the Cth cluster, and dn;c;m defines the dissimilarity between Si and the center of the
cluster C.

From the abovementioned formulas, si;v in view v is rated by comparing the centroid value of si;v with
other instances in the same cluster, and cluster C in each view is described by the state weight of all instances
in that cluster. After each cluster is categorized, each instance membership to the K clusters is allocated by the
relative displacement between this instance and the clusters. The proposed model is depicted as follows:

Algorithm FDBC

(Inputs: view # V, cluster # K, sample # M, iteration # ITmax, precision, fuzzy state coefficients m1 and m2,
and smoothing parameters m)

Start

Initialize the displacement matrix D of each view instance.

Initialize the fuzzy splitting matrix F

Set iteration IT = 0;

Repeat

IT = IT + 1 ;

(Continued)
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For v = 1 :V

Iteratively compute f vby Eq. (5);

Iteratively compute the rm1;v by Eq. (6);

Iteratively compute the Vm2;v by Eq. (7);

EndFor

Until kk ObjT � ObjTþ1 kk� e or IT ¼ ITmax

Compute the global fuzzy splitting matrix based on Eq. (8).

End

4 The Deep Learning Proposed Model

In this paper, a deep learning convolutional neural network model (D-CNN) is used to classify the EEG
data of cases with Encephalitis to realize deep learning of Encephalitis features. The D-CNN architecture,
proposed in the paper, has several convolutional, pooling, and Dropout layers successively. The model
framework is depicted in Fig. 3. First, Encephalitis EEG from multi-views is acquired. Discrete Fourier
and discrete wavelet transforms compute the spectrum wave and time frequency waves of the EEG
records. Then, for each single view, the proposed D-CNN is utilized for feature extraction to decrease the
instance dimension of each single view. At this phase, the deep model features of multiple EEG view
Encephalitis EEG are attained. At the last phase, a novel classification model, using unsupervised
multiple EEG view results, is employed to acquire the final classification result.

4.1 The Model Framework

The model framework is depicted in Fig. 3. First, Encephalitis EEG waves from multi-views is acquired.
Discrete Fourier and discrete wavelet transforms are utilized to compute the spectrum, time and time-
frequency data of the EEG signals. The D-CNN extracts feature to lessen the instance dimension for each

Algorithm FDBC (continued)

Figure 3: The model framework
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single view. At this phase, the multiple EEG view features of Encephalitis EEG are acquired. At the last
phase, a novel unsupervised classification model, employing multiple EEG view clustering, is utilized.

4.2 Deep Features

D-CNN is utilized to mine features from several perspectives to attain the spectrum features, time
domain and time frequency features. Our model then Creates a multiple EEG view dataset of Encephalitis
EEG founded on deep EEG extracted features. The D-CNNmodel structure and layers are depicted in Tab. 2.

5 Experiments and Results

5.1 Experimental Settings

To validate the performance of the FDBC model in handling multiple EEG view data, three contrast
comparative algorithms are chosen. The first algorithm is the C-means for a single-view one centroid
state point (C-single) [32]. The second is a multiple EEG view one-centroid state point (MultView) [35]
utilizing WV-C-means [26]. The third algorithm utilizes multiple EEG views and multiple centroids state
points (Mult-Mult) [16]. To compare the precision and accuracy of each algorithm, the indication
evaluation metrics utilized here are the normalized Information gain between 0 1nd 1 (NIG) and the
Fowlkes–Mallows Index (FMI) depicted in Eq. (9). FMI defines the decline in the entropy of classes
among the clusters [33]. The range of both metrics is between 0 and 1. the metric value is directly
proportional to the cluster accuracy metric. The specific computation of the two indicators is referenced
[23].

