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Abstract: Next-generation networks, including the Internet of Things (IoT), fifth-
generation cellular systems (5G), and sixth-generation cellular systems (6G), suf-
fer from the dramatic increase of the number of deployed devices. This puts high
constraints and challenges on the design of such networks. Structural changing of
the network is one of such challenges that affect the network performance, includ-
ing the required quality of service (QoS). The fractal dimension (FD) is consid-
ered one of the main indicators used to represent the structure of the
communication network. To this end, this work analyzes the FD of the network
and its use for telecommunication networks investigation and planning. The clus-
ter growing method for assessing the FD is introduced and analyzed. The article
proposes a novel method for estimating the FD of a communication network,
based on assessing the network’s connectivity, by searching for the shortest
routes. Unlike the cluster growing method, the proposed method does not require
multiple iterations, which reduces the number of calculations, and increases the
stability of the results obtained. Thus, the proposed method requires less compu-
tational cost than the cluster growing method and achieves higher stability. The
method is quite simple to implement and can be used in the tasks of research
and planning of modern and promising communication networks. The developed
method is evaluated for two different network structures and compared with the
cluster growing method. Results validate the developed method.
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1 Introduction

The dramatic increase of the number of wireless devices that exceeds the number of inhabitants of the
earth puts high constraints on the design and development of modern communication networks [1]. Such
communication networks that include fifth-generation (5G) cellular systems, Internet of Things (IoT), and
sixth-generation (6G) cellular systems are required to achieve high-to-ultra-high network scalability [2–4].
Moreover, the design issues associated with coverage and other network requirements should be provided
for dense/ultra-dense deployment scenarios [5]. Thus, novel approaches should be considered while
designing communication networks of such systems.

Since such networks are heterogeneous, the network structure undergoes changes related to the system
requirements, e.g., speed of data transfer, latency of communicated data, availability, and reliability [6,7].

Structural changes are associated with the required quality of service (QoS)/quality of experience (QoE),
which is achieved by reducing distances between end-devices and the access technology, e.g., base station and
gateway [8]. Moreover, introducing service delivery points, i.e., cloud services and capabilities, near end-
devices is another structural approach that can improve network performance and increase the QoS/QoE [9,10].

The extremely large number of network nodes inevitably leads to the appearance of typical structures of
various scales [11]. For example, user service structures in the area of operation of the base station, base
station service structures, micro, mini, and macro cloud services organization structures, transport
network organization structures, and others [12]. When organizing software-configurable networks, e.g.,
the cores of a 5G network, such typical structures arise, e.g., the structures of networks serviced by
various controllers and orchestrators [13,14].

The presence of typical structures assumes the invariance of the structure when it is scaled [15]. Typical
structures in communication networks could always be distinguished; however, quantitative changes caused
by the development of the large-scale modern networks, e.g., Internet, social networks, Internet of Things,
and Tactile Internet services, lead to the formation of structures that need to be described using new models
and methods [16–18]. For example, when the number of users in the coverage area of a base station is
calculated in units, the structure of the served area differs from the traditional structure, and moreover it
dynamically changes as the number of users changes.

This number is estimated in thousands of devices and is expected to increase exponentially. Thus, minor
changes in the number of devices per unit, practically, do not affect the structure, which means that the
quantitative change in the number of deployed devices has no significant effect on the stability of
the network structure. In such cases, it is necessary to represent the structure of the network, at both the
physical and logical levels, which would allow to evaluating the network properties. The properties of
typical structures used to build traditional communication networks, e.g., star, bus, and tree topologies,
are quite clear and well-known [19]. However, with a large number of nodes, such structures are used
together, which represents a challenge in determining the network properties. In order to represent the
structure of a high/ultra-high-density network, it is necessary to have some characteristics that enable to
numerically evaluate the differences between typical structures, as well as having links with the main
indicators of the functioning of the communication network [20].

This work considers using fractal dimension (FD) as an indicator to represent the communication network
structure. FD is usually used to describe natural objects that are difficult to be analyzed [21]. It has a geometric
meaning of the shape’s characteristics that are dependent on the scale in which the object is viewed. The
invariance of the structure with respect to scale changes is related to the concept of self-similarity.

