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Abstract: Scientific workflows have gained the emerging attention in sophisti-
cated large-scale scientific problem-solving environments. The pay-per-use model
of cloud, its scalability and dynamic deployment enables it suited for executing
scientific workflow applications. Since the cloud is not a utopian environment,
failures are inevitable that may result in experiencing fluctuations in the delivered
performance. Though a single task failure occurs in workflow based applications,
due to its task dependency nature, the reliability of the overall system will be
affected drastically. Hence rather than reactive fault-tolerant approaches, proactive
measures are vital in scientific workflows. This work puts forth an attempt to con-
centrate on the exploration issue of structuring a nature inspired metaheuristics-
Intelligent Water Drops Algorithm (IWDA) combined with an efficient machine
learning approach-Support Vector Regression (SVR) for task failure prognostica-
tion which facilitates proactive fault-tolerance in the scheduling of scientific
workflow applications. The failure prediction models in this study have been
implemented through SVR-based machine learning approaches and the precision
accuracy of prediction is optimized by IWDA and several performance metrics
were evaluated on various benchmark workflows. The experimental results prove
that the proposed proactive fault-tolerant approach performs better compared with
the other existing techniques.
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1 Introduction

Cloud is the buzzword in the computational technologies that has brought a paradigm shift in the way
data is stored and computing is performed. Cloud computing is a subscription-based service that delivers
computation as a utility. The key characteristics of cloud computing are providing elastic, on-demand
delivery of services with dynamically configurable resources and innovative pricing models. In the past
decade, the concept of scientific workflow has emerged as a booming paradigm for modeling large scale
complex data in diverse computing domains. Scientific workflows are abstractions composed of activities
and data with intricate dependencies managed by complex engines.
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Fault-tolerance is one of the critical factors to guarantee the reliability of cloud services. Fault-tolerance is the
ability of the system to keep working in presence of one or more faults but with decaying performance. Fault-
tolerance strategies in cloud are classified as two types: reactive and proactive. Reactive fault-tolerance strategies
are the techniques used to effectively troubleshoot a system upon occurrence of failure(s). Various reactive fault-
tolerance strategies are: Replication, Task resubmission, checkpointing and so on. The execution of such
techniques automatically results in the performance degradation of the system. Proactive fault-tolerance makes
use of a prediction approach to anticipate the failures in advance thereby reducing the downtime of the system.

Failure prediction influences the delivery of on-demand services in the cloud. Accurate predictions of
failure prone machines can help in mitigating the impact of failures in a proactive manner. Hence this
work emphasizes on a mathematical prediction-based approach to accurately anticipate the failure prone
hosts in the cloud resource pool which facilitates the early migration of the virtual machines to other
active hosts with no performance degradation.

2 Literature Review

2.1 Machine Learning Approaches for Failure Prediction

Cagatay Catal (2011) suggested Naive Bayes as the robust machine learning algorithm for supervised
software fault prediction [1]. Malhotra and Ankita Jain (2012) observed that the random forest and
bagging gave the best results for fault predictions [2]. But they did not consider the effect of size,
resource related issues on fault proneness and its severity. Islam, et al. (2012) proved that the prediction
accuracy of Error Correction Neural Network (ECNN) demonstrated superior effectiveness for forecasting
resource utilization in the cloud [3].

Fronza, et al (2013) introduced a new approach for predicting failures based on Support Vector
Machines (SVM) and Random Indexing (RI) [4]. The results of their work proved that weighted SVMs
perform better in improving sensitivity. This approach proved reliability in predicting both failures and
non-failures. Anju Bala and Inderveer Chana (2015) have designed intelligent task failure prediction
models that have been implemented through machine learning approaches like ANN, Naive Bayes,
Random Forest, and LR using evaluated performance metrics [5]. The approaches proposed in this paper
only predicts whether the task fails or not but does not determine the rate of failure of each task.

Upasna Kothari and Moe Momayez (2018) proposed the use of machine learning to predict the time of
failure [6]. The results of the study proved that Machine Learning provided prediction values that are 86% of
the time closer to the actual time of failure when compared to the traditional methods. Padmakumari, et al [7]
used the ensemble with the combination of machine learning methods in workflow environment to improve
accuracy and efficiency of the prediction model. Till now no work has been proposed using the combination
of SVR and IWD in the failure prediction of scientific workflows.

2.2 Nature-Inspired Support Vector Regression

Ming, et al. [8] (2017) constructed a PV power prediction model based on EMD and ABC-SVM and
proved that the method is superior to other approaches. The model proposed by Sheng, et al. [9] (2015) is
a hybrid of LS-SVR and SFA in which SFA integrates an artificial firefly colony algorithm with chaotic
map, adaptive inertia weight, and Levy flight. It uses SFA to optimize LS-SVR hyper parameters (i.e.,
regularization parameter and sigma parameter) and then uses LS-SVR for prediction.

