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Abstract: The evolution of bone marrow morphology is necessary in Acute Mye-
loid Leukemia (AML) prediction. It takes an enormous number of times to ana-
lyze with the standardization and inter-observer variability. Here, we proposed a
novel AML detection model using a Deep Convolutional Neural Network (D-
CNN). The proposed Faster R-CNN (Faster Region-Based CNN) models are
trained with Morphological Dataset. The proposed Faster R-CNN model is trained
using the augmented dataset. For overcoming the Imbalanced Data problem, data
augmentation techniques are imposed. The Faster R-CNN performance was com-
pared with existing transfer learning techniques. The results show that the Faster
R-CNN performance was significant than other techniques. The number of images
in each class is different. For example, the Neutrophil (segmented) class consists
of 8,486 images, and Lymphocyte (atypical) class consists of eleven images. The
dataset is used to train the CNN for single-cell morphology classification. The
proposed work implies the high-class performance server called Nvidia Tesla
V100 GPU (Graphics processing unit).

Keywords: Acute myeloid leukemia (AML); convolutional neural network
(CNN); and nvidia tesla v100 gpu

1 Introduction

Anomalies bring about acute Myeloid Leukemia (AML) in the DNA (Deoxyribonucleic acid) that
controls the improvement of cells in your bone marrow [1]. It originates from the bone marrow, soft inner
bone parts, where the blood cells are produced. AML can be a deadly disease. It can spread quickly in
the blood and other parts of the body. The diagnosis of the AML is that the doctor has to number of
White blood cells and red blood cells count and see if they need to find any abnormal health conditions
in that with the support of a microscope. The proposed model used for covid-19 diagnose but it is time
taking, tedious process to find out the accurate result [2]. To overcome these issues, the proposed Novel
AML detection model using Deep Convolutional neural networks and Faster R-CNN models are
implemented in this research [3]. This research enlightens the path to analyze the inaccurate disease manner.

The proposed work is carrying out the terms as Adult AML is a type of cancer in bone marrow makes
abnormal myeloblasts. Usually, it gets poorer when it is not treated. It is a type of acute leukemia in generally
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noted in adults [4]. AML is also known as acute myeloblastic leukemia, acute myelogenous leukemia, acute
granulocytic leukemia and acute nonlymphocytic leukemia [5]. Once adult AML is diagnosed, tests
determine if cancer has spread to other body parts [6]. There is no staging system for adult AML. The
author in [6], implies the Munich AML Morphology Dataset has 18,365-expert labelled single image
cells between 2014 and 2017. Non-pathological and Pathological leukocytes are classified into
morphological classification acquired from the clinical practice by trained experts [7].

Fast R-CNN uses a region proposal network (RPN) with the CNN. The RPN shares fully-connected
convolutional highlights the detection network empowering about without region proposals. It is an
entirely CN that simultaneously predicts object limits and adjacent Ness scores. R-CNN is prepared to
finish creating the region proposals which utilizes for location. It is converged into solitary network by
sharing convolutional highlights. The RPN part advises brought together network. Faster R-CNN
comprises two modules: the primary module and the subsequent module. The primary module is
completely a convolutional network that proposes regions and the subsequent module is the Fast R-CNN
indicator that utilizes the anticipated regions [8,9].

In this work, the process with the high-class performance server called Nvidia DGX. It is a line of Nvidia
produced servers and workstations specializing in GPGPU (General-purpose Graphics processing unit is a
graphics processing unit to accelerate deep learning applications. The product line is provided to bridge
the gap among AI and GPUs accelerators in device has certain features specializing it for DL workloads.
DGX-1 servers feature 8 GPUs relies on Volta or Pascal daughter cards with HBM 2 memory, connected
by an NV Link mesh network. The initial Pascal-based DGX-1 delivers 170 teraflops of precision
processing while volta-based upgrade enhanced to 960 teraflops [10]. The forthcoming section explains
the briefing of our work.

