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Abstract: Security breaches can seriously harm the Internet of Things (IoT) and
Industrial IoT (IIoT) environments. The damage can exceed financial and material
losses to threaten human lives. Overcoming these security risks is challenging
given IoT ubiquity, complexity, and restricted resources. Security intrusion man-
agement is a cornerstone in fortifying the defensive security process. This paper
presents an integrated multilayered framework facilitating the orchestration of the
security intrusion management process and developing security decision support
systems. The proposed framework incorporates four layers with four dedicated
processing phases. This paper focuses mainly on the analytical layer. We present
the architecture and models for predictive intrusion analytics for reactive and
proactive defense strategies. We differentiate between the device and network
levels to master the complexity of IoT infrastructure. Benefiting from the singu-
larity of IIoT devices traffic, we approach the reactive security intrusion predic-
tion through outlier detection models mean. We thoroughly experiment with ten
outlier detection models on the IIoT wustl realistic dataset. The obtained results
show the adequacy of the approach with an area under the curve (AUC) results
surpassing 98% for several models with a good level of precision and time effi-
ciency. Furthermore, we investigate the use of survival analysis semi-parametric
predictive models to forecast the security intrusion before its occurrence for the
proactive security strategy. The experiments show encouraging results with a con-
cordance index (c-Index) reaching 89% and an integrated brier score (IBS) of
0.02. By integrating outlier intrusion detection and survival forecasting, the fra-
mework provides a valuable means to monitor the security intrusions in IoT.
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1 Introduction

Ensuring information technology infrastructure safety and business continuity is a necessity nowadays.
As known, security attacks in digital legacy systems cause critical damages and induce significant losses in
the worldwide economy. Despite the continuous efforts in the security field, the risk is still imminent and
even exacerbated with the emergence of the Internet of Things and the 5G communication networks. The
IoT incorporates digital data in servers and real devices that individuals directly interact with, such as
wearable devices in healthcare networks, smart cars, smart homes, manufacturers, and smart cities.
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According to [1], IoT will reach 41.6 billion devices by 2025 and 75 billion by 2030, becoming ubiquitous.
These devices differ in their hardware platforms, communication protocol, and tasks to perform depending
on the application domains. They are also very limited in memory and processing capabilities. For instance,
in industrial IoT, many telemetry devices are commonly used. These deployed devices perform interesting
collection and control functions to enhance productivity while ensuring compliance with industry
standards. Unfortunately, since security is considered a secondary concern for the manufacturers, the IoT
devices are full of vulnerabilities. Users unaware of security risks do not take the necessary security
precautions, such as changing the device’s default configurations. Moreover, being an infected mobile
device, moving everywhere propagates the malware and contaminates the global network [2]. Given the
complexity induced by IoT, deciding on security intrusion becomes an unstructured problem requiring an
integrated decision with great accuracy.

This paper proposes an integrated multilayered framework supporting security intrusion decisions in
IoT. The proposed framework facilitates the orchestration of the security intrusion management process
and provides a means to develop decision support systems for security intrusion. On the other hand, the
IoT devices perform specific tasks yielding singular traffic. This feature makes them different from
generic purpose devices such as computers which perform several tasks generating different kinds and
forms of traffic. This singularity and stability of IoT devices’ traffic simplify their behavior prediction and
justify our idea to approach security intrusion as an outlier detection problem. Therefore, this paper
investigates a variety of outliers detection models existing in the literature when instantiating the
framework in the context of industrial IoT.

Moreover, this paper investigates the use of survival analysis techniques in intrusion forecasting. The
need for preventive security management justifies this choice by forecasting the security attacks instead of
only predicting their occurrence. Such forecasting is very crucial since it transforms security management
strategy from reactive to proactive one, which helps to (1) prevent or minimize the damage a security
attack could induce and therefore ensure the business continuity and daily work activities, (2) improve
the readiness of security response team to intervene at the right time and take the adequate security
defensive measures by performing the necessary security checks (3) ensure efficient and cost-effective
management by supporting the security staff in their decisions and facilitating their work by removing
unnecessary tasks increasing, therefore, their productivity. By orchestrating the proposed outlier detection
model, the survival-based forecasting model, and other security components, we profit from their power
of prediction and forecasting for security intrusion. Therefore, we improve the security analytics process
in the complex environment of IoT and IIoT. Section 2 presents the related work. Section 3 shows the
proposed framework and gives a bird view of its layers. Section 4 presents the architecture of the
components of the analytical layer, instantiates it in the IIoT context, and experiments with the use of
outlier models for detection and the survival analysis for forecasting in industrial IoT. Section
5 concludes the paper and gives some future work.