FMI P1;P2ð Þ ¼ aþ b

aþ bþþcþ d
(9)

where P1;P2 are two partitions of a dataset S, aþ b is defined as the agreements between P1;P2 and cþ d is
defined as the disagreements between P1;P2

Table 2: Multiple EEG view D-CNN model

Parameters Time domain parameter Spectrum parameters Time-frequency parameters

Input layer Original input: 27 ∗ 128
kernel: 1 ∗ 64

Original matrix: 27 ∗ 64
Convolution size: 3 ∗ 3

Original input: 128 ∗ 27 ∗ 16
Convolution: 128 ∗ 3 ∗ 3

Convolution
(first layer)

Feature map: 27 ∗ 128
kernel: 2 ∗ 64

map: 24 ∗ 21
kernel: 7 ∗ 7

map: 128 ∗ 27 ∗ 16
kernel: 54 ∗ 3 ∗ 3

Convolutional
(second and
third layer)

Feature map: 27 ∗ 7
kernel: 3 ∗ 37

map: 17 ∗ 17
kernel: 11 ∗ 11

map: 32 ∗ 23 ∗ 12
kernel: 32 ∗ 4 ∗ 4

Convolutional
fourth Layer

Feature map: 22 ∗ 31
kernel: 7 ∗ 12

— map: 13 ∗ 8
kernel: 13 * 7 ∗ 1

Convolutional
(fifth layer)

map: 13 ∗ 16 — map: 10 ∗ 10 ∗ 8

Output layer
(output vector)

1 ∗ 512 vector 1 ∗ 256 vector map: 1 ∗ 100
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The model parameters are set using Grid search for maximum performance. Theses parameters are set to
specific values for each model under comparison as well as for our model and depicted in Tab. 3.

The Processor (CPU), utilized in the executing the experiment, is an Intel i7-8200 CPU@ 3.30 GHz, the
memory is 16.00 GB. We used MATLAB R3012a. The experiments were executed 200 runs and we took the
average for the results.

5.2 Dataset

The dataset utilized in this research is obtained from [15,16], they are public datasets. The dataset
consists of 720 instances of healthy and Encephalitis EEG data and is divided into six subsets of
120 instances each. subsets 1 and 2 are EEG of from healthy cases, and subsets 3–6 are EEG of
Encephalitis cases.

To build the multiple EEG view dataset necessary for our experiment, our work first utilizes feature
extraction to mine the deep features from the EEG wave and, lately we incorporate the mined features
into several permutations. One permutation is viewed as the employed dataset. The view order is equal to
the feature extraction technique number. The feature extraction techniques utilized in this work are kernel
component extraction (KCE), wavelet feature decomposition (WFD) and Discrete Fourier transform
(DFT). There are three views and six constructed datasets. Tab. 4 depicts the details of the multiple EEG
view sets, where Di is the dataset number i.

Table 3: The model parameters set using Grid search for maximum performance

Model for encephalitis detection Parameters settings

C-means for a single-view one centroid state point (C-
single) [32]

Fuzziness parameter m {1.0, 1.2, 1.4,
…..2.4}

Multiple EEG view one-centroid state point (MultView)
[35]

Fuzziness parameter x {1.0, 1.2, 1.4,…..2.4}

Parameter j is in the range 1;
/

2� /
h i

Where / is the number of views

Multiple EEG views and multiple-centroid state points
(Mult-Mult) [16].

Fuzziness parameter x {1.0, 1.2, 1.4,…..2.4}

Our proposed model FDBC (Multiple-centroid) Fuzziness parameter x1 and x2 {1.0, 1.2, 1.4,
…..2.4}
Smoothing parameter m {1.0, 1.1, 1.2,
…..1.7}

Table 4: The multiple EEG view Sets

Subset Permutations Views Cluster Number of instances Dimension

D1 1, 3 3 2 240 12

D2 3, 6 3 2 240 12

D3 1, 3, 6 3 3 360 18

D4 1, 2, 3, 4 3 4 480 24

D5 1, 3, 4, 5, 6 3 5 600 30

D6 1, 2, 3, 4, 5, 6 3 6 720 36
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5.3 Results

The results of the process of each model on the several multiple EEG view EEG sets are depicted in
Tabs. 5 and 6.