2 Literature Survey

Recently, the rapid growth of artificial intelligence has carried new assumptions to the various fields like
medicine, agriculture, industry automation, banking sector, risk management, and fraud detection, especially
for diagnosing the diseases, finding the variance, prognostication, and visualization [11]. Some studies
recommend data concerning the bone marrow, insusceptible framework and Leukemia cell digestion may
further develop prediction accuracy [12]. ML procedures are turned into development tool for predicting
the disease outcome [13]. For instance, it can distinguish actual examples and connections between
datapoint to anticipate the result of cancer. Among ML strategies, highlight choice-based methods are
choosing a subset of elements from the first arrangement of elements. These methods are beneficial to
involve and somewhat precise to execute for prediction processed [14].

It is reported that approximately 20 000 new cases are predicted with AML, and a 12,000-mortality rate
was noted in 2020. The development of AML is considered to be miserable, specifically for patients 65 years
old, and the report says that 59% of new cases are found over a specific region every year and 73% AML-
based deaths. With this population, the roughly one-year survival rate is � 30%, as described by the author
et al. [15]. The AML prognosis over older people is determined as the function of complex set with clinical
and biological factors. The population is heterogeneous that exhibits wider variability in performance, health-
based history, comorbidities, functional status, polypharmacy, organ dysfunction, social support and
cytogenetic abnormalities that influence the competency of treatment tolerance, available therapeutic
resistance and receiving optimal treatment likelihood as described by the author et al. [16]. Other disease
parameters like baseline bone marrow blasts and etiology (therapy-based AML, secondary and de novo)
also influences the patients’ disease course, prediction rate and treatment process as described by [17].

Some patients are diagnosed with AML and treated with IC followed by consolidation therapy and stem
cell transplant. Lower intensity treatments like hypomethylating agents are available for some patients who
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may not been IC members for the past few decades [18]. Some new non-intensive treatments like venetoclax
and glasdegib are considered targeted treatment measures like isocitrate dehydrogenase (IDH) inhibitors,
FMS such as FLT3 antibody-drug conjugate gemtuzumab ozogamicin is an induction therapy of AML
[19]. The patients may receive BSC with certain pain relief combination, infection control, antiemesis and
transfusions.

NIC or determining candidacy (IC) is not so standardized. Some prevailing treatment guidelines are
suggested against the age as a dominating factor. However, no consensus algorithm is proposed as in data
[20]. Despite of age, disease characteristics, comorbidities, performance status, some physicians account
for other factors like available support system, essential resources, financial support and performance
status. Some evidence to assist decision-making is generally contradictory and constraint factors [21]. In
some cases, the clinical trials eliminate patients based on their age, confounding comorbidities, and poor
PS. Both the patients and providers are provided with risk balancing during adverse causes, treatment-
based mortality and anti-cancer therapy advantages for older patients [22]. With the complex
considerations and lack of consensus, the optimal older patient’s treatment with the presence of AML
[23,24] is distinctly challenging for many Physicians. Despite AML-based publication evidence over age
65 that benefits from the active anti-leukemia treatment process [25–27]. Extensive variations in the
treatment process still exist. However, the analysis with real-world data and therapeutic usage related to
AML recommends many patients who receive NAAT [27–30].

3 Methodology

The proposed work is carrying out the terms as Adult acute myeloid leukemia (AML) is a cancer type
where bone marrow is identified with abnormal myeloblasts. There is no proper staging system for adult
AML. The data is collected from the American Cancer Society’s for leukemia in US (2020). Roughly
60,530 leukemia cases and 23,100 deaths are predicted. Roughly 19,940 new cases of AML are
identified. The sample is taken from the adults. Almost all will be adults. The following Fig. 1 indicates
the flow of the proposed AML detection model.