2 Related Works

The related works present research efforts related to the intrusion and outlier detection in IoT, the
security frameworks associated with IoT, and survival analysis and its use for intrusion forecasting in IoT.

2.1 Intrusion and Outlier Detection

An intrusion detection system (IDS) is placed either on hosts or inside the network. While misuse-based
IDSs inspect network packets and host logs to detect the attack, the anomaly-based systems mimic the
normal/abnormal behavior of the network/hosts and then see any deviation from the learned behaviors to
generate security alerts. The anomaly-based methods are used mainly due to their ability to detect new
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unseen attacks by exploiting the statistical characteristics of the traffic and logs rather than the content itself,
which is usually encrypted. Their success was mainly supported by the emergence of machine learning and
deep learning techniques. The models used in machine learning are either discriminative or generative. The
discriminative models learn how to separate between normal and abnormal data points without considering
how these data points were generated [3–5]. On the contrary, the generative approaches model the latent data
generation law using probabilistic and statistical technics [6,7]. Deep learning uses neural networks with
many hidden layers discriminating between normal and abnormal behaviors. The main drawback of the
deep learning-based approach is its unexplainably result. It is considered a black box making it hard for
the security officer to know the root causes of the security attacks or anomalies. Note that deep learning
can be seen as a generative approach with the emergence of generative adversarial networks [8]. Several
works based on machine learning for security intrusion in IoT were proposed in the literature. They
perform classification for supervised learning with labeled datasets or clustering for unsupervised learning
with unlabeled datasets. [9] propose misuse intrusion detection solutions by training various
discriminative models such as support vector machine, naïve Bayes, decision tree, random forest, and
fully convolutional neural networks to classify the traffic and detect the attacks. [10,11] propose various
anomaly-based solutions based on a vanilla autoencoder and an ensemble of encoders. The outlier
detection, investigated thoroughly in this paper, can be categorized into methods using linear, proximity-
based, probabilistic, and ensemble-based models. Principal component analysis (PCA), Minimum
covariance determinant (MCD), and One-class support vector machines (OCSVM) are linear outlier
detection models. PCA uses the sum of weighted projected distances to the eigenvector hyperplane as an
outlier score. MCD uses the Mahalanobis distances as a score, whereas OCSVM uses the SVM
discrimination approach for one class. On the other hand, Local outlier factor (LOF), Clustering-based
local outlier factor (CBLOF), Histogram-based outlier score (HBOS), and K nearest neighbors (KNN) are
proximity-based outlier detection models. Angle-based outlier detection (ABOD), Isolation forest (IF),
and Feature bagging are considered probabilistic and ensemble learning-based outlier detection models.
The reader is referred to [12] for in-depth details of outlier detection models. While these models were
thoroughly studied in different contexts, up to our knowledge, there not been fully experimented on IoT,
where the intrusion security problem is more appropriate to be approached by outlier detection methods
given the singularity of IoT devices’ traffic. Furthermore, most of the proposed solutions neglect
architectural design and management issues and treat the problem of security intrusion partially.

2.2 IoT Security Frameworks

On the other hand, many IoT frameworks for securing IoTwere proposed in the literature. The OWASP
IoT security verification standard is a framework to verify the devices’ security after their development
through checklists and questionnaires. A more mature framework is the ETSI303645 which gives detailed
instructions for the basic security of IoT devices. The IoT security compliance framework extends the
security to the business process level. There are also guidelines of ENISA that could be consulted. These
frameworks guide professionals in the specification, design, and procurement of IoT devices. The authors
in [13,14] survey works related to security frameworks dedicated to IoT security. The works focus on the
security and privacy of the IoT device, network, and service layers. [15] focus on the IoT framework
related to the trust concerns. [16] compares four security frameworks dedicated to secure IoT compliance
and deployment according to ISO27001 standard. [17] focuses on the implementation guidance
frameworks of IoT security. [18] proposes a security framework for IoT within a set of enhancement
techniques provided for IoT devices’ security. The surveyed works either focus on generic IoT security
architectures at a specific layer such as device, network, or services or are specific to a security property
such as privacy, trust, and compliance or address IoT information security from the point of view of risk
analysis and management. They are not specific for IoT security intrusion and are very specific or very
generic to be instantiated for IoT intrusion. Moreover, they do not incorporate dedicated ingredients for
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security analytics to support IoT security intrusions monitoring decisions. [19] proposes decision support
systems for security intrusion for the classical Internet and therefore inappropriate to the IoT context.
Furthermore, they are limited in analytics used techniques and architectural deployment. The authors in
[20] propose a cross-layer framework by aggregating information from IoT devices, networks, and
services layers. They propose a generic approach to deal with vulnerabilities technically without focusing
on intrusion analytics. Therefore, a security framework is required to tackle IoT intrusion security in an
integrated manner. That framework should incorporate the different aspects of intrusion security from
different and complementary points of view. One view angle is to fortify the intrusion detection process
by forecasting the intrusion before its occurrence. In this paper, we take profit from survival analysis for
that purpose.