The numerical value of the FD allows us to judge the geometric properties of the object. The concept of
FD has been expanded and applied to random processes. Recent techniques in the theory of Teletraffic use the
Hearst to evaluate the properties of the network traffic [22,23]. In [24,25], the concept of FD is used to
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describe the network environment, while in [26] it is used to describe the size of digital clusters. In the
previously mentioned works, FD is used in relation to artificial objects of the network environment space,
e.g., buildings and roads; however, real objects in the surrounding world should be considered fractal. In
some cases, when it comes to networks of natural origin in the microcosm, e.g., molecular connections
and neural network, physics and chemistry also resort to their description using the concept of FD [27].
The communication network is an artificial object; however, its development is associated with an
evolutionary process of natural objects, and the current numerical indicators allow it to be put on a par
with such objects.

The main contributions of this article can be summarized as follows.

1. Design a network model based on graph theory, and model the problem of network structure.

2. Design a framework to describe the structure of the communication network based on the concept of
FD.

3. Development of a method for estimating the fractal dimension of the wireless network based on the
connectivity.

4. Design a novel method for extracting features of the network structure. This is achieved by
employing the FD values as numerical indicators that characterize the network features. The value
of FD is not an exhaustive characteristic of the structure, but FD can be an attribute of network
indicators since FD provides information that is necessary for evaluating and comparing network
structures.

2 Network Model and Problem Statement

We consider a wireless network with a model represented by a graph G (V, E); V is the set of network
vertices, and E is the set of communication links. For a physical network structure, the set of vertices V is
associated with a set of network nodes, and the set of edges E is associated with a set of communication
lines. For a logical structure, i.e., the structure of information links, the set of vertices V is also associated
with a set of network nodes, while the set of edges E is associated with a set of routes, i.e., information links.

In general, an oriented weighted graph should be used to describe the communication network since the
parameters of the connections may not be symmetric. For the modeled network, it is assumed that the
communication channels are symmetric, and thus we consider an undirected weighted graph. The weights
of the edges of graph G reflect some numerical characteristics essential for solving a specific problem,
e.g., distance, data transfer rate, delivery delay, and probability of losses.

A network model in the form of a graph considers its structural and geographical features by setting the
corresponding coordinates to the vertices, i.e., weights to the edges of the graph. Moreover, it can reflect
other topological features. The considered model is an undirected weighted graph, and thus, the FD of the
network, i.e., graph, can be defined for it [28]. To evaluate the FD of the network, the cluster growing
method is used [29].

The cluster formation process in a communication network starts by randomly selecting of some vertices
[30]. Then, the selected vertices are connected, starting from the first selected one, with edges, if the distance
between them does not exceed a given value r. The resulting cluster contains m vertices. Each of the vertices
is assigned a certain weight, using the mass coefficient, Vj, and thus, the total mass of the cluster, C, is MC,
and is calculated as in Eq. (1).

MC ¼
Xm

j�1
Vj (1)
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For a unity weight of different vertices, i.e., Vj = 1, the average mass of the cluster is equal to the average
number of vertices in it. Increasing the value of r, results in an increase in the size of the resulting cluster, i.e.,
the number of vertices in the cluster. This is due to the fact that the cluster in this case includes vertices that
are further away from the neighboring vertices. As r increases, the cluster growth process is observed. This
process characterizes a set of vertices, i.e., nodes, from the point of view of forming a network according to
the metric r. The network operation parameter can be selected as this metric. For example, if it is a distance,
then this process can characterize a change in the connectivity of a wireless network. Other examples, if it is a
delay, then it characterizes the network’s ability to meet data delivery time requirements, and if it is the
probability of failure (loss), then this characteristic corresponds to the probability of delivery.

Fig. 1 presents an example for two iterations of clustering with different values of r. Fig. 1a shows the
clustering result with a cluster size of r = 23 m, while Fig. 1b shows the result of the clustering with a cluster
size of r = 27 m. In this example, a geometric model is given, in which the nodes of the graph model, i.e.,
network nodes, are located in a flat square area with a 500 m side. The network deploys 500 randomly
distributed nodes, i.e., graph vertices. In the first case, the average number of nodes in the cluster, i.e.,
cluster mass, is 6.3 while in the second is 15.4. From the presented graph, all vertices can be connected,
while the connectivity condition is not to exceed the distance r.