3.1 Dataset Description

This research considers BioGPS for AML which is characterized on molecular heterogeneity (http://
biogps.org/#goto=genereport&id=1017&show_dataset=E-GEOD-38987). The genomic region points to
candidate genes like leukemogenesis, and the dataset constructor uses single nucleotide polymorphism
and microarray-based genomic hybridization with 390 AML cases to narrow down genomic ROI (Region
of Interest). The targeted genes are located over the critical regions with a cohort representation of
50 AML samples with sub-groups. The predicted 120 nonsense and missense mutations and 60 deletions
or insertions were acquired from 73 various genes (� 3:5 tumour specifications). The newly predicted
alterations are non-recurrent, with several mutations influenced by genes over epigenetic regulation like
TET1, TET2, DNMT1 and DNMT3A with a mutation in histone methyltransferases. Moreover, the

Figure 1: Flow of proposed AML detection model
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mutations with splicing factor SFPQ and non-classical regulators of mRNA processing. The splicing-based
mutation influences 10% of AML patients exclusively.

3.2 Pre-Processing with Data Augmentation

It is a technique that increases the number of trainings samples and eliminates over-fitting issues. Here,
sample processing with augmentation is a step that is performed to enhance the dataset quality before it is
adapted to a classifier model. It includes color corrections, orientation and resizing. Data augmentation is
a manipulation applied to create various content versions to expose the model towards a more
comprehensive array of training samples. The augmentation process is typically used for the training data.
Therefore, transformation is measured as an augmentation that best-suited pre-processing step. In some
cases, the provided images are composed of low contrast images. In the case of the prediction process,
the low contrast images are not best suited. Therefore, the contrast adjustment is highly solicited. When
the provided training data does not have a constant contrast level representation, it is less specific where
constant contrast adjustment is highly appropriate. Indeed, random contrast altering during the training
process gives better generalization. It is known as augmentation.

The proposed work is processed with the input layer as the various images Fig. 2 as input one and got the
output as the dimensions 256,235,3 and not use any parameters. Then processing the next pass as block one
convolution one along with the convolution 2D and acquired the output as 256,256,64 and implies the
parameters as 1792. The outcome of block one convolution one is given to block one convolution two
after processing the output dimension as 256,256,64 and the parameters as 36928. In the final pass1, the
max-pooling 2D processed and output as following dimensions are 128,128,64, and zero parameters
apply. The Tab. 1 shows the convolutional parameters. Fig. 3 depicts the R-CNN model.

Figure 2: CNN model architecture

Table 1: Convolutional parameters

Layer (Type) Output shape Parameter

Input_1 (Input layer) (None, 256, 256, 3) 0

Block1_conv1 (Conv 2D) (None, 256, 256, 64) 1792

Block1_conv2 (Conv 2D) (None, 256, 256, 64) 36928

Block1_pool (Max Pooling 2D) (None, 128, 128, 64) 0

Block2_conv1 (Conv 2D) (None, 128, 128, 128) 73856

Block2_conv2 (Conv 2D) (None, 128, 128, 128) 147584

Block2_pool (Max Pooling 2D) (None, 64, 64, 128) 0
(Continued)
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The output shape is acquired as 1024 and zero parameters in flattening one. In dense one along with the
zero parameters output 33555456. In dropout one, the parameters are zero to get the output size as 1024. In
dense two along with the 1049600 parameters output attaint as 1024. In dropout, two parameters are taken as
2050 to get the output size as 15. The hyperparameter considers the 32 optimized batch size values in training

Table 1 (continued)