2.3 Survival Analysis

In the survival analysis approach, we track the sample subjects (in our case, device/network) until the
occurrence of an event (in our case, security intrusion) to the subject or be censored from the sample
[21,22]. Survival analysis strength consists in considering this so-called censored data in its statistical
analysis. Contrary to regression models that neglect these subjects, losing consequently precious
information, the survival analysis considers censored data. It considers this uncertainty, making it possible
to predict the probability of event occurrence at a specific time instead of predicting only the event
happening time. This exciting feature justifies our choice of investigating survival analysis and its
applicability for security intrusion in IoT. Usually, censored data is very common in IoT devices for three
reasons. Firstly the IoT devices periodically enter idle status to preserve their limited resources in energy.
Secondly, IoT devices are susceptible to loose connections due to intentional and unintentional reliability
problems. Thirdly, the IoT devices’ monitoring is usually not continuous, introducing a set of periods in
which the IoT devices are not tracked.

There are three kinds of survival models: nonparametric, semiparametric, and parametric. Unlike the
nonparametric survival models, the semiparametric and parametric survival models include independent
variables. The Nelson-Aalen estimator and Kaplan-Meier are the most popular nonparametric survival
models [21]. Nelson-Aalen estimator sums up hazard function over time (cumulative) to estimate hazard
function. Kaplan-Meier takes the ratios of subjects without events over those at risk and multiplies that
over time to estimate the survival function of an entire group or cohort. Among the most popular
semiparametric models comes Cox proportional hazard (CPH) model [21,22], assuming that time and
features are proportional. While the risk function is usually expressed via a linear representation in CPH,
the non-linear model was recently introduced in [23], providing more modeling flexibility by using
Neural Networks (NN) within the original design. Introduced in [24], the Multi-Task Logistic Regression
(MTLR) model is an alternative to the CPH model. MTLR involves a series of logistic regression models
built on different time intervals. Within each, it estimates the event occurrence probability. Neural-MTLR
was introduced in [25], incorporating NN within the original MTLR design for modeling flexibility.
When it is possible to approximate the hazard and survival function distributions, or we have prior
knowledge of them, the parametric models are used rather than the semiparametric models in which the
time component of the hazard function is left unspecified. By doing so, we obtain better results for
forecasting, and the returned risk rate and survival functions will be smoother [26–28].

While survival analysis is widely used in medicine, engineering, and sociology, to name a few, it is
surprisingly rarely used in the security field. We only find two works in the literature. The first presents a
host-based intrusion detection system based on the Cox model. The system forecasts insider threats for
the CERT dataset. This work is inadequate for the IoT context since the dataset is generated by generic
devices and not IoT devices [29]. The second presents a survival network-based IDS. It forecasts
intrusion on the controller area network bus system. The controller manages the communication between
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the mobile electronic control units [30]. Unfortunately, the developed system is limited to the modern
automobile context.

3 Framework for Security in IoT (A Bird-Eye View)

A framework is a structure around which people will build something. In this paper, the intended
framework aims to build decision support systems for security intrusion in IoT environments. The three
main design criteria considered for the proposed framework are broadness, comprehensiveness, and
Multifaceted. Broadness means that the framework must cover many IoT environments different in size,
complexity, and security criticality. Comprehensiveness means that the framework must cover all kinds of
analytics required for accurate decision-making. Structuring these analytics is a cornerstone to building a
successful intrusion decision support system. Multifaceted means that the framework should span across
the whole security kill chain. In other words, the framework should incorporate the main components that
can track the security intrusions in their different evolution stages in time and space.

Although a framework is not intended to be a solution, it has to help security professionals flexibly
provide a set of keys for their intrusion security problems. These three main design criteria ensure the
flexibility and usability of the framework. They also serve to evaluate the framework by domain experts.
The validity of a framework is generally performed by instantiating the framework for a specific study
context. In this paper, only the analytical component of the framework is partially instantiated for
industrial IoT. Mainly we focused on identifying and experimenting with the appropriate models and
techniques for intrusion detection and forecasting in the IIoT context. Consequently, the validation is
limited to chosen models and techniques by a set of proper commonly used evaluation metrics. The
complete instantiation of the whole framework and its experimentation in real or simulated IIoT context
will be a subject of a future publication.