Obviously, the process of cluster growth depends on the choice of the initial vertex, and thus, one
observation does not give a complete picture of the network. Therefore, the considered cluster growth
method involves a lot of observations. Thus, the process of growing a cluster is repeated many times with
different initial conditions that the process is started from different vertices of the network k times. These
different vertices are randomly selected. The cluster’s average size, i.e., weight, is calculated as in Eq. (2).

MC rð Þ ¼ 1

K

Xmi

j�1
Vj; i ¼ 1; 2; . . . ::; k (2)

To estimate the fractional dimension, FD, the fundamental relation is used as follows.

MC rð Þ a rdf (3)

Figure 1: An example of performing clustering with different iterations (a) result of the clustering with a
cluster size of r = 23 m, (b) result of clustering with a cluster size of r = 27 m
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where df is the fractal dimension, FD. This method involves performing a number of graph clustering
operations at different cluster size, r, values. For each clustering operation, the average mass of the cluster
is calculated using Eq. (2), and the value of the FD, df, is calculated based on the fundamental relation
introduced in Eq. (3). Turning the relation equation, Eq. (3), into equality, Eq. (3) can be modified as
follows.

logMC rð Þ ¼ df log r þ log a (4)

where a is a constant coefficient. This equation is a linear equation with the slope representing the value of
FD, df, as illustrated in Fig. 2. Thus, the essence of the method of estimating the FD of a graph is to analyze
the dependence of the average number of cluster vertices, i.e., cluster mass, on its size.

Obviously, the meaning of the FD differs when choosing different metrics for the weight coefficients
attributed to the edges of the graph, i.e., the magnitude of r. For example, suppose the value of the data
delivery delay is used as the weighting factor. In that case, the clustering will result in clusters made up
of nodes, and the data delivery time between them does not exceed a specified value. The value of the
FD, in this case, reflects the dependence of the number of nodes, in such clusters, on the value of the
allowable delay. Such characteristics are important in evaluating communication networks, and for
planning them. As it gives an idea of the logical structure of the network and its dependence on the
requirements of the parameter selected as a metric.

The accuracy of the estimation process depends on the selected number of iterations k. Theoretically,
this number is equal to the number of network nodes. However, in most practical cases, this number of
itterations results in massive computations, and with different values of k, the results obtained may differ
significantly. Labor intensity is a significant difficulty in implementing this method. Thus, the
characteristic of the FD network can be used for promising communication networks as a characteristic of
the structure for various functional parameters. For the practical use of FD, novel methods with limited
computations should be introduced.

3 The Proposed Method for Estimating the Fractal Dimension of a Network Based on Connectivity

As mentioned in the previous section, the FD of a network can be estimated using Eq. (3), which
represents the dependence of the number of vertices in the cluster on the value of r. This dependence
characterizes the process of cluster growth with increasing r. Such a process is well identified in the
theory of random graphs and percolation theory [31,32]. In the theory of random graphs, this process is
considered as the process of phase transition of a graph from a disconnected state to a connected state,

Figure 2: Analysis and introduction of FD
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namely, the formation of a giant component of the graph [31]. The percolation theory also considers the
phase transition of a medium from one state to another, e.g., from a non-conducting state to a conducting
or another physical state, which is characterized by the formation of an infinite, i.e., percolation, cluster [32].

Both mentioned theories are similar in considering the process of cluster growth, clusters or graph
components, which leads to a change in the properties of the network, environment, or graph. In this
case, a cluster is understood as a set of vertices representing a graph component, i.e., a fully connected
subgraph. Thus, when using the cluster growth method, if the range of the variation of r is large enough,
the cluster in question is connected to a giant component after a certain step of increasing r. However, for
small values of r, it most likely does not belong to a giant component. The choice of different clustering
options, e.g., initial vertices, averages this process and allows to judge it as a process of changing the
connectivity of the graph, i.e., network.

In this section, we propose a method for evaluating the FD of a network by evaluating its connectivity,
which characterizes the reachability of the graph vertices. It is estimated through the number of shortest paths
that can be established between its vertices. The proposed method is referred to as the method of counting paths.