Layer (Type) Output shape Parameter

Block3_conv1 (Conv 2D) (None, 64, 64, 256) 295168

Block3_conv2 (Conv 2D) (None, 64, 64, 256) 590080

Block3_conv3 (Conv 2D) (None, 64, 64, 256) 590080

Block3_conv4 (Conv 2D) (None, 64, 64, 256) 590080

Block3_pool (Max Pooling 2D) (None, 32, 32, 256) 0

Block4_conv1 (Conv 2D) (None, 32, 32, 512) 1180160

Block4_conv2 (Conv 2D) (None, 32, 32, 512) 2359808

Block4_conv3 (Conv 2D) (None, 32, 32, 512) 2359808

Block4_conv4 (Conv 2D) (None, 32, 32, 512) 2359808

Block5_pool (Max Pooling 2D) (None, 8, 8, 512) 0

Flatten_1 (flatten) (None, 1024) 0

dense_1 (Dense) (None, 1024) 33555456

dropout_1 (Dropout) (None, 1024) 0

dense_2 (Dense) (None, 1024) 1049600

dropout_3 (Dense) (None, 15) 2050

Convolution  
Layers 

Classifier

ROI poolingBounding box

Feature maps
Regional Network 

model

Figure 3: Faster R-CNN model
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the dataset. The dropout value is optimized as 0.2. The loss is analyzed with the categorical cross-entropy.
The ReLu implies the activation function for convolution layers. Figs. 4a and 4b depicts the training and
validation accuracy and training and validation loss.

3.3 Faster R-CNN Model

The proposed model provides a novel regional network with superior computational efficiency and
performance. The proposed detection network is a single network that shares the convolutional features,
and the convolutions are shared during the testing time. The anticipated model is proposed to predict the
AML. The fully convolutional network indicates the objectless and object bounds at every position. The
functionality of the network is initiated by considering the convolutional base network, which is fed as an
input image, i.e., resized image. The convolutional layer’s output depends on the NN stride. The sliding
window is utilized to generate the region proposal over convolutional feature mapping by the network
layer (last). The proposed network is used during feature mapping to learn whether an object is provided
and its location and dimensions in the input image. The anchors carry it out, and it is centered at the
sliding window and related to the aspect ratio and scaling. The classifier layer is utilized to provide
probabilities whether or not points over the feature map contains an object within the anchors at the point.

The input image is initially passed via the input network to attain feature mapping. The bounding box
coordinates pool the features from the mapped feature. The ROI pooling layer performs it. This ROI layer
helps to 1) measure the region related to the feature map; 2) partition the regions to the fixed output size.
After passing it to the fully connected layers, the classification provides the features. The proposed model
is trained independently, and the CNN is initialized with weights from the trained network and fine-tuned
to perform region-based classification task. The anticipated network model is trained independently. The
backbone CNN weight is initialized from the trained network for classification, and it is fine-tuned for
the detection task. It does not share the convolutional layers. The network is initialized with weights from
the Faster R-CNN model and fine-tuned for the regional task. In the final stage, the detector is fine-tuned,
and the unique layers to the detector network are fine-tuned. The standard layers’ weights are fixed, and
finally, convolutional layers share the same network to form a unified network model.

Figure 4: (a) Training and validation accuracy. (b) Training and validation loss

548 IASC, 2023, vol.36, no.1



4 Numerical Results and Discussion

Researchers must assess the quality of the classification findings before evaluating the classifier’s
performance. The classification performance is computed to graphically illustrate the viability of the
newly designed algorithm, followed by a comparative study of existing classification algorithms and
additional enhancements depending on their inadequacies. Some metrics like accuracy, sensitivity,
specificity, and F1-score are commonly employed, and its execution principle will be momentarily
introduced underneath.

4.1 Confusion Matrix

It is also an error matrix to see if the classification result matches the original ground cover. It is the
foundation for several additional assessment criteria. It is expressed in Eq. (1)

X ¼
x11 � � � x1c
..
. . .