The proposed framework incorporates four layers with four processing phases (Fig. 1).

Figure 1: IoT intrusion decision support framework
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3.1 Physical Layer (Where All Things Happening)

The physical layer (PL) reflects the real IoT platform where all things are happening. The platform
connects IoT devices through different network technologies and protocols. It could be specific for e-
health, smart home, manufacturers, or smart cities. The depictive phase is concerned with collecting data
using watching agents. These watchers sniff the network traffic and control the IoT device to trace and
extract all possible valuable data. Data can be the network normal/malicious traffic, devices’ activity logs,
occurring failures, network topological changes, and devices’ mobility traces. Existing tools and utilities
for IoT can be used as watchers. It is also where the security agents such as firewalls and intrusion
detection/prevention systems are placed. These agents implement the algorithms and models specified by
the predictive phase in the analytical layer and enforce the execution of the defensive security operations
according to the prescriptive phase from the managerial layer. From an architectural view, the IoT devices
are connected to the local network via wireless access points connected to the global Internet via a
traditional router or via a software-defined network (SDN) switch. This router or SDN switch plays the
role of a gateway in which we can enforce the execution of our security measures. In SDN-based IoT,
they will be hosted in the controller applications. We then use OpenFlow for the gateway/controller
communication, and the flows’ features can be directly extracted in the gateway by packet forwarding
plane programming. For non-SDN platforms, the watchers and security agents are hosted in a local server
since the IoT devices are limited in memory and processing.

3.2 Logical Layer (What was Happened? What is Happening)

The second layer is the logical layer (LL). It is the layer where the raw collected data will be structured.
Since the primary goal of the framework is to manage the security intrusion based on an in-depth process of
analytics, a data warehouse database appears as a prime choice. Indeed, the data warehouse will integrate the
heterogenous data into one logical view dedicated to producing descriptive reporting. The descriptive phase
mainly describes what happened in the IoT platform and what is happening now. We can generate different
datasets for the predictive phase in the analytical layer from the data warehouse. These datasets will also be
updated by security staff for labeling purposes. An IoT ontology describing the platform and the happening
events will be produced. This ontology will be used to automate the auditing process and trace the execution
of security policies to detect any policy breaches. Forensics processes should take many precautions in data
collection and manipulation to satisfy the constraints for the admissibility of evidence in court. In a large IoT
platform with big data scenarios, the collected data will be stored in a private cloud. If we opt for a public
cloud, appropriate techniques should be applied to ensure the trust and privacy of the shared data.

3.3 Analytical Layer (What Will Happen? Why Will it Happen)

The third layer is the analytical layer (AL). It is the layer where predictive analytics is performed. Three
principal coordinating processes are coupled to give a clear view of security intrusions in the past (Auditing
process), the present (Detection process), and the future (Forecasting process). The auditing process uses the
ontology to generate new detection rules to support the detection process. It also uses the outputs of detection
and forecasting processes to update the security policies or develop new ones. The detection process is
concerned with detecting intrusions timely. The detection can be performed through misuse-based,
anomaly-based, or knowledge-based approaches or any hybrid mixing. The output of auditing/forecasting
processes is directly incorporated through detection rules for misuse and knowledge-based detection. For
anomaly-based detection, mainly based on machine learning, the datasets generated in the descriptive
phase are used for the learning process. The learning can be online to keep the prediction process updated
and ensure more accurate predictions. Note that the auditing/forecasting information is indirectly
considered through the update process of the datasets by the auditing/forecasting processes. The
forecasting process has paramount importance for the analytical and managerial layers since it gives
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insight into what will happen. It tunes the detection process by enhancing the accuracy, precision, and the
security staff’s readiness by supporting them to take adequate actions. The forecasting process uses the
updated dataset generated in the descriptive phase, prepared explicitly for forecasting techniques such as
times series and survival analysis.

