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Abstract: In this paper, a communication model in cognitive radios is developed
and uses machine learning to learn the dynamics of jamming attacks in cognitive
radios. It is designed further to make their transmission decision that automati-
cally adapts to the transmission dynamics to mitigate the launched jamming
attacks. The generative adversarial learning neural network (GALNN) or genera-
tive dynamic neural network (GDNN) automatically learns with the synthesized
training data (training) with a generator and discriminator type neural networks
that encompass minimax game theory. The elimination of the jamming attack is
carried out with the assistance of the defense strategies and with an increased
detection rate in the generative adversarial network (GAN). The GDNN with
game theory is designed to validate the channel condition with the cross entropy
loss function and back-propagation algorithm, which improves the communica-
tion reliability in the network. The simulation is conducted in NS2.34 tool against
several performance metrics to reduce the misdetection rate and false alarm rates.
The results show that the GDNN obtains an increased rate of successful transmis-
sion by taking optimal actions to act as a defense mechanism to mislead the jam-
mer, where the jammer makes high misclassification errors on transmission
dynamics.

Keywords: Generative adversarial learning neural network; Jammer; Minimax
game theory; Attacks

1 Introduction

One of the key assumptions of theoretical confidentiality of information is that users always have to send
data. Users fail to provide data in wireless contexts such as cognitive radios. If traffic is explosive, theoretical
information measurements, including capacity and secrecy, cannot measure the system performance.
Jamming is a frequent denial of service attack wherein malicious nodes intend to disrupt continuous
communication between legitimate nodes.

The data receiving at a node or base station (BS) varies dynamically, and if the jammer fail in knowing
the status of the queue, the randomness of the data entry is used to improve system performance. In the study
[1,2], a theoretical framework on games is examined to evaluate the effect of random data arrival in
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alleviating the jamming attack. In [3,4], a game theory examines the influence of jamming over a collusive
channel. The research already under way does not examine the effect of cognitive radios in mitigating
jamming attacks in the fading environment when data arrives at random. The influence of jamming on
delaying cognitive radio performance when users have various antennas also needs to be understood. This
also raises an interesting topic about how diversity in time and space might be used to improve system
performance.

In several different scenarios [5,6], the influence of jamming on system functioning has been examined.
An examination of linked jamming in theoretical information can be found in [7,8]. Multifunctional cases
[9,10] including a multi-user access channel with associated jamming. In the presence of a jammer, the
cognitive radio environment is examined, and a joint anti-jamming technique to reduce jamming attacks
was developed. Game theory is utilized to investigate various jamming skills because of the nature on
conflicting interests between the jammer and transmitter.

The capacity of the jammer to transfer power and information concerning at which frequency, the signal
is sent which is a key to a successful attack. The reason for this is simple, because the jammer noise must be
powerful enough to transmit on the same band with the reduction in signal noise ratio (SNR). The
transmission between terrestrial terminals is made via a satellite relayed for satellite communications.
Thus, the jammer can effectively assault via relay, i.e., the satellite, as the terminal is harder to target. The
challenge is that the jammer must be close to the receiver, or it can enhance the detection potential.

In this paper, the authors develop a communication system model, the machine learning model, that
learns the spectrum and makes transmission decisions, which automatically adapts to the spectrum
dynamics. The generative adversarial learning neural network (GDNN) augments the synthesized training
data based on the real data. It uses the generator and discriminator type neural networks with the
minimax game theory to ensure that the transmission is successful. Paper’s outline is given below:
Section 2 provides the related works. Section 3 discusses the proposed model. Section 4 evaluates the
GDNN model with existing methods. Section 5 concludes the entire work.

2 Related Work

In the following literature the effects of jamming were widely investigated for system performance and
mitigation. However, it is not clearly addressed in literature how numerous antennas play a role in reducing
jamming attacks under random data arrival.

In [11], the authors developed a module to reduce the effects of the jamming attack; the author created an
intelligent adaptive sensing methodology which may also lessen sound effects during dynamic spectrum
access ( DSA) spectral sensing stages.

In [12], the authors developed a malicious protection system for node-based attacks to be mitigated in
CRN-assisted agents. With the help of a certificate-aware authentication hash chaining mechanism, a
network is prevented from attacks. The analysis of sensing reports from secondary users (SUs) and
security association (SA) detects malicious SUs in the network. Malevolent nodes act as a node of
support to alleviate network jamming.

In [13], the authors devised a primary user emulation detection technique for jamming attempts in
cognitive radio. The suggested approach is based on the compressed signal coding in a dictionary which
depends on the channel. In particular, the sparse code convergence patterns in accordance with the
dictionary are utilized to identify between a jammer. The decision-making process is performed as a
classification process based on learning.
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In [14], the authors presented a rapid-forward cooperative transmission system in which a victim node
hops in a nearby full duplex helper node which quickly transfers the symbol of the victim together with its
symbol. The jammer and the aid worked together to give the opponent a portion of his power.

In [15], the authors presented a safe routing system which takes into account jamming of attacks which
interrupt the transmission of cognitive radios. In accordance with an optimization problem, the suggested
protocol provides the secure channel for source-destination pair. In addition, because CRN is more prone
to threats, a second layer of defense will be presented for the Ensemble Jamming Detection. The
peculiarity in the behavior of jamming attacks is determined.

3 Proposed Model

In this section, the system validates the channel statistics and background transmitter’s behaviors to
differentiate the benign and malignant cognitive radios present in a network [16,17]. Two types of neural
network with the game theory improve the attacker detection process and data transmission [18,19].

The proposed model consists of the following components, as shown in Fig. 1.

Algorithm: Detection of the malicious node

Step 1: Input Layer: Node’s behavior and channel statistics trains the GDNN

Step 2: Neural Training: The deep neural network is trained with the loss function called cross-entropy
function.

Step 3: Hidden Layer: Activation is performed using the sigmoid and hyperbolic tangent (Tanh) function.

Step 4: Output layer: The output layer uses the softmax activation.

Step 5: Minimax Game: The generator generates real data, and the discriminator player classifies the
generated data.

In this work, a generative adversarial machine learning model has been used to detect the malicious node
in the network effectively. It uses two types of neural networks, the generator and discriminator type neural
networks, along with the minimax game theory, which facilitates the attacker detection and improves data
transmission. Its working progress is represented in Fig. 2.

Here, GDNN is used with game theory for finding attacker node and eliminating as shown in the
following Fig. 3.

Figure 1: Neural network model with Minimax game as a proposed model
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where, D(x) is the discriminator’s estimate the probability that read data distance x is real, Ex-is the expected
value over the real data instances, G(z)–is the generator’s output when given noise z, D(G(z))–is the
discriminator’s estimate of the probability that fake a instance is real, Ez-is the expected value over all
random inputs to the generator (in effect, the expected value over all generated fake instances G(z)).

An execution of GAN with minimax game theory algorithm is shown in Fig. 4.

Start

Train the network

Hidden layers activated
using sigmoid  and Tanh

Output layer activated
using softmax

Minimax for classifier

End

Figure 2: Proposed system using GAN with Minimax game theory

Figure 3: Working process of Minimax

Figure 4: Pseudocode of training loop for elimination of attacker node
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This formula derives from the cross-entropy between the real and generated distributions. The generator
can’t affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is equivalent to
minimizing log(1−D(G(z))). The GAN loss function indicates that the generator tries to minimize the
following function while the discriminator maximizes it.

Assume the transmission of data and jamming attack detection is executed in the wireless sensor
network. The proposed approach working mechanism is as follows:

The cognitive radios [20,21] are deployed using uniform distribution in the network. Hierarchical
communication is established between the sensor devices and the centralized base station. Each node
updates its neighbor node [22,23] present in the coverage area using beacon/hello messages. Once the
deployment and the neighbor communication are established data sensing and transmission are initiated.
The path discovery process is involved to identify the available path between sensor and base station.
The working progress of GDNN is shown in Fig. 5.

Jamming is performed by the attacker by generating more signal interference in the communication
region to decrease successful transmission. The jammer applies an exploratory attack and studies the
transmitter features of prior jamming. Under this attack, the jammer develops a classifier that represents a
target classifier under attack. In a jammer, the transmissions or idle channels that tend to fail are not
classified; instead, the jammer predicts the successful transmission, and jams it. The jamming of
successful transmissions has two main objectives: (1) reducing the likelihood of misdetection and (2)
reducing the likelihood of false alarms. Here, the transmit power is adjusted reference to the average
power constraint. The selection of transmission power acts as a function of classification score at a time
instant that tends to measure the probability of jamming attack as shown in Fig. 6. The malicious node
detection is performed by invoking the GDNN game theory process.

4 Jammer Detection Using GDNN with Game Theory

Game theory in [24,25] general analyzes the conflicting communication between cognitive source
transmitters and the jammers. During the transmission process GDNN learns the traffic condition, and
interference in the channel that leads to success of data transmission between the radios. It further
develops an inverse jamming strategy that increases the performance of communication [26,27]. The
following input data for the neural network is collected at the time of data transmission after the data
collection, and it includes the following:

1. Start

2. Deploy sensor nodes with uniform distribution. 

3. Establish the hierarchical communication.

4. Update the coverage area using beacon/hello message to neighbour node.

5. Initiate data sensing. 

6. Data transmission. 

7. Initiate path discovery

8. Classify the Jamming attack 

a. Game theory analyses the interaction between jammer and transmitter.

b. GDNN learns the traffic, channel, and interface condition.

c. Apply inverse jamming effect on transmitters.

9. Discard the transmission and goto step 2.

10. End

Figure 5: Pseudocode of GDNN–game theory
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� Packet forwarding count.

� Packet sent count.

� Drop counts of the data forwarder.

� Received signal strength (RSS) of each incoming data flow and its variations.

� Packet drop speed.

� Behavioral variations in radio and it is identified as:

� Average packet per flow count.

� Bytes per flow count and

� Rate of Flow Entries.

From the collected data, the generator tends to generate the synthetic data with real-time samples in a
short duration. From the estimated parameters, the Gaussian Kernel function and the linear polynomial
kernel function values are calculated to differentiate the legitimate nodes from the attacker nodes in the
network. The consumption is also derived with the Eigen function for each parameter. The Gaussian
Kernel function is illustrated as follows,

f xð Þ ¼ 1
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where n–number of sample, xi, i
th data sample,

The corresponding eigen function is defined as:
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1. Allow jamming attacks to reduce the transmission.

2. Select the transmit power at any time slot.

3. Measure the likelihood of the jamming probability.

a. Apply exploratory attack prior jamming.

b. Build a classifier.

c. Discard idle channels.

d. Predict the nature of transmission.

e. If the transmission is a success.

4. Jam the transmission

a. else

5.  Do nothing

a. end

6.  Reduce the misdetection probability.

7. Reduce the false alarm probability.

Figure 6: Pseudocode of jamming attack profile
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The polynomial kernel between the two parameters is computed as follows,

K a; bð Þ ¼ 1þ
X
j

ajbj

" #d
(3)

d-Indicates the degree.

4.1 GLANN

The cumulative sum of the weighted input is computed as a trained value for each set of collected data
that represents the node behaviors. The mean value of the training value is computed from the entire set of
trained values, and it is represented as the predictor. The behavioral pattern formation for each parameter is
computed by taking the individual parameter as input. The neural training is conducted with the cross-
entropy loss function with back-propagation using the following Eq. (4)

C hð Þ ¼ �
X
i

1� yT½ �i
	 


log 1� aL xTð Þi
� �	 
þ ½ yT½ �i log aL xð ÞT

� �
i

� �� �
(4)

where, θ–neural network parameters, xT -training data vector, yT–label vector, aL xð ÞT -neural network output.
In hidden layer, sigmoid and hyperbolic tangent (Tanh) functions are used for the activation and it is

defined as Eq. (5)

r ¼ð Þ½ �k ¼ 1

1þ e�zk
; Tanh ¼ e�zk � e�zk

e�zk þ e�zk
(5)

where (z)–sigmoid function, Tanh is the hyberbolic tangent function, z–input, k-entry count.

The output layer is activated using the softmax activation function with the gradient descent and it is
denoted in the Eq. (6)

r ¼ð Þ½ �k ¼ ezkP
j e

zj
(6)

4.2 Game Theory Formalization on GAN

Once the output value is activated the minimax game is invoked between the generator and
discriminator. The game strategy is illustrated in the Eq. (7)

minGmaxDEx�pdata ½logðDxÞÞ� � Ez�pz ½logð1� DðGÞÞÞ� (7)

where z-input error, pdata–data distribution, D–Discriminator and G–Generator function.

Upon completion of the minimax game, the activated output represents the behavioral difference
between the normal and attacker node. This will classify the attacker node and eliminate it from the data
communication.
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5 Results and Discussion

This section evaluates the efficacy of jamming attack detection and model using GDNN-game theory
under different network conditions. The running environment is setup with the following parameters as in
Tab. 1. The proposed method is tested in terms of various network metrics that includes energy
consumption, residual energy, packet delivery ratio, NRO, delay (ms), throughput, jitter, goodput, packets
dropped, relative energy, and network lifetime. The proposed method is compared with existing methods
in terms of simulation time and packet generation interval to test how well the systems respond to the
jamming attacks at the transmitter. The proposed GDNN-game theory (short GDNN) is compared with
other existing methods that include mitigating stealthy jamming attacks (MJSA) and stealthy data
transmission with deep learning (SDTDL) [28].

5.1 Performance Evaluation

According to the simulation, game adversarial network (GAN) is used to learn about the transmission
properties, as well as predict the possibility of attacks at an early stage; the system has higher success rates
and improved network characteristics. A GDNN-game detection model is evaluated under different network
conditions in this section to determine its effect and compare it to other methods.

5.1.1 Total Remaining Energy
It refers to the total energy available of all nodes in the network after completing the data transmission,

and it is computed by subtracting the consumed energy from the initial energy as shown in Figs. 9 and 24.

5.1.2 Total Consumed Energy
It refers to the total consumed energy of all nodes in the network after computing the data transmission,

and it is computed as shown in Figs. 7 and 22.

Table 1: Simulation parameters

Parameter Value

No of nodes 100 sensors

Base station 1

Queue type Priority queue

Mac type Sensor mac with IEEE 802.11

Topology area 500 × 500

Antenna type Omni directional

Coverage area 80 m

Connection type UDP

Packet size 512

Packet generation interval 0.1,0.2,0.3,0.4,0.5

Application type Sensor (Temperature)

Simulation time 100–500 s

Data rate Mbps

Initial energy 100 J

No of attacker 4 jamming attackers
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5.1.3 Throughput
Its outcome is the number of bits transmitted per unit of time. It is calculated from the size of the

data packet, and the total number of received data packets with the transmission duration, as shown in
Figs. 15 and 30.

5.1.4 Relative Energy
It refers to the average energy required to complete the unit data transmission, as shown in Figs. 20 and 35.

5.1.5 Packet Received
It indicates the total number of successful transmission completed in the network as shown in Figs. 11 and 26.

5.1.6 Number of Dropped Packets
Number of dropped packets: It is computed as the difference between the number of attempted packet

transmissions and the number of successful packet transmission, as shown in Figs. 18 and 33.

5.1.7 Packets Distribution Ratio (PDR)
PDR is the ratio between the number of packets successfully received and number of packets attempted

for transmission. It represents the success ratio of transmission over the wireless medium, as shown in
Figs. 12 and 27.

5.1.8 Normalized Routing Overhead (NRO)
It represents the number of control messages required to transmit a single data packet, and it is calculated

from the value of dividing the total number of received packets by the total number of control overhead
messages, as shown in Figs. 13 and 28.

5.1.9 Lifetime
Time taken to drain the total energy of the nodes based on the transmission, and it is computed as shown

in Figs. 21 and 36.

5.1.10 Jitter
It refers to the average consecutive packet transmission delay as shown in Figs. 17 and 32.

5.1.11 Goodput
It is the ratio of the total number of data bits transmitted for the entire simulation to the time taken to

complete the overall transmission, as shown in Figs. 16 and 31.

5.1.12 Dropping Ratio
It is the ratio between the number of failed packet transmissions and number of attempted packet

transmission, as shown in Figs. 19 and 34.

5.1.13 Delay
It refers to the average time taken to complete the end-to-end transmission of data packets from source to

destination in the network, as shown in Figs. 14 and 29.

5.1.14 Average Remaining Energy and Average Consumed Energy
It refers to the average energy available of all nodes in the network after completing the data

transmission and it is computed by subtracting the consumed energy from the initial energy as shown in
Figs. 10 and 25. Average consumed energy refers to the average consumed energy of all nodes in the
network after completing the data transmission, and it is computed as shown in Figs. 8 and 23.
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5.1.15 Attacker Detection Ratio and Detection Delay
It represents the total number of attackers detected from the attacker presents in the network. Detection

delay refers to the average time taken to detect the node from the time of attacker launch, as shown in Tab. 2.
Tabs. 3 and 4.

The proposed model includes components such as sensor nodes, base station, neural network and input
and output layers. The results of a GDNN based jamming detection are presented in which parameters such
as attacker detection ratio and detection delay metrics are compared with other method such as MSJA and
SDTDL and the best result is presented as the recommended method, as shown in Tabs. 2–4.

Table 2: Attacker detection ratio (Time based)

Simulation time Attacker detection ratio Detection delay

MSJA SDTDL GDNN MSJA SDTDL GDNN

100 0.75 0.76 0.78 0.077958 0.068385 0.063257

125 0.78 0.8 0.82 0.076277 0.067006 0.062495

150 0.8 0.81 0.83 0.07512 0.066679 0.062244

175 0.815 0.82 0.84 0.07475 0.065882 0.061766

200 0.82 0.84 0.86 0.074512 0.065753 0.06172

Table 3: Attacker detection ratio (packet (Pkt) based)

Pkt generation interval Attacker detection Ratio Detection delay

MSJA SDTDL GDNN MSJA SDTDL GDNN

0.1 0.79 0.8 0.82 0.074512 0.065753 0.06172

0.2 0.82 0.84 0.86 0.077123 0.069165 0.063159

0.3 0.84 0.85 0.87 0.080139 0.07216 0.065293

0.4 0.856 0.86 0.88 0.083445 0.074047 0.06838

0.5 0.86 0.88 0.9 0.084176 0.075807 0.067319

Table 4: Attacker detection ratio (Node based)

Number of nodes Attacker detection ratio Detection delay

MSJA SDTDL GDNN MSJA SDTDL GDNN

50 0.77 0.78 0.8 0.09935 0.87671 0.082293

100 0.8 0.82 0.84 0.101249 0.090032 0.083283

150 0.82 0.83 0.85 0.103506 0.092559 0.085025

200 0.84 0.84 0.86 0.106481 0.094035 0.08725

250 0.86 0.88 0.9 0.108089 0.096127 0.08705
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Figure 7: Total consumed energy

Figure 8: Average consumed energy
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Figure 9: Total remaining energy

Figure 10: Average remaining energy
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Figure 11: Total packets received

Figure 12: Packet delivery ratio
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Figure 13: NRO

Figure 14: Delay (ms)
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Figure 15: Network throughput

Figure 16: Goodput
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Figure 17: Jitter

Figure 18: Packets dropped
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Figure 19: Dropping ratio

Figure 20: Relative energy
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The packet delivery ratio has improved, and the routing overhead has been minimized. On comparison
with MSJA and SDTDL it improves the lifetime of the network. Metrics jitter measures the delay between
packets. It must be possible to transmit without any hindrance if the delay between transmission is negligible.

The disseminated learning network is used to find deviations in the behavior of nodes. This leads to a
reduction in jitter and packet loss, as well as an increase in throughput.

The trained deep neural network validates the characteristics of each node. The neural network output is
the nodes status. The node is removed from data transmission if it is determined to be malicious.

In order to initiate the data transmission, the route from the source node to the destination must be
determined. The routes have to be identified and sensed. The data transmission is initiated after the route
has been identified. An attacker node is detected and removed from the network during the transmission
of data. For evaluating the performance of suggested methodology, certain metrics such as jitter, goodput,
throughput, packet dropped, packet delivery ratio are proposed.

Good performance contributes to the amount of information delivered and the packet dropping ratio
must be low. This result of metrics shows that the GDNN is capable of successful transmission of the metrics.

Here we will present graphical representations of the comparison of various metrics with time, as well as
compare various metrics with packet generation intervals.

5.2 Comparison of Various Metrics w.r.t Time

In this section, we present the simulation results on various performance metrics between the GDNN and
existing methods. The results show reduced total, and average consumed energy, reduced total and average
residual energy, increased packets received with packet delivery ratio reduced packets dropped with reduced
packet dropping ratio, reduced delay and jitter, and increased goodput and network lifetime than existing

Figure 21: Life time
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methods. Further, it is seen that the utilization of the attack detection model using GDNN enables optimal
transmission of data packets successfully between the source and base station (BS). However, the case is
not true in existing methods, the entire computational efficiency is spent on detecting the attack model
rather than successfully sending the packets to BS from the source transmitter.

5.3 Comparison of Various Metrics w.r.t Packet Generation Interval

This section provides the results of various performance metrics evaluated between the proposed and
existing methods in terms of packet generation interval. The simulation results are similar to those that
appeared w.r.t to the training interval. However, it is seen that the total and average consumed energy
reduced with increasing packet generation interval (PGI) are against the simulation time, where
consumption increases with time. The same is the case of the total packets received, network throughput
and packets dropped. On other hands, it is seen that with increasing PGI, the following parameters
increases total and average residual time, packet delivery rate, NRO delay, jitter, etc., against simulation
time, where it acts in reverse manner.

From the simulation, it is inferred that the utilization of GAN is used to learn the transmission properties
and predict the possibility of attacks at the earliest manner and ensures that the system obtains increased
network characteristics with a higher successful transmission rate than other methods.

Figure 22: Total consumed energy
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Figure 23: Average consumed energy

Figure 24: Total remaining energy
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Figure 26: Total packets received

Figure 25: Average remaining energy
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Figure 27: Packet delivery ratio

Figure 28: NRO
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Figure 29: Delay (ms)

Figure 30: Network throughput
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Figure 31: Goodput

Figure 32: Jitter
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Figure 33: Packets dropped

Figure 34: Dropping ratio
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Figure 35: Relative energy

Figure 36: Lifetime
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6 Conclusion

In this paper, we model a GDNN to improve the success of the transmission rate between source and BS
by mitigating jamming attacks. GDNN with generator and discriminator type neural networks with the
minimax game theory automatically adapts to the spectrum dynamics. The training of GDNN with such a
defense mechanism misleads the jammers to attack the transmission of data. Such misleading via game
theory does not allow the jammers to select the time slot since it makes inaccurate predictions on
classification sources. Such poor decisions by jammers prevent major transmission losses and make the
model efficient in successfully transmitting data packets between the source and destination nodes.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] X. R. Zhang, W. Z. Zhang, W. Sun, H. L. Wu, A. G. Song et al., “A real-time cutting model based on finite element

order reduction,” Computer Systems Science and Engineering, vol. 43, no. 1, pp. 1–55, 2022.

[2] Y. E. Sagduyu, R. A. Berry and A. Ephremides, “Jamming games for power controlled medium access with
dynamic traffic,” in Proc. ISIT, Austin,Texas, USA, pp. 1818–1822, 2010.

[3] W. Sun, G. C. Zhang, X. R. Zhang, X. Zhang and N. N. Ge, “Fine-grained vehicle type classification using
lightweight convolutional neural network with feature optimization and joint learning,” Multimedia Tools and
Applications, vol. 80, no. 20, pp. 30803–30816, 2021.

[4] Y. E. Sagduyu, R. A. Berry and A. Ephremidesi, “Wireless jamming attacks under dynamic traffic uncertainty,” in
Proc. 8th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Avignon, France,
pp. 303–312, 2010.

[5] B. Yin, S. W. Zhou, S. W. Zhang, K. Gu and F. Yu, “On efficient processing of continuous reverse skyline queries
in wireless sensor networks,” KSII Transactions on Internet and Information Systems, vol. 11, no. 4, pp. 1931–
1953, 2017.

[6] M. Karlsson, E. Bjornson and E. G. Larsson, “Jamming a TDD point-to-point link using reciprocity-based
MIMO,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 12, pp. 2957–2970, 2017.

[7] J. M. Zhang, K. Yang, L. Y. Xiang, Y. S. Luo, B. Xiong et al., “A self-adaptive regression-based multivariate data
compression scheme with error bound in wireless sensor networks,” International Journal of Distributed Sensor
Network, vol. 9, no. 3, pp. 913497, 2013.

[8] M. Medard, “Capacity of correlated jamming channels,” in Proc. Annual Allerton Conf. on Communication
Control and Computing, University of Illinois, vol. 35, pp. 1043–1052, 1997.

[9] J. Wang, X. C. Ju, Y. Gao, A. K. Sangaiah and G. J. Kim, “A PSO based energy efficient coverage control
algorithm for wireless networks,” Computers, Materials & Continua, vol. 56, no. 3, pp. 433–446, 2018.

[10] S. Shafiee and S. Ulukus, “Capacity of multiple access channels with correlated jamming,” in Proc. IEEE
MILCOM, Atlantic, NJ, USA, pp. 218–224, 2005.

[11] M. F. Amjad, H. Afzal, H. Abbas and A. B. Subhani, “AdS: An adaptive spectrum sensing technique for
survivability under jamming attack in cognitive radio networks,” Computer Communications, vol. 172, no. 4,
pp. 25–34, 2021.

[12] N. Saini, N. Pandey and A. P. Singh, “Developing malevolent node-based protection system against jamming
attack in agent assisted CRN,” International Journal of Information and Computer Society, vol. 13, no. 1, pp.
73–96, 2020.

[13] H. M. Furqan, M. A. Aygul, M. Nazzal and H. Arslan, “Primary user emulation and jamming attack detection in
cognitive radio via sparse coding,” EURASIP Journal on Wireless Communications and Networking, vol. 1, no. 1,
pp. 1–19, 2020.

IASC, 2023, vol.35, no.3 3783



[14] V. Chaudhary and H. Jagadeesh, “Fast-forward mitigation schemes for cognitive adversary,” IEEE Transactions
on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1304–1319, 2021.

[15] H. B. Salmeh, S. Otoum, M. Aloqaily, R. Derbas, I. A. I. Ridhawi et al., “Intelligent jamming-aware routing in
multi-hop IoT-based opportunistic cognitive radio networks,” Ad Hoc Networks, vol. 98, no. 3, pp. 102035, 2020.

[16] J. Wang, X. J. Gu, W. Liu, A. K. Sangaiah and H. J. Kim, “An empower Hamilton loop based data collection
algorithm with mobile agent for WSNs,” Human-Centric Computing and Information Sciences, vol. 9, no. 1,
pp. 1–14, 2019.

[17] J. Wang, Y. Gao, C. Zhou, S. Sherratt and L. Wang, “Optimal coverage multi-path scheduling scheme with
multiple mobile sinks for WSNs,” Computers, Materials & Continua, vol. 62, no. 2, pp. 695–711, 2020.

[18] J. Wang, Y. Gao, W. Liu, W. Wu and S. J. Lim, “An asynchronous clustering and mobile data gathering schema
based on timer mechanism in wireless sensor network,” Computers, Materials & Continua, vol. 58, no. 3, pp.
711–725, 2019.

[19] J. Wang, Y. Gao, X. Yin, F. Li and S. J. Kim, “An enhanced PEGASIS algorithm with mobile skin support for
wireless sensor networks,” Wireless Communications and Mobile Computing, vol. 2018, no. 8, pp. 1–9, 2018.

[20] Q. Tang, K. Yang, P. Li, J. M. Zhang, Y. S. Luo et al., “An energy efficient MCDS construction algorithm for
wireless sensor networks,” EURASIP Journal on Wireless Communication and Networking, vol. 2012, no. 1,
pp. 102, 2012.

[21] Z. Liao, J. Wang, S. Zhang, J. Cao and G. Min, “Minimizing movement for target coverage and network
connectivity in mobile sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no.
7, pp. 1971–1983, 2014.

[22] J. Heo, J. J. Kim, J. Peak and S. Bahk, “Mitigating stealthy jamming attacks in low-power and lossy wireless
networks,” Journal of Communications and Networks, vol. 20, no. 2, pp. 219–230, 2018.

[23] Y. Xi, L. Kong, Z. Liu, Y. Che, Y. Li et al., “Machine learning and deep learning methods for cybersecurity,” IEEE
Access, vol. 6, pp. 35365–35381, 2018.

[24] T. Erpek, Y. E. Sagduyu and Y. Shi, “Deep learning for launching and mitigating wireless jamming attacks,” IEEE
Transaction on Cognitive Communications and Networking, vol. 5, no. 1, pp. 2–14, 2018.

[25] X. Wei and Q. Sun, “A jamming detection method for multi-hop wireless networks based on association graph,”
Int. J. High Performance Computing and Networking, vol. 14, no. 3, pp. 284–293, 2019.

[26] J. Xu, H. Lou, W. Zhang and G. Sang, “An intelligent anti-jamming scheme for cognitive radio based on deep
reinforcement learning,” IEEE Access, vol. 8, pp. 202563–202572, 2020.

[27] L. Zhao, H. Xu, J. Zhang and H. Yang, “Resilient control for wireless cyber-physical systems subject to jamming
attacks: A cross-layer dynamic game approach,” IEEE Transactions on Cybernetics, vol. 52, no. 4, pp. 2599–
2608, 2020.

[28] E. Jayabalan and R. Pugazendi, “Deep learning model-based of jamming attacks in low-power and lossy wireless
networks,” Soft Computing, Springer, pp. 1–22, 2021. [Online]. Available: https://link.springer.com/article/10.
1007/s00500-021-06111-7.

3784 IASC, 2023, vol.35, no.3

https://link.springer.com/article/10.1007/s00500-021-06111-7
https://link.springer.com/article/10.1007/s00500-021-06111-7

	Generative Adversarial
Networks for Secure Data Transmission in Wireless
Network
	Introduction
	Related Work
	Proposed Model
	Jammer Detection Using GDNN with Game Theory
	Results and Discussion
	Conclusion
	References