. ..
.

xc1 � � � xcc

2
64

3
75 (1)

where nij ¼ number of subcategories and xij ¼ number of categories. The element on the diagonal
indicates several successfully split data points, and ði; j ¼ 1; 2; . . . ; nÞ specifies the number of samples
into the i-th category. Where is the absolute number, where is the total number of sample elements.

n ¼
Xc

i¼1

Xc

j¼1

xij (2)

4.2 Overall Accuracy

The overall accuracy is calculated by dividing the number of accurately sampled data points by the entire
sample. The formula for the computation is expressed in Eq. (3)

POA ¼
Pc

i¼1 xiiPc
i¼1

Pc
j¼1 xij

(3)

The performance indicators are based on the confusion matrix, with TP denoting a lot of positive
instances that are positive, TN representing the number of negative instances that are negative, FP
indicating the series of adverse instances that are positive but are intended just to be positive, and FN
indicating the number of positive instances that are negative but are designed to be positive. The model’s
capacity to handle a real example positively or negatively is solely dependent on the accuracy of the land
cover/land use forecast. The fraction of correctly predicted positive instances out of all optimistic
predictions supplied by the predictor model is precision. Eq. (4) expresses it as follows:

Precision ¼ TP

ðTPþ FPÞ (4)

The recall is represented as the percentage of projected positive events that are always positive. It’s
written like this in Eq. (5)

Recall ¼ TP

ðTPþ FNÞ (5)
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The F1-score is a commonly used metric for classification issues. The recall and accuracy rates are
calculated using the average harmonic technique, with the maximal value is 1 and the minimal value is 0.
Eq. (6) is a mathematical expression for it:

F1� score ¼ 2� precision � recall
precisionþ recall

(6)

Specificity is defined as the ability to correctly forecast samples that are not deemed valid, i.e., accurate
negative samples. Eq. (7) is a mathematical expression for it:

Specificity ¼ TN

FPþ TN
�100 (7)

The different metrics to evaluate the semantic segmentation model are Pixel accuracy, Intersection over
union (IoU), Dice coefficient. The IoU is called as Jaccard index. The IoU is calculated as follows.

IoU ¼ Area of overlap

area of union
(8)

Dice coefficient: It is analyzed by the given below equation

ð2 � Area of OverlapÞ=ðtotal pixels combinedÞ (9)

The dice coefficient is similar to the IoU.

The following Tab. 2 express the comparison of various performance metrics along with the various
methods. Figs. 5a and 5b depicts the confusion matrix. Fig. 6 shows the prediction accuracy, and Fig. 7
shows the prediction loss. Fig. 8 illustrates the ROC comparison of TPR (True Positive Rate) and FPR
(False Positive Rate). Tab. 2 depicts the comparison of various performance metrics like accuracy, recall,
precision, F-measure, ROC, error rate and MCC comparison. The comparison is made among hybrid
CNN, standard CNN, CNN with boosting model, D-CNN with data augmentation, CNN with GA and
DCNN (See Figs. 9a and 9b). The accuracy of the anticipated 97.30% which is 2.3%, 1.3%, 4.3%, 3.3%,
3.3% and 0.30% higher than other approaches. The precision of the anticipated faster R-CNN model is
94% which is 14%, 32%, 10%, 11% and 12% higher than other approaches.

Table 2: Comparison of various performance metrics

Methods Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

ROC Error
rate

MCC

Hybrid CNN 95% 80 77 90 86 0.089 0.4655

Standard CNN 96% 62 76 68 85.5 1.02 0.4535

CNN with boosting model 93% 84 77 73 84 1.56 0.4318

D-CNN with data
augmentation

94% 83 76 78 80 1.63 0.4659

CNN with Genetic
optimization

94% 92 96 95 78 0.077 0.4206

DCNN 97 94 97 96 91 0.075 0.3565

R-CNN 97.30 94 98 95.65 98 0.080 0.2898
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Figure 5: (a) Confusion matrix. (b) Confusion matrix