3.4 Managerial Layer (What We Should Do? Why We Should Do So?)

The fourth layer is the managerial layer (ML). The problem of intrusion detection for IoT cannot be seen
as a structured problem where simple operational measures can solve the problem. It is either a semi-
structured or unstructured problem depending on the complexity of the IoT platform and the criticality of
the provided services. Security staff (Auditors, Administrators, and Investigators) need a sort of support
system for security purposes to make the appropriate decisions and therefore take adequate actions. In
the perspective phase, three types of decisions should be there: the operational, the tactical, and the
strategical. The strategic decisions serve to secure the IoT platform from offensive attacks by reducing the
risks to acceptable levels according to the security requirements of the application domain. They are
generally few, stable, but critical, and should be built on detailed planning based on the predictive phase
taking the security from different angles. The tactical decisions are needed to deal with the platform
dynamics and security status changes, flexibly serving the strategic plan. The auditing/forecasting
processes support taking adequate tactical security defensive decisions. The operational decisions insight
security procedures executing the tactical plan, and preventing an attack before it occurs. The proposed
framework guides the development of decision support systems for security intrusion for semi-structured
or unstructured problems. For the rest of the paper, we focus on the analytical layer. More specifically, we
will investigate the detection and forecasting processes.

4 Analytical Layer: Architecture and Instantiation for Industrial IoT

4.1 Architecture

Since the behavior of IoT devices is very predictable compared to general-purpose equipment such as
classic devices, a dedicated lightweight Host Intrusion Detection System (HIDS) coexisting with a Network
Intrusion Detection System (NIDS) is appropriate from an architectural view. Therefore, we approach the
problem through two levels of granularity of intrusion control: fine (device level) and coarse (network
level). Fig. 2 exhibits the architecture of components involved in the analytical layer. Each device has its
intrusion detection, forecasting, and auditing component for the device level. For the global network,
there will also be the same components. Still, the models used for the forecasters and detectors differ
from those of devices’ models in terms of model construction and model learning methods. The auditing
component is also integrated to detect the breach in policies and applied procedures. As mentioned, the
watching agents of the data layers report devices and the global network status of the platform
continuously stored in the IoT security data warehouse. We generate learning datasets specific for each
device, the global network, and the auditing reports from the data warehouse. Both device and network
levels predict the intrusion with a probability of its occurrence in the future.

Using ensemble learning to aggregate the detection and forecasting decisions ensures the prediction and
forecasting decision’s stability and reduces its variability. Furthermore, combining the outputs of forecasters
with the detectors fortifies and makes the intrusion detection process more accurate. For example, if the
detectors trigger an intrusion alert where the forecasters indicate a low probability of an intrusion
occurring at that time, this intrusion alert will be given a lower score and therefore ranked low priority
score. On the contrary, if the forecasters provide a high probability of intrusion at that time, it tags the
alert with a high priority score. Therefore, we construct a risk matrix to reflect the security risk status of
each device and the global network. We can use risk ranking techniques, therefore. These risk matrices
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are very beneficial for the security operation center staff to identify the most likely critical nodes under attack
or to be attacked. Moreover, they can be used to filter the false alerts that anomaly-based detectors suffer
from. Therefore, they provide a means to prioritize the actions taken and support them in making
appropriate decisions. These decisions are then mapped to specific operational actions deployed and
executed in the IoT platform. On the other hand, differentiating in security intrusions management
between a micro view (device level) and a macro view (network level) is also beneficial, mainly in the
context of IIoT, in detecting the type and nature of tuned attacks launched by the intruders and the device
malfunction not related to security intrusions. Consider, for example, the two following scenarios: (1) the
network level triggers an intrusion alert with high probability, whereas the device level indicates that
the device’s status is normal. The security staff can conclude that there is a stealthy denial attack where
the traffic is generated internally through the devices infected by malicious code injecting traffic into the
network. The injection rate is well-tuned such that it cannot be detected at the device level. Still, the total
injected traffic can be reflected and seen when many devices are infected at the network level. Therefore,
the security staff classify the attack as an internal attack, identify the malicious nodes, and sanitize them
without blocking the external traffic to the IoT network since the problem is internal. (2) Consider now
the inverse case, the device level triggers a high priority intrusion alert, but the network level does not;
the security staff can wonder if the type of the attack is a denial of service, trying not to exhaust the
network resources but the device level ones and therefore deduce that type is the probability an
application denial of service attack or the device encounter a malfunctioning failure not related to security
intrusion attacks. Therefore, the analysis is guided to explore these two possibilities.

Figure 2: Analytical layer components’ architecture
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4.2 Instantiation for Industrial IoT

In the following sections, we experiment with the detection and forecasting components of the analytical
layer architecture in the industrial IoT context. The auditing and the aggregating processes will be
investigated in future work.