When the graph is connected, there is at least one path between any pair of its vertices. Thus, in a
connected graph, there is the shortest path between any pair of vertices, and when the several paths are of
equal weight, then any of them is chosen as the shortest. Furthermore, if the graph contains N vertices
and is completely connected, the number of shortest paths between its vertices is N2-N, excluding paths
from the vertex to itself. When the value of r changes, the number of shortest paths in the graph changes
from 0, a completely disconnected state, to the maximum possible value, the state of complete connectivity.

To estimate the FD, Eq. (3) is modified by replacing the cluster mass estimate with the number of
shortest paths in the graph, as follows.

S rð Þ a rdf (5)

where S(r) is the number of shortest paths in the graph that can be estimated using Floyd’s algorithm [33].
The initial data of the algorithm is the distance matrix, D, which is defined as follows.

D ¼ di;j rð Þ� �
; i; j ¼ 1; 2; . . . . . . ; n (6)

where di,j is the distance between vertices, i.e., nodes, i and j. The original distance matrix is modified by
taking into account the value of r as follows.

di;j rð Þ ¼ di;j; if di;j � r
dBIG; if di;j > r

�
i; j ¼ 1; 2; . . . . . . ; n (7)

where, dBIG is a sufficiently large number that exceeds the maximum possible path length, which in this case
is equivalent to an infinitely large number. Obviously, a change in the value of r leads to a change in the
distance matrix and, consequently, the shortest path search result.

Moreover, the Floyd’s algorithm is used to find the weights between all pairs of vertices and find the
shortest paths. The weights of the shortest paths are represented by the C matrix defined in Eq. (8).

C ¼ ci;j rð Þ� �
; i; j ¼ 1; 2; . . . . . . ; n (8)

If the weight of the found path is not infinity, this indicates that this path exists; otherwise, there is no
path. Thus, the number of paths is calculated as follows.

S rð Þ ¼
Xn

i�1

Xn

j�1
I ðci;j rð Þ; dBIGÞ (9)

where, I is the indicator function that is defined as follows.
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I ci;j rð Þ; dBIG
� � ¼ 1; if ci;j < dBIG

0; if ci;j � dBIG

�
(10)

To calculate the FD, Eq. (5) is turned to the equality equation, Eq. (11).

log S rð Þ ¼ df log r þ log a (11)

where, S(r) is the number of shortest paths calculated using Eq. (9). The main steps of the Floyd’s algorithm
for the developed route counting method are presented in Fig. 3.

The cycle is performed k-times depending on the range of the changes of r, and the step size of its change
Δr. Thus, k can be calculated as follows.

k ¼ rmax � rmin
Dr

(12)

where rmax and rmin are the maximum and minimum values of r, respectively. The maximum and minimum
values are selected based on the initial data from the distance matrix D.

rmax ¼ max di;j rð Þ� �
; i; j ¼ 1; 2; . . . . . . ; n (13)

rmin ¼ min di;j rð Þ� �
; i; j ¼ 1; 2; . . . . . . ; n (14)

The value of Δr is chosen based on the considerations of obtaining a sufficient number of points for
constructing a linear regression, practically, several tens of points.

Figure 3: Processes of the route counting method to calculate FD
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4 Performance Evaluation

In this section, the developed method for estimating the fractal dimension of a communication network
based on connectivity is evaluated. This is for the network shown in Fig. 1, with 500 nodes evenly distributed
in a square.

Fig. 4 shows the result of the FD evaluation for the considered network using the proposed method and
the cluster growing method.

As presented in Fig. 4, both methods achieve nearly similar results. The mentioned points in the results
are obtained by calculating the estimated indicators; the number of vertices in accordance with the cluster
growing method, i.e., lower group of curves, and the number of routes in accordance with the proposed
method, i.e., upper group of curves. These points are connected by dotted lines, which demonstrate the
nature of the dependence of the corresponding indicator on the value of r. From the above dependencies,
it can be seen that the laws of change of the considered indicators are very similar. The construction of
linear regressions for the obtained results also confirms their similarity.