Figure 6: Prediction accuracy

Figure 7: Prediction loss
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However, the DCNN model shows 94% precision. The recall of the anticipated faster R-CNN model is
98% which is 21%, 22%, 21%, 22%, 2% and 1% higher than other approaches. The F-measure of the
anticipated model is 95.65% which is 5.65%, 27.65%, 22.65%, 17.65%, 0.65% higher than other
approaches and 0.35% lesser than the DCNN model. The ROC of the anticipated ROC is 98% which is
12%, 11.5%, 14%, 18%, 20% and 7% superior to other methods. The error rate of the anticipated model
is 0.080, and the other models are 0.089, 1.02, 1.56, 1.63, 0.077 and 0.075. Generally, the value of the
MCC should be lesser than 1. When the model gives a lesser value than 1, then the model is said to be
superior. The MCC of R-CNN is 0.2898, DCNN is 0.3565, CNN with GA is 0.4206, D-CNN with DA is
0.4659, CNN with boosting model is 0.4318, standard CNN is 0.4535, and hybrid CNN is 0.4655. Fig. 8
shows the ROC comparison.

Tab. 3 depicts the overall comparison of various existing approaches with the proposed model. While
analyzing the Kaggle dataset, the proposed model gives 95.8% accuracy, 93% precision, 95% recall, 95%
F1-score, and 97.78% AUROC. The accuracy of the anticipated model is 95.8% which is 3.3%, 8%,
6.9%, 9.1%, 8%, and 2.7% higher than other approaches. The precision of the anticipated model is 93%
which is 18%, 15%, 21%, 18%, 7% and 2% higher than other approaches. The recall of the anticipated
model is 95% which is 23%, 25%, 23%, 22%, 5%, and 2% higher than other approaches. The F1-score
of the anticipated model is 95% which is 7%, 27%, 24%, 17%, 2% and 4% higher than other approaches.
The AUROC (Area Under the Receiver Operating Characteristics) of the anticipated model is 97.78%
which is 3.98%, 4.42%, 2.92%, 5.38%, and 0.89% higher than other approaches.

While performing the analysis with the Gene expression dataset, the model provides 95.50%, 93%, 94%,
95.8%, and 94.58% for accuracy, recall, precision, F1-score, and AUROC. The accuracy of the anticipated
model is 95.50% which is 5.4%, 4.4%, 5.1%, 3.6%, 5.35% and 2.25% higher than other approaches. The
precision of the anticipated model is 93% which is 19%, 17%, 16%, 22%, and 21% higher than other
approaches. The recall of the anticipated model is 94% which is 24%, 25%, 24%, 21%, 21% and 1%
higher than other approaches. The F1-score of the anticipated model is 95.8% which is 6.8%, 26.8%,
23.8%, 16.8%, 3.8% and 5.8% higher than other approaches. The AUROC of the anticipated model is
94.58% which is 2.08%, 2.44%, 3.44%, 4.2%, 4.2%, 3.61% and 1.02% higher than other approaches. In
the case of the Bio GPS dataset, the accuracy of the anticipated model is 97.30, which is 2.3%, 1.3%,
4.3%, 3.3%, 2.8% and 7.2% higher than other approaches. Fig. 9 shows the performance metrics comparison.

Figure 8: ROC comparison
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The precision of the anticipated model is 94% which is 14%, 32%, 10%, 12%, 2% and 4% higher than
other approaches. The recall of the anticipated model is 98% which is 20%, 21%, 20%, 21%, 2% and 10%
higher than other approaches. The F1-score of the anticipated model is 95.65% which is 6.4%, 28.65%,
23.65%, 17.75%, 1.41% and 5.65% higher than other approaches. The AUROC of the anticipated model
is 92% which is 5%, 4.5%, 7%, 10%, 12% and 2% higher than other approaches See Figs. 13 to 14.