4.2.1 Experimenting Outlier Detection for IIoT
We chose the IIoT wustl dataset to perform our experiments. Wustl is a realistic dataset. We invite the

reader to refer to [31] for all the details concerning the used dataset. We preprocessed the dataset. We
removed the IP addresses and port numbers as recommended by the authors to be independent of the
network used. We transform the categorical feature using a one-hot encoding function, and the numeric
values are normalized when normalization is needed using standard and min-max normalization methods.
We used a MacBook pro with a 2.3 GHZ intel core i9 with 16GB 2400 Mhz DDR4 to proceed with the
experimentations of the outlier models already mentioned in the related work section. We measured the
execution time (Tab. 1), the area under the curve (Tab. 2), and the precision (Tab. 3) for each model on
different samples and two outlier score percentages (0.1 and 0.2). We note that the execution time
generally increases when the sample size increases but slightly changes when the outlier fraction
increases. We also note that the Histogram-based Outlier Score (HBOS) and Principal Components
Analysis (PCA) score are the most efficient. Still, globally all the methods are efficient except the FB
method. Tabs. 2 and 3 show the AUC and precision results. We note that when we increase the outlier
fraction of the samples, the accuracy and the precision increase for most methods. We also note that the
MCD method is the most robust with the variation of outlier percentage and sample size. Its AUC always
remains more significant than 98%. It slightly outperforms PCA and Clustering-Based Local Outlier
Factor (CBLOF) methods. PCA and CBLOF are the most efficient methods and beat MCD and Isolation
Forest considering the execution time. In terms of precision, these four methods differ only slightly and
reach all good levels of precision. PCA performs the best as a tradeoff between accuracy, precision, and
efficiency. On the contrary, the BF method performs the worst. We also note that the best methods to
deploy in real-time intrusion detection scenarios are the CBLOF and PCA. We can deduce globally that
PCA, a linear-based outlier detection method, performs the best tradeoff score but is not far away,
especially compared with the CBLOF or MCD and Isolation Forest (IForest). We recommended PCA for
real-time IIoT intrusion detection. On the other hand, if we are interested in identifying the root causes of
a security intrusion, IForest will be a good option. If we are in an online learning scenario in which we
are present with a variation in learning batch sizes, MCD is the most appropriate, mainly when the real-
time constraints are relaxed.

Table 1: Processing time (sec)

#Samples Outlier Pere ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA

5000.0 0.1 1.0323 0.1079 2.2607 0.0122 0.3639 0.3908 0.2109 0.531 1.2092 0.008

5000.0 0.2 0.9575 0.1022 2.4297 0.0126 0.3674 0.3688 0.2303 0.4653 1.2086 0.012

25000.0 0.1 8.5116 0.1906 61.9929 0.0334 1.1674 6.2127 6.3247 1.1886 36.8964 0.0428

25000.0 0.2 8.7054 0.1886 56.5772 0.0284 1.1696 6.3793 6.062 1.2153 36.4711 0.046

40000.0 0.2 16.9973 0.2943 134.6951 0.0468 1.6503 13.6751 14.5593 2.1355 90.5034 0.0723

40000.0 0.1 18.237 0.2374 153.5067 0.0488 1.9889 15.0401 15.9658 2.1011 95.1327 0.0747

50000.0 0.1 28.8863 0.327 509.9113 0.0602 2.6005 24.8408 23.9538 2.6145 273.4453 0.0965

50000.0 0.2 24.8248 0.2955 232.8577 0.0594 2.4656 22.2394 21.9845 2.6381 157.4038 0.0913
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4.2.2 Experimenting Survival Analysis for IIoT Forecasting
Survival analysis incorporates three kinds of models: the nonparametric, the semiparametric, and the

parametric. Unlike the nonparametric models, we can include independent variables in the semiparametric
and parametric. Mostly we use nonparametric estimation to describe the shape of �ðtÞ or SðtÞ before
choosing a parametric model. For that, we proceed by sorting the dependent variable duration
increasingly t1 � t2 � t3 � . . . � tn and determine the number of the subjects at risk nj, the number of
events mj and the number of censored data ci. We calculate then the hazard function �ðtjÞ ¼ mj

nj
and

update nj ¼ nj�1 � mj�1 � cj�1. The Nelson-Aalen estimator sums up hazard function over time
(cumulative) �ðtjÞ ¼

P mj

nj
to estimate hazard function, whereas Kaplan-Meier [22] takes the ratios of

subjects without events over those at risk and multiplies that over time SðtjÞ ¼ �
nj�mj

nj
to estimate the

survival function of an entire group or cohort. Among the most popular semiparametric models comes
Cox proportional hazard (CPH) model [20,21,23], assuming that time and features are proportional such that:

�ðtjx; bÞ ¼ �0ðtÞex0b (1)

where �0ðtÞ is a baseline function representing the time component not specified in semiparametric models
and ex