3 Approaches Used for Task Failure Prognostication

3.1 Support Vector Machines for Regression

The concept of Support Vector Machine (SVM) was first introduced by Boser, Guyon and Vapnik. SVM
is a supervised machine learning algorithm based on statistical learning theory to fix both non-linear

224 IASC, 2023, vol.36, no.1



classification and regression challenges. It has great performance since it can handle a non-linear
classification efficiently by mapping samples from low dimensional input space to high dimensional
feature space with a non-linear kernel function. The key parameter of SVM is the type of kernel function
used. Kernel functions are used for mapping into a higher dimensional feature space. Mercer’s theorem is
used for the construction of positive definite kernel for SVM regressor.

Support Vector Regression (SVR) has been applied to many actual issues like predicting the
performance of compact heat exchangers (Peng and Ling, 2015), modeling of heat transfer in a thermo
syphon reboiler (Zaidi, 2015), predicting the sorption capacity of lead (II) ions (Nusrat Parveen et. al,
2016), predicting the price in a car leasing application (Mariana Listiani, 2009), modeling and predicting
Turkey’s electricity consumption (Kadir Kavaklioglu, 2010), analyzing prognosis of infants with
congenital muscular torticollis (Suk-Tae Seo, 2010), forecasting the demand and supply of wood pulp (V.
Anandhi, 2013), and so on.

The architecture of Support Vector Regression is given in Fig. 1:

The pseudocode for the intelligent water drops algorithm is given in Fig. 2

Figure 1: Architecture of a regression machine constructed by the support vector algorithm [10]

Figure 2: Pseudocode for intelligent water drops algorithm
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The flowchart for the proposed system is given in Fig. 3

The steps of IWDA to optimize the SVR parameter is given in Fig. 4

Figure 3: The proposed IWD-SVR based approach for failure prognostication

Figure 4: (Continued)
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The types of kernel functions for Support Vector Regressor is tabulated in Tab. 1

Figure 4: Steps of intelligent water drops algorithm to optimize SVR parameter

Table 1: Types of kernel functions for SVR

Types of Kernel Formula

Linear kernel kðx; yÞ ¼ xTyþ c

Polynomial kernel kðx; yÞ ¼ ðaxTyþ cÞd
Gaussian kernel kðx; yÞ ¼ expð�gjjx� yjj2Þ
Laplace radial basis function

kðx; yÞ ¼ exp
�jjx� yjj

r

� �

Sigmoid kernel kðx; yÞ ¼ tanhðaxTyþ cÞ
Anova radial basis

kðx; yÞ ¼ Pn
k¼1

expð�rðxk � ykÞ2Þd

Gaussian RBF
KðX ; Y Þ ¼ e

�jjX�Y jj2
2r2
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3.2 Intelligent Water Drops Algorithm for Optimization

The behavior of natural resources acts as a rich source of inspiration for us in tackling numerous real life
optimization problems. Intelligent Water Drops Algorithm (IWDA) [11] is one among them in which the
flow of water drops along the twist-and-turn path of the natural rivers to determine an optimal path
towards its destination helps us to implement it in the form of an algorithm to solve optimization issues.
The IWD algorithm is a population based constructive optimization algorithm whose idea depends on the
responses of the natural water drops in rivers.

In the IWD algorithm, each intelligent water drop is created with two properties: velocity of the water drop and
amount of soil each water drop carries. These properties commence with an initial value and change during the flow
of an IWD from a source to its destination. The trip of an IWD begins with an initial velocity and zero soil.

During its journey, the IWD flows in discrete steps from its current location to its next location. Hence the
velocity of the IWD increases non-linearly proportional to the inverse of the amount of soil between the two
locations. Therefore, a path with less soil lets the IWD move with greater velocity than a path with more soil.
An IWD gathers soil during its journey which is non-linearly proportional to the inverse of the time needed to
travel from the current location to the next. The time taken is proportional to the velocity of the IWD.