Table 3: Overall comparison of the existing and proposed method

Dataset ML algorithm Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score

Time
(min)

AUROC

Kaggle dataset for
Leukemia classification

Hybrid CNN 92.5 75 72 88 0.10 93.8

Standard CNN 87.8 78 70 68 0.10 93.36

CNN with boosting
model

88.9 72 72 71 0.78 94.86

D-CNN with data
augmentation

86.7 75 73 78 6.80 92.40

CNN with Genetic
optimization

87.8 86 90 93 1.100 93.32

Standard CNN 93.1 91 93 91 0.06 96.89

R-CNN 95.8 93 95 95 0.04 97.78

Gene Expression dataset Hybrid CNN 90.1 74 70 89 0.05 92.50

Standard CNN 91.1 76 69 69 0.08 92.14

CNN with boosting
model

90.4 77 70 72 0.78 91.14

D-CNN with data
augmentation

91.9 75 68 79 6.06 90.38

CNN with Genetic
optimization

90.15 71 73 92 1.62 90.97

Standard CNN 93.25 72 93 90 0.04 93.56

R-CNN 95.50 93 94 95.8 0.04 94.58

Bio GPS
Dataset

Hybrid CNN 95 80 78 89.25 1.25 87

Standard CNN 96 62 77 67 2.658 86.5

CNN with boosting
model

93 84 78 72 4.56 85

D-CNN with data
augmentation

94 82 77 77.9 3.56 82

CNN with Genetic
optimization

94.50 92 96 94.24 4.57 80

Standard CNN 90.10 90 88 90 2.89 90

R-CNN 97.30 94 98 95.65 0.04 92
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Figure 9: (a) Performance metrics comparison (b) Error rate and MCC
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The research attempts to improve the diagnostic accuracy of AML. We proposed the novel AML
detection model using a Deep CNN. The proposed Faster R-CNN models are trained with a Single-cell
Morphological Dataset. Based on the experimental results, the pixel accuracy is 98.32% compared with
the other CNN algorithms, producing better results. Tab. 4 depicts the comparison of various performance
metrics like R-CNN, Fast R-CNN, U-Net, Mask R-CNN and Faster R-CNN model. Here, metrics like
pixel accuracy, Intersection over Union and dice coefficient are evaluated and compared with various
other approaches. The pixel accuracy of the proposed Faster R-CNN model is 98.32%, IoU is 48.7%, and
the dice coefficient is 97.56% See Figs. 10–12. Fig. 15 shows the overall comparison with Bio GPS
dataset. Based on these analyses, it is proven that the anticipated model gives superior outcomes and
establishes a better trade-off than other approaches.

Table 4: Comparison of various performance metrics

Description R-CNN Fast R-CNN U-Net Mask R-CNN Faster R-CNN

Pixel accuracy 85.49 87.64 91.74 92.42 98.32

Intersection-over-Union (0–50) 35.28 38.94 42.31 42.67 48.7

Dice coefficient 83.74 86.23 90.85 92.17 97.56

Figure 10: Pixel accuracy comparison
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Figure 11: Intersection over Union comparison

Figure 12: Dice coefficient comparison
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Figure 13: Overall comparison with Kaggle dataset

Figure 14: Overall comparison with Gene expression dataset
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5 Conclusion

Precise and accurate prediction of leukocytes is a complex task. The flexible structure of the nucleus
generates a huge problem for the prediction of leukemia. A novel Faster R-CNN is proposed to overcome
these issues. The optimal features are chosen to model a feature vector. Here, various metrics like hybrid
CNN, standard CNN, boosting model, data augmentation, GA and DCNN model is evaluated with the
proposed faster RCNN model. The proposed Faster R-CNN gives 97.30% prediction accuracy, 94%
precision, 98% recall, 95.65% F-measure, 0.080 error rate and 0.2898 MCC. Other metrics like pixel
accuracy, Intersection over Union and Dice coefficient are compared with other approaches like RCNN,
Faster R-CNN, U-Net and mask R-CNN. The pixel accuracy is 98.32%, Intersection over union is
48.7%, and dice coefficient is 97.56%. The proposed model works well in the prediction of acute
myeloid leukemia. However, the major limitation of the proposed model is the lack of optimized results.
In the future, the proposed model is optimized with the meta-heuristic optimization approach to attain
global and local optima.
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