0b is the risk function of the feature component with b representing the vector of coefficients to be
determined. Note that coefficients and hazard ratios should be reported for the parametric and
semiparametric models. The coefficient is qualified negative if it is between 0 and 1 and positive if
greater than 1. The coefficients and hazard rates are interpreted as follows: if the coefficient is positive,

Table 2: AUC

#Samples Outlier Pere ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA

5000.0 0.1 0.9344 0.9765 0.497 0.9811 0.9761 0.9692 0.5453 0.9805 0.9774 0.9765

5000.0 0.2 0.904 0.985 0.6402 0.9869 0.9804 0.9711 0.6018 0.9824 0.9857 0.985

25000.0 0.1 0.8396 0.9842 0.5837 0.9872 0.9782 0.9051 0.5965 0.9878 0.9841 0.9841

25000.0 0.2 0.8495 0.9847 0.6228 0.9881 0.9802 0.8955 0.592 0.9873 0.9845 0.9846

40000.0 0.1 0.7959 0.986 0.6068 0.9887 0.9837 0.8804 0.5622 0.9885 0.9859 0.9859

40000.0 0.2 0.8228 0.9851 0.6183 0.9884 0.9825 0.8936 0.5679 0.9879 0.9848 0.985

50000.0 0.1 0.8135 0.9841 0.5348 0.9874 0.9797 0.905 0.577 0.9872 0.9841 0.9841

50000.0 0.2 0.7987 0.9843 0.5389 0.9877 0.9805 0.9011 0.5925 0.9875 0.9843 0.9843

Table 3: Precision

#Samples Outlier Pere ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA

50000.0 0.1 0.6507 0.7606 0.1922 0.7575 0.6521 0.7013 0.1247 0.7599 0.7599 0.7599

50000.0 0.2 0.6582 0.7648 0.1968 0.7615 0.659 0.7018 0.1323 0.7629 0.7636 0.7643

25000.0 0.1 0.6705 0.7854 0.2891 0.7649 0.6717 0.7424 0.2386 0.7639 0.7841 0.7841

25000.0 0.2 0.7027 0.7716 0.2919 0.7748 0.6649 0.7459 0.2203 0.7419 0.7703 0.7716

5000.0 0.1 0.6818 0.7013 0.1623 0.7273 0.6169 0.6494 0.2338 0.7078 0.7013 0.7013

5000.0 0.2 0.6496 0.7607 0.2564 0.6814 0.6068 0.6239 0.2564 0.7436 0.7607 0.7607

40000.0 0.1 0.6548 0.7964 0.3286 0.7766 0.7036 0.7045 0.1449 0.7873 0.7947 0.7947

40000.0 0.2 0.6766 0.7682 0.3216 0.7639 0.6647 0.7169 0.1557 0.7648 0.7682 0.7682
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the hazard rate will be greater than 1, which means a lower duration or higher hazard rate and, therefore, more
likely for the event to happen. If the coefficient is negative, the hazard rate will be between 0 and 1, which
means higher duration and lower hazard rates and, therefore, less likely for the event to happen. While the
risk function is usually expressed via a linear representation in CPH, the non-linear model was recently
introduced in [23], providing more modeling flexibility by allowing the use of Neural Networks (NN)
within the original design. Introduced in [24], the Multi-Task Logistic Regression (MTLR) model is an
alternative to the CPH model. MTLR involves a series of logistic regression models built on different
time intervals to estimate the event occurrence probability. When it is possible to approximate the hazard
and survival function distributions, or we have prior knowledge of them, the parametric models in the
different parametric forms are used rather than the semiparametric models in which the time component
of the hazard function is left unspecified.

Since the used datasets contain several features, using nonparametric survival analysis is not adequate
since we must take profit from our features. Using a fully parametric model is very time-consuming, while
the devices and network have power and processing capabilities restrictions. Furthermore, the traffic
singularity of the IoT devices and their stability make them very predictable. Using a semi-parametric
model is more appropriate given its simplicity and efficiency. For this reason, we selected the MTLR model.

On the other hand, the dataset should incorporate three vectors: Xi the features vector, Ei the events
indicator vector (1 if there is an attack, 0 in case of censoring) and Ti ½Ti ¼ minðti; ciÞ� is the observed
time. with ti the actual event time and ci the time of censoring. Therefore, a data point is defined by three
elements (Xi; Ei; TiÞ which differs from supervised learning-based models where a data point is defined
by ðXi; yiÞ with yi is the target variable. The concordance index (C-index) and brier and integrated brier
scores are commonly used as performance metrics [24].