The IWD uses a mechanism to select its path to the next location. According to this mechanism, it
prefers to travel in the path with low soil so that it can move with greater velocities. The same
mechanism can be adopted to find an optimal solution in several real-time problems. Some of the popular
applications of IWDA are Vehicle routing problem, Multiple Knapsack problem, Job Shop scheduling,
Travelling Salesman problem and so on. The pseudo-code of an IWD-based algorithm might be indicated
in eight stages:

4 The Proposed IWD-SVR Approach

The proposed model seeks to adopt intelligent water drops algorithm to optimize the support vector
regression parameter which involves the following steps:

5 Evaluation Criteria

This work correctly identifies which tasks could be failed due to resource overutilization. For predicting
its performance, the data were collected from different scientific workflows with 25, 50 and 100 and
1000 tasks at fixed intervals using the CloudSim [12] and WorkflowSim [13] tools. The task failure
prediction accuracy has been evaluated using some evaluation metrics [14]. Pegasus [15] takes care of
abstract mapping to concrete workflows.

5.1 Sensitivity (Recall)

Sensitivity is a measure of the proportion of actual positive cases that got predicted as positive (or true
positive).

Sensitivity ¼ ðTPÞ=ðTP þ FNÞ (1)

■ TP-True Positive = Tasks that are labeled as failure and also evaluated as failed tasks.
■ FN-False Negative = Tasks that are labeled as non-failure but evaluated as failed tasks.
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5.2 Specificity

Specificity is defined as the proportion of actual negatives, which got predicted as the negative.

Specificity ¼ ðTNÞ=ðTN þ FPÞ (2)

■ TN–True Negative = Tasks labeled as non-failure and also evaluated as non-failed tasks.
■ FP-False Positive = Tasks labeled as failure but evaluated as non-failed tasks.

5.3 Precision

Precision is defined as the number of true positives divided by the number of true positives plus the
number of false positives.

Precision ¼ ðTPÞ=ðTP þ FPÞ (3)

5.4 F1 Score

F1 Score is the Harmonic Mean between Precision and Recall. The range for F1 Score is [0, 1]. The
greater the F1 Score, the better is the performance of our model.

F1 ¼ 2� 1
1

precision
þ 1

recall

(4)

5.5 Classification Accuracy

Classification Accuracy is the ratio of number of correct predictions to the total number of input samples.

Accuracy ¼ Number of correct predictions
Total number of predictions made

(5)

6 Experimentation Results and Discussions

Our experimental setup has four steps:

■ Data collection
■ Evaluation of performance metrics using percentage splits
■ Comparison of proposed approach with existing models for various scientific workflows.

6.1 Data Collection

CloudSim [12] and WorkflowSim [13] classes are used to collect the dataset for failure prognostication.
For predicting its performance, the data were collected from different scientific workflows with 25, 50,
100 and 1000 tasks at fixed intervals using the CloudSim [12] and WorkflowSim [13] classes. The
attributes considered in the failure prediction process is listed in the Tab. 2

The maximum dynamic threshold is set using the utilization parameters such as CPU, Bandwidth, RAM,
Memory, Disk and EET based on the current values and the historical data. If the current utilization value is
greater than the maximum threshold value, the task is categorized as failure.
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Tid and VMid denote the id of the failed task and its corresponding Virtual Machine. Did denote the id of
the datacenter where the task failure occurs. Percentages split used for training and testing data are 66% and
34% respectively.

6.2 Evaluation of Performance Metrics Using Percentage Split

The main contribution of this work is a SVR-IWD based approach in which the accuracy of the failure
prognostication is high compared with the existing approaches. Figs. 5–7 illustrates the comparison of
various performance metrics such as sensitivity, specificity, precision, recall and F1 score.

Table 2: Attributes considered for dataset collection

Attribute name Description

Tid Task id

VMid Virtual machine id

Did Data Center id

U.BW Utilization of bandwidth in percentage

U.CPU Utilization of CPU in percentage

U.RAM Utilization of RAM in percentage

U.Mem Utilization of memory in percentage

TimeS Start time of execution

TimeF Finish time of execution

Status Success or Failure

EET Estimated execution time

Figure 5: Comparison of sensitivity and specificity
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6.3 Comparison Evaluation of Various Scientific Workflows with Existing Approaches

The proposed IWD-SVR based approach is evaluated using various scientific workflows such as
Epigenomics, Montage, CyberShake, Inspiral and Sipht. To assess the algorithm, synthetic workflows in
the scientific community like Montage (astronomy), Epigenomics (biology), LIGO (gravitational physics)
and SIPHT (biology), CyberShake are utilized. These are accessible as abstract workflow in XML format
(DAX). All the algorithms are assessed using four different sizes of workflows. We have executed our
IWD-SVR in the WorkflowSim simulation tool. Each workflow differs according to the characteristics
and tasks.

The Montage workflow stitches multiple input images together to create custom mosaics of the sky. The
Cybershake workflow is used to characterize earthquake hazards in a region. The LIGO workflow is used to
analyze gravitational waveforms. The SIPHT workflow is used to automate the searching process