The FD was obtained by the cluster growing method for the given network, and its value is 5.06, while
from the route counting method is 5.09. The proximity of the results obtained by these methods has been
tested on a sufficiently large samples of different networks, while the difference between the estimates
obtained has not exceed 5%. This gives grounds to assert that the proposed method can be used to
evaluate the FD of a communication network with sufficient accuracy for practical application.

This 5% difference in the obtained values, when evaluating the cluster growth method is due to the
number of iterations, i.e., initial conditions, is limited to reduce the number of calculations.

Thus, the proposed method is similar to the cluster growing method in the sense that it is also based on an
estimate of the number of connected network nodes. The difference is that the estimation of this number is
based on an estimate of the number of routes in the network.

The main advantage of the proposed method is the simplest implementation of the method that does not
require many iterations, which reduces the implementation time and cost. Moreover, it is enough to obtain
only one dependence of S(r). Fig. 5 shows another two constructed network structures formed by the
placement of nodes. Both network structures are of 500 nodes distributed over a square area. The two

Figure 4: The result of the FD assessment by two methods
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considered structures differ in the distribution of nodes over the network area. In Fig. 5a, the coordinates of
the nodes are distributed according to a two-dimensional, 2D, normal distribution, with a scattering point in
the middle of the square and a standard deviation of 80. Fig. 5b shows a network structure, while nodes are
distributed according to a multi-modal mixed distribution obtained from four 2D normal distributions.

The FD is estimated using the developed route calculation method for both considered structures, and
the results are presented in Fig. 6. Results indicate that the nature of the number dependencies of routes on the
value of r is different. Moreover, the numerical values of the FD of the two network structures are different.
For the first of network structure the value of FD is 2.4, while for the second is 4.7.

There are two limiting cases for analyzing the boundaries of the change of the FD network using the
developed method. The first case is when the distances between network nodes are very small, i.e., the
network is pulled to a point. Changing r, in such case, does not change the number of nodes in the cluster
or the number of routes and thus achieves a zero-regression, i.e., linear regression coefficient is zero. This
results in a zero FD. The second case is when all nodes of the network are located at equal distances
from each other, i.e., nodes that form a flat grid with square cells. In this case, changing the number of
nodes in the cluster, or the number of routes results in an instantaneous peak when r becomes equal to
the distance between the nodes. This results in a maximum regression that achieves an infinite FD. These
cases describe boundary states, the real value of the FD of the network lies between them, and depends
on the distribution of the value of r.

FD is really a characteristic of the network that can be used independently or in addition to other
characteristics. The main advantage of the developed route counting method is the stability of the results
obtained, compared to the cluster growing method. However, it should be noted that the volume of
calculations of this method is determined by the cube of the number of vertices, i.e., nodes of the
network, N3, which is the number of operations performed by the Floyd algorithm. With a large number
of network nodes, N, a significant amount of computing resources may be required. In such case, a
limited selection of nodes should, probably, be used; however, this leads to a decrease in the stability of
the results. Thus, the developed route counting method is advisable, when there is data on all/most of the
network nodes. The use of the cluster growing method is advisable, when a selective analysis of the
network is assumed without covering all nodes.

Figure 5: Two network structures with two different distributions
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5 Conclusions

The concept of the FD network can be applied to communication networks to characterize the features of
their structure. This parameter gives a numerical characteristic of the network structure, describing its
properties in relation to a selected metric. This metric can be any parameter of the quality of network
functioning indicators. Therefore, for communication networks, the FD parameter should be given in the
context of the analyzed parameter of the quality of functioning. The numerical value of this parameter
characterizes the degree of the invariance of the network structure to the scale determined by the value of
the selected functioning parameter. The estimation of the FD of the network can be performed on the
graph model of the network by the developed cluster growing method. With a relatively large number of
network nodes, this method requires quite large computing resources. Also, the results obtained with a
limited number of iterations are random and cannot always be used to compare the simulated structures.
The article proposes a novel method for estimating the FD of a communication network, based on
assessing the connectivity of the network by searching for the shortest routes. Unlike the cluster growing
method, the proposed method does not require multiple iterations, which reduces the number of
calculations, and increases the stability of the results obtained. The method is quite simple to implement
and can be used in research and planning modern and promising communication networks.

Figure 6: Estimation of FD for the two considered network structures
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