Cindex ¼
X
i;j

ð1Tj ,Ti � 1gj . gi � ejÞ=
X
i;j

ð1Tj ,Ti � ejÞ (2)

BSðtÞ ¼ 1

n

Xn
i¼1

ð1Ti . t � Ŝðt; xiÞÞ2 (3)

IBSðtmaxÞ ¼ 1

tmax

Ztmax

0

BSðtÞdt (4)

With gi be the risk score of a unit i, ej be the value of the event (0 or 1), 1Tj , Ti ¼ 1 if Tj, Ti else 0 and
1gj . gi ¼ 1 if gj. gi else 0.

C-index (Eq. (2)) generalizes the AUC metric (area under the ROC curve) by considering censored data.
It assesses how reliable a model is to rank survival times based on the individual risk scores. Like AUC, a
random prediction has a c-index value of 0.5, and when it equals 1, we get the best model prediction. The
Brier Score evaluates the accuracy of a predicted survival function at a given time t for a sample of n features
vector x as follows. The formula calculates the average squared distances between the observed survival
status and the predicted survival probability. Brier index is always a number between 0 and 1, with
0 being the best possible value. In benchmarking, it is shown that a useful model will have a Brier score
below 0.25, and if the survival function equals 0.5, then the BS equals 0.25. The integrated Brier Score is
just the integration of model performance at all available times.
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We experimented MTLRmodel in the IIoTwustl dataset [31]. Fig. 3 shows the distributions of the traffic
types of the datasets within the different security attacks. It reflects the realistic feature of the dataset since, in
real IIoT environments, the attacks seem to be outlier traffic given the singularity of IIoT devices traffic. The
most common attacks are backdoor, denial of service (DOS), communication injection, and reconnection
attacks. As Fig. 3 shows, DOS attacks dominate the other attacks. Indeed, the attackers always
overwhelmed IoT devices limited in memory and computational capacities. Fig. 4 presents the censored
data and the histogram of the survival time. It reflects the occurrence of the attacks. Fig. 5 shows the loss
function used to calculate the concordance index c-index. We get a c-index equal to 89% with an IBS
score of 0.02, presenting a very good forecasting performance. Generally, in survival analysis, any IBS
less than 25% is acceptable, but the lesser the IBS be better will be.

We also compared forecasting, i.e., predicted values, with the actual dataset. Fig. 6 shows this
comparison and demonstrates that the forecasting values fit well with actual values. We calculate the error
using three metrics; root mean square error (rmse), mean absolute error (mean abs error), and the median
absolute error (median abs error). The values shown on the graph are at acceptable levels (see the chart at
the top of Fig. 6).

Figure 3: Distribution of normal traffic and attack types

Figure 4: Occurrences of the attacks and survival time

440 IASC, 2023, vol.36, no.1



Fig. 6 also shows the risk score distribution. We note that there are three classes of risk scores. These
classes are colored red, green, and blue. The security staff specifies the range of each score based on the
score distribution (see the graph in the middle of Fig. 6). Finally, Fig. 6 (see the chart at the bottom of
Fig. 6) compares the survival function between high, medium, and low risks. This graph is very handy
for the security staff. Indeed, it provides them with the risky critical periods the IoT infrastructure is
encountering and allows them to be ready and prepared to prevent attacks.

Figure 5: Loss function and IBS prediction error curve
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5 Conclusion and Future Work

This paper tackles the problem of security intrusion management in IoT. Since the problem is considered
an unstructured problem due to IoT environments’ complexity and technical specificity, a decision support
system is necessary to manage the security intrusions efficiently. This paper is tentative in proposing a
framework dedicated to that purpose. The proposed framework provides integrated components guiding
security professionals to approach the security intrusions decision problem. As proof of concept, we
instantiate the analytics component of the framework in the context of the industrial IoT. Given the
singularity of device traffic in the IIoT, the paper studied and experimented with various outlier methods
for intrusion detection. The obtained results confirm the adequacy of such an approach for IIoT. Because

Figure 6: Comparison of actual vs. predicted and survival functions between risk grades
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security breaches in IoT are critical and can threaten human lives, a preventive and proactive defense strategy
is mandatory. We discussed the applicability of the survival analysis approach for IoT security. The
experiments show their power and adequacy. Although the framework tries to satisfy the design criteria
of broadness, comprehensiveness, and multifaceted, a thorough evaluation by applying the framework in
various IoT contexts will reflect its shortcomings and benefits. The framework proposes to couple the
forecasting with the prediction to ensure accuracy and management efficiency of security intrusions. We
will investigate this coupling thoroughly in the future. Moreover, we intend to incorporate the design of
the different layers and couple the auditing with the intrusion decision process. Finally, we will also
investigate the architectural issues and the deployment strategies in more detail.
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