From the results depicted in Tab. 6, these conclusions are as follows:

1. For the multiple EEG view, it can be concluded from the results data of D1 to D6 that the clustering
accuracy of the C-means for a single-view one centroid state point (C-single) [32] is worse than that
of MultView [35], MultMult [16] and our proposed FDBC model. These observed results validate
that the performance of the multiple EEG view models outperforms single-view models and more
fit for multiple EEG view.

2. The performance of the multiple view MultView [35] is comparable to MultMult [16], indicating that
this model did not improve the clustering accuracy which is very essential for the representation of
medical data.

3. The FDBC model presented in this research has the best performance for D2 and D4, but the impact
on the other subsets D1, D3, D5, and D6 was not optimal. Nevertheless, the FDBC model
performance on the six data subsets outperforms that of single-view C-means, which validates
that multiple EEG view model is more appropriate for multiple EEG view data. However, the
FDBC model yields both an increase in clustering accuracy and an enhancement in the
representation EEG data. It is validated that multiple centroids are wealthier and more precise
because multiple centroids are medically expressive.

Other multi-view clustering techniques consider the significance of a single view to be similar for all
clusters. But it was noted that in practice, there are many situations of higher clustering impact of some

Table 5: NIG normalized information gain

Subset C-single MultView Mult-Mult FDBC

D1 0.6121 0.3745 0.7811 0.9929

D2 0.711 0.772 0.7817 0.9309

D3 0.7939 0.6745 0.7891 0.9339

D4 0.7171 0.7345 0.7711 0.9929

D5 0.2323 0.2475 0.2537 0.2623

D6 0.4140 0.4243 0.4304 0.4940

Table 6: Fowlkes–Mallows index (FMI)

Subset C-single MultView Mult-Mult FDBC

D1 0.6171 0.6775 0.6617 0.9171

D2 0.7170 0.7776 0.7607 0.9490

D3 0.7767 0.6775 0.6667 0.9889

D4 0.7171 0.7675 0.7717 0.9971

D5 0.7676 0.7775 0.7567 0.9678

D6 0.7170 0.7376 0.7407 0.9970
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views than others. The final results are impacted by the weak views that have no small clustering features.
This will reduce the clustering accuracy in many techniques. To alleviate this situation, our proposed FDBC
model computes fuzzy scoring for each view and allocates scores according to the significance of each view.
The impact of the computing of the view score on the clustering accuracy has also been investigated.

To define the score of each single view. Fig. 4 depicts the scoring of each view in the model for the D1 set,
a multi view donates a different score in a different way to the resultant clustering. The scores of both the first
two views are insignificant, demonstrating that the overlap between them is great, and the score of third view is
higher, with the highest score is for view 4 and 5, demonstrating its high spatial features. The proposed
technique enhances the clustering accuracy and prevents the sample interference that has lower quality.

6 Conclusion

In this article, a EEG Fuzzy Density-Based Clustering Model with Multiple Centroid is proposed to
investigate Encephalitis EEG spatial data. A multiple fuzzy view training model, using view scoring
mechanism based on the objective function defined in Eq. (1), is proposed. The scoring system reflects the
correlations and dissimilarities between the different view data; thus, the resultant accuracy inclines to be steady
and robust. The fuzzy scoring mechanism assigns corresponding scores based on the impact of the view
contribution. This enhances the clustering accuracy and prevents bad interference from unreverent data. The
proposal of multiple centroids defines the cluster configuration in a more precise weight. EEG data definition
needs typical points that can be medically significant. The clustering accuracy of the proposed FDBC model
outperforms the state of the art methods, and improves the clustering accuracy considerably. The multiple
centroids are then used in the training phase of the deep learning model. This technique enhances Encephalitis
EEG data classifying. The multiple centroids are more medically expressive for the classifying of EEG data.

Although the model proposed in this article has an enhanced clustering impact resulting from the
multiple EEG view of the Encephalitis records, future development in such research is anticipated. For
instance, it will be imperative to study the impact of improving the clustering precision by preventing bad
interference from irrelevant data and also from noises from EEG recordings.
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