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Abstract: Here the estimating problem of a single sinusoidal signal in the additive
symmetric α-stable Gaussian (ASαSG) noise is investigated. The ASαSG noise
here is expressed as the additive of a Gaussian noise and a symmetric α-stable
distributed variable. As the probability density function (PDF) of the ASαSG is
complicated, traditional estimators cannot provide optimum estimates. Based on
the Metropolis-Hastings (M-H) sampling scheme, a robust frequency estimator
is proposed for ASαSG noise. Moreover, to accelerate the convergence rate of
the developed algorithm, a new criterion of reconstructing the proposal covar-
iance is derived, whose main idea is updating the proposal variance using several
previous samples drawn in each iteration. The approximation PDF of the ASαSG
noise, which is referred to the weighted sum of a Voigt function and a Gaussian
PDF, is also employed to reduce the computational complexity. The computer
simulations show that the performance of our method is better than the maximum
likelihood and the lp-norm estimators.

Keywords: Additive symmetric α-stable Gaussian mixture; metropolis-hastings
algorithm; robust frequency estimation; probability density function approximation

1 Introduction

In the real-world applications, impulsive noise is commonly come across, especially in wireless
communication or/and image processing [1–7]. Among these heavy-tailed noise models, α-stable [7],
Student’s t and Laplace distributions [8–13] are typical ones, whose probability density function (PDF)
are usually described by a single known mathematical function. Furthermore, mixture noise models are
proposed, which are Gaussian mixture and Cauchy Gaussian mixture [14–18]. However, all these noise
models cannot represent the special noise type in some real-world applications like the astrophysical
imaging processing [19] and multi-user communication network [20]. Take the astrophysical imaging
processing as an example, the encountered noise is described as a variable following symmetric α-stable
(SαS) distribution and a Gaussian distributed variable, known as additive symmetric α-stable [21]
Gaussian (ASαSG) mixture noise. Here SαS is due to galactic radiation and the Gaussian noise is caused
by the antenna of the satellite [22].
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In the paper, the estimation problem is investigated for a single sinusoid signal embedded with the
ASαSG mixture noise. As the PDF of the SαS noise cannot be written as an closed-form function, the
PDF of ASαSG distribution, obtained by the convolution of the PDF of SαS distribution and the PDF of
Gaussian distributions, cannot be expressed in an analytical form. Therefore, traditional estimators like
maximum likelihood estimator (MLE), cannot provide the optimal and stable estimates. Therefore, to fix
the estimation problem, we adopt a Markov chain Monte Carlo (MCMC) method, which can sample from
a simple conditional distribution of a stable Markov chain [22], instead of a complicated target PDF.
Since the conditional distribution is difficult to choose, the Metropolis-Hastings (M-H) method [23–27] is
proposed, which draw samples from any simple distributions with a constraint of an acceptance ratio
[28]. As only the conditional PDF of a stable Markov chain corresponds to the target PDF, the
convergence of the chain influences the computational complexity of the proposed method. In order to
improve computational cost, a proposal covariance reconstruction method is proposed, which iteratively
updates the proposal variance with the residuals between adjacent samples. Here we consider an
independent-parameter estimation problem, so the proposal covariance is defined as a diagonal matrix,
with all non-zero elements being candidate proposal variances. To further reduce the complexity caused
by the PDF of the ASαSG, the approximation of the SαS [22,29–33] is utilized, which is a weighted sum
of a Cauchy PDF and a Gaussian PDF. And hence the PDF of ASαSG noise can be simplified as the sum
of the Voigt profile [34,35] and a normal distribution. It is also worth to point out that our work is a
generalization of [36,37], which consider the additive Gaussian and Cauchy noise (a ¼ 1).

The rest of this paper is organized as follows. Section 2 reviews the main idea of the M-H algorithm. The
PDF approximation of the ASαSG is shown in Section 3. In Section 4, the proposed method is then given in
detail, where development of the new proposed covariance updating criterion is also provided. Computer
simulations are conducted in Section 5 to verify the robust of the proposed scheme. In Section 6,
conclusions are drawn.

2 The M-H Sampling Method

A Markov chain [38–41] can be defined by a series of random variables {xk}, which is

x1; x2; � � � ; xk ; xkþ1; � � � ; (1)

where xkþ1 relies only on xk , and the conditional PDF is expressed as pðxkþ1jxkÞ:
Denote the PDF of xkþ1 as f ðxkþ1Þ. The Markov chain is assumed to be stationary when

f ðxÞ ¼ limk!1pðxkþ1jxkÞf ðxkÞ; (2)

is satisfied with f ðxÞ being defined as limk!1f ðxkÞ. That is to say, for a stable Markov chain, with stationary
PDF f ðxÞ, the variables produced by pðxkþ1jxkÞwill be eventually tend to be sampled from f ðxÞ. Therefore, to
obtain a proper Markov chain, the choice of pðxkþ1jxkÞ is important and difficult in the real-world
applications.

However, in some scenarios of complicated target PDF, the proper conditional PDF pðxkþ1jxkÞ of the
chain is difficult to be selected. To avoid the choose of the conditional PDF, the M-H algorithm [42,43] is
developed, which is to draw samples from a proposal distribution with a constraint of a rejection
criterion. Denote the sample from the proposal distribution qðx�jxkÞ as x�, which is the candidate of the
Markov chain. The rejection criterion is also required to determine whether this candidate is accepted as
the member of the chain or not. The acceptance probability [28], referred to as A xk ; x�ð Þ is utilized to
describe the rejection criteria, with the definition of
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A xk ; x
�ð Þ ¼ min 1;

q xk jx�ð Þf x�ð Þ
q x�jxkð Þf xkð Þ

� �
: (3)

Usually, the qðx�jxkÞ are chosen as some simple distributions, such as uniform or/and Gaussian. Then the
steps of the M-H method are described in Tab. 1.

3 The PDF Approximation of Mixture Noise

The ASαSG noise q can be modelled as:

q ¼ eþ g; (4)

where e denotes the SαS noise with unknown dispersion c and g follows the normal distribution with
unknown variance r2 [28].

Since the mixture noise is the additive of two random variables with different PDF, the PDF of mixed
noise q, is usually calculated according to the convolution of SαS and Gaussian PDFs, which is

f ðqjr2; cÞ ¼ fGðqjr2Þ � faðqjcÞ
¼
Z 1

�1
faðq� s; cÞfGðqjr2Þds;

(5)

where fGðqjr2Þ and faðqjcÞ denote the PDFs of Gaussian and SαS distributions, respectively.

As the SαS process has no closed-from PDF expression, it is usually expressed using characteristic
function (CF) [44], which is

φðtÞ ¼ exp jdt � c tj jað Þ; 0 < a � 2 (6)

where a is the characteristic parameter [7] reflecting the impulsiveness of the distribution, d denotes the
location parameter setting to 0 in our assumption and c is the dispersion parameter describing the
diffuseness of the process. Noticed that in the case of a ¼ 2, the process is the normal distribution with γ
corresponding to the variance. While a ¼ 1, it corresponds to the Cauchy distribution.

Due to the complicated relationship between the CF and PDF, the PDF of ASαSG in (8) cannot be
expressed with an analytic form due to the convolution and integral operations. Therefore, to obtain the
closed-form PDF expression, we use the approximated PDF of the SαS noise. Because for a SαS

Table 1: The M-H algorithm

(1) Initialize the sample x1
(2) Draw sample u from Uð0; 1Þ
(3) Sample a candidate x� from the distribution qðx�jxkÞ
(4) Calculate the acceptance ratio A xk ; x�ð Þ using the definition in (3)
(5) Rejection Criterion:

If u < A xk ; x�ð Þ
xkþ1 ¼ x�

else
xkþ1 ¼ xk

(vi) Repeat steps (2)–(5) until a large number of iterations
(vii) Discard some samples before convergence
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variable, a ¼ 1 corresponds to the Cauchy distribution, and a ¼ 2 is the Gaussian process, its PDF is
rewritten as the sum of a Cauchy (a ¼ 1) PDF and a Gaussian (a ¼ 2) PDF [38]:

faðejcÞ ¼ nðaÞf1ðejgÞ þ ð1� nðaÞÞf2ðejk2Þ; (7)

where 0 � nðaÞ � 1 is the mixed coefficient, f1ðejgÞ and f2ðejkÞ denote the unnormalized Cauchy and
Gaussian processes, with the dispersion η and variance λ2 [38], respectively. For the sake of the analytical
form of nðaÞ, f1ðejgÞ and f2ðejk2Þ, previous works [45–47] are developed, among which the most accurate
expression is

nðaÞ ¼ 2�ð�p=aÞ � a�ð�p=2Þ
2a�ð�pÞ � a�ð�p=2Þ ; (8)

f1ðejcÞ ¼ c
pðe2 þ c2Þ ; (9)

f2ðejc2Þ ¼ 1

2
ffiffiffi
p

p
c
exp � e2

4c2

� �
; (10)

where p denotes the fractional moment. According to the investigation in [48], the value of p is usually
chosen as −1/4.

Then we express the PDF of the Gaussian variable g as

fG gjr2� � ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � g2n

2r2

� �
: (11)

With the use of (10)–(14), the PDF of ASαSG distribution in (8) is simplified as

f ðqjr2; cÞ ¼ nðaÞf3ðqjc; r2Þ þ ð1� nðaÞÞf4ðqjc2; r2Þ; (12)

where

f3ðqjc; r2Þ ¼ f1ðqjcÞ � fGðqjr2Þ; (13)

f4ðqjc2;r2Þ ¼ f2ðqjc2Þ � fGðqjr2Þ: (14)

According to [32], f3ðqjc; r2Þ and f4ðqjc2; r2Þ are in fact the Voigt profile and Gaussian distribution’s
PDF, whose expression are

f3ðqjc; r2Þ ¼ Refxg
r
ffiffiffiffiffiffi
2p

p ; (15)

f4ðqjc2;r2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr2 þ 2c2Þp exp � q2

2r2 þ 4c2

� �
; (16)

where x ¼ exp � qþ ic

r
ffiffiffi
2

p
� �2

1þ 2iffiffiffi
p

p
Z qþic

0
expðt2Þdt

� � !
.

4 Proposed Method

In general, the observations have the form of:

yn ¼ sn þ qn; (17)
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where qn denotes the independent and identically distributed (i.i.d.) ASαSG noise term, and

sn ¼ A cos xnþ fð Þ ¼ a1 cos xnð Þ þ a2 sin xnð Þ; (18)

with a1 ¼ A cos fð Þ; a2 ¼ �A sin fð Þ. Here A, ω and φ are amplitude, frequency and phase, respectively. The
task of the estimation is to find ω from observations fyngNn¼1.

4.1 Posterior of Unknown Parameters

Let h ¼ ½a1; a2;x; c; r2�T , which is the unknown parameter vector. According to [49], the priors of noise
parameter γ and r2, are usually considered following the conjugate inverse-gamma distribution. Assuming
that the priors for h and the observed data yn are statistically independent, they can be expressed as

f ynjhð Þ ¼ fG yn � snjc;r2
� �

; (19)

f a1; a2ð Þ ¼ 1ffiffiffiffiffiffi
2p

p
d
exp � a21 þ a22

2d2

� �
; (20)

f xð Þ ¼ 1

p
;x 2 ½0;p�; (21)

f cð Þ ¼ ba11
� a1ð Þ exp � b1

c

� �
; (22)

f r2
� � ¼ ba22

� a2ð Þ exp � b2
r2

� �
; (23)

where b1 ¼ b2 ¼ 0:01 and a1 ¼ a2 ¼ 10�10 according to [50].

By employing Bayes’ theorem [19], we have

f ða1; a2;x; c;r2jyÞ
¼ f ðyja1; a2;x; c; r2Þf ða1; a2Þf ðxÞf ðcÞ

¼ CN
YN
n¼2

nðaÞRefxng
r
ffiffiffiffiffiffi
2p

p þ ð1� nðaÞÞ
exp � e2n

2r2 þ 4c2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr2 þ 2c2Þp

8>><>>:
9>>=>>;;

(24)

where y ¼ ½y1 y2 � � � yN �T , Ref�g denotes the real part and

C ¼ ba11 b
a2
2

p
ffiffiffiffiffiffi
2p

p
d� a1ð Þ� a2ð Þ exp � b1

c
� b2
r2

� a21 þ a22
2d2

� �
; (25)

xn ¼ exp � en þ ic

r
ffiffiffi
2

p Þ2
� �

1þ 2iffiffiffi
p

p
Z en þ ic

r
ffiffiffi
2

p
0

expðt2Þdt

0B@
1CA

0B@
1CA; (26)

with en ¼ yn � a1 cos xnð Þ � a2 sin xnð Þ:
Furthermore, it can be easily seen in (27) that the expectations of posteriors of the unknown parameters

are their true values. Therefore, the mean of unknown parameter samples drawn by M-H algorithm are the
unbiased.
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4.2 Proposed M-H Algorithm

Although we have known the PDF expression of the ASαSG noise, estimators like MLE and the lp-norm
methods [51], are not able to be utilized due to poor performance and convergence problems. Furthermore,
since the posteriors of unknown parameters are complicated, directly sampling on them is difficult.

Therefore, in order to accurate estimate h, the M-H algorithm is used to sample all unknown parameters.
To draw samples easily, the multivariate Gaussian distribution is chosen as the M-H proposal distribution,
whose PDF is

q xjlð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffijPjp exp � 1

2
xT
X�1

x

� �
; (27)

where x ¼ ½x1 x2 x3 x4 x5�T with all elements corresponding to the candidates of the a1; a2;x; c;r2,
respectively and � denote covariance matrix of the proposal distribution. Since all elements in h are
assumed to be independent, � is a diagonal matrix, whose main diagonal entries, namely, are proposal
variances. As a hyperparameter, the large value of the proposal variance makes the chain converge faster
with a sharp fluctuation around the true value. On the other hand, the smaller value will cause a small-
amplitude oscillation but a slower convergence rate [22]. Therefore, for a M-H algorithm, the choice of
proposal variance is a difficult and meaningful task, due to its influence of the accuracy and the
computational cost.

In this paper, we propose employing a batch-mode samples to update the values of the proposed variance
in the proposal covariance matrix. The details of the proposal covariance matrix �ðkÞ are shown in Fig. 1.
With the use of the k-th estimate, denoted by h kð Þ, �ðkÞ m;mð Þ is written as

�ðkÞ m;mð Þ ¼
XL�1

l¼0

h k�lð Þ � hðk�l�1Þ
	 
2

;m ¼ 1; � � � ; 5; (28)

where L is the length of the batch-mode window.

According to the previous discussion, the initialization of the M-H method, denoted by h 1ð Þ, can be
chosen arbitrarily. Then to avoid initial bias [52], we threw away the first P samples before the stable of
the Markov chain, which is named the burn-in period. With the using the batch-mode proposal
covariance criterion, the k-th iteration h kð Þ can be obtained from the h k�1ð Þ using the steps in Tab. 2.

Figure 1: The batch-mode proposed covariance
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After the the steps in Tab. 2, the chain of a1; a2 and x will be convergent and tend to their true values.
Therefore, the estimates of signal parameters, referred to as ba1 ;ba2 and bx, can be obtained by the mean of
h kð Þ 1ð Þ, h kð Þð2Þ and h kð Þð3Þ (k ¼ P þ 1; � � � ;K þ P), respectively. With the definition of a1 and a2, the
estimates of amplitude and phase, denoted by A

^
and f

^
, are

A
^ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â21 þ â22

q
; (29)

f
^
¼ atan

â2
â1

� �
; (30)

where atanð�Þ is the arctangent operator.

5 Cramér-Rao Lower Bound (CRLB)

Let w ¼ ½A x f c r2�T : According to the definition in [22], the CRLBs of w can be obtained by the
diagonal elements of F�1. Here F is called the Fisher information matrix with �1 denoting the inverse
operator. The k; lð Þ entry (k; l ¼ 1; � � � ; 5) of F is

F k; lð Þ ¼ �E
@ log f yjwð Þ

@w

@ log f yjwð Þ
@w

� �T
( )

¼ �E
XN
n¼1

@ log f ðynjwÞ
@w

@ log f ðynjwÞ
@w

� �T
( )

; (31)

where Ef�g is the expectation operator and

@ log f ynjwð Þ
@w

¼ nðaÞ @ log f3 ynjwð Þ
@w

þ ð1� nðaÞÞ @ log f4 ynjwð Þ
@w

; (32)

with

@ log f3 ynwð Þ
@w

¼ 1

r2Re wnf g

cos xnþ fð ÞRe yn � sn þ icð Þwnf g
An sin xnþ fð ÞRe yn � sn þ icð Þwnf g
A sin xnþ fð ÞRe yn � sn þ icð Þwnf g
�Re i yn � sn þ icð Þwnf g þ 2rffiffiffiffiffiffi

2p
p

Re yn � sn þ icð Þ2wn

n o
þ cffiffiffiffiffiffiffiffiffiffi

2pr2
p � Re wnf g

2

266666664

377777775; (33)

Table 2: The details of the proposed algorithm

1. Set h 1ð Þ as all ones;
2. Draw P samples using the algorithm shown in Tab. 1, where the proposal covariance matrix isPð1Þ ¼ I5 � 5;
3. For k ¼ P þ 1; � � � ;K þ P

3.1 calculate the proposal covariance matrix �ðkÞ using batch-mode in (31);
3.2 generate h kð Þ from M-H algorithm shown in Tab. 1 with the new proposal covariance �ðkÞ.
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@ log f4 ynjwð Þ
@w

¼f4 ynjwð Þ

yn � snð Þ cos xnþ fð Þ
r2 þ 2c2

�An yn � snð Þ sin xnþ fð Þ
r2 þ 2c2

�A yn � snð Þ sin xnþ fð Þ
r2 þ 2c2

yn � snð Þ2
ðr2 þ 2c2Þ2 �

1

r2 þ 2c2

 !
r

ffiffiffi
2

p yn � snð Þ2
ðr2 þ 2c2Þ2 �

1

r2 þ 2c2

 !
c

266666666666666664

377777777777777775
; (34)

and sn ¼ A cos xnþ fð Þ. According to the definition in (29), the Voigt profile is complicated. And hence, the
closed-form expressions of CRLBs are not easy to be derived. Therefore, the calculation of the CRLBs in
(34) adopts an approximate numerical method:

bF k; lð Þ � 1

M

XM
m¼1

XN
n¼1

@ log f ymn jw
� �

@w

@ log f ymn jw
� �

@w

� �T

; (35)

where ymn represents the observed signal in the m-th independent trial and M denotes the number of
independent runs. It can be easily to prove that (38) can approach (34) with a large M being choosing.

6 Simulation Results

In this section, computer simulations are conducted to verify the effectiveness of our method. Then the
mean square frequency error (MSFE), denoted by Efðbx� xÞ2g, was employed to represent the performance
measure of the estimation. The sinusoid signal sn is constructed according to (21), with all parameters being
A ¼ 10:30, x ¼ 2:14 and φ ¼ 0:55. While for of ASαSG noise, the shape parameter α is chosen as 1.2. The
initialization of the proposed algorithm is set to all ones and the iteration number of the M-H chain is
K ¼ 8000 [28]. To verify the performance, the simulations of the MLE and lp-norm estimator (p ¼ 1:1)
[52] are included, because they are typical robust estimators for the heavy-tailed noise. Meanwhile, the
CRLB is also provided as a benchmark. In our experiments, all results are based on 600 independent runs
with a data length of N ¼ 100. Furthermore, all results are obtained by using Matlab on Intel (R) Core
(TM) i7-4790 CPU@3.60GHz [22].

First of all, to obtain the proper �ðkÞ in (28), the value of L is investigated. The dispersion parameters of
ASαSG noise are set to c ¼ 0:05 and r2 ¼ 0:5 [28]. Figs. 2 and 3 show the MSFE in different values of L and
the computational cost vs. L, respectively. Here the computational time is measured using the stopwatch timer
in the simulator. It can be seen in Fig. 2 that the MSFE of our method can be aligned with CRLB when
L 	 600. While according to the result in Fig. 3, the computational cost of the proposed algorithm
becomes higher for larger L. Take the higher accuracy and lower computational complexity into account,
we choose L as 600 [28] in the following test.

Second, we study the convergence rate of the M-H chain and the value of the burn-in period P. In this
test, the density parameter is the same values to the previous test and the proposal covariance matrix is
calculated by (31) with L ¼ 600. Figs. 4 and 5 show the samples of x; A; φ; c and r2 in different
iteration k. In these figures, we can see that after the first 2000 samples, the chain of all unknown
parameters approaches their true values. In this case, the corresponding burn-in period P in our
simulations is 2000 [22].
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Figure 2: MSFE vs. L

Figure 3: The computational cost of the proposed method vs. L

Figure 4: Estimates of unknown parameters vs. iteration number k
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In the following, the MSFE performance of our estimator, MLE and lp-norm estimator are considered.
Since there is no signal-to-noise ratio in ASαSG noise, in the proposed method, γ is scaled to generate
different noise conditions. With the use of previous tests, we throw away the first 2000 samples to
guarantee the stationary of the chain. It is indicated in Fig. 6 that the MSFE of our proposed method can
attain the CRLB for the noise conditions c 2 ½�30; 5� dB [22]. Furthermore, the proposed method
performs better than the lp-norm estimator and MLE, because it is much closer to CRLB.

Finally, the computational complexity of our scheme is studied in different data length. It can be seen in
the Tab. 3 that the computational cost of MLE and lp-norm is lower than the proposed estimator [38].
However, in the higher data length, our proposed scheme will not increase. This is to say, our method is
not sensitive to the data length, indicating the advantage of its application in big data.

Figure 5: Estimates of density parameters vs. iteration number k

Figure 6: Mean square frequency error of ω vs. γ
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7 Conclusion

In this paper, the improved Bayesian method, namely M-H algorithm, is used to study the accurate
frequency estimation method of single sinusoidal signal with ASαSG noise. In order to reduce the
computational cost, a new proposal covariance matrix reconstruction criterion and an PDF approximation
is designed. Simulation results indicate that the developed method can obtain the unbiased estimates with
a stable sampling condition. In addition, MSFE of the proposal estimator can obtain CRLB after
discarding burn-in period samples. Our method can be also extended to the other complicated signal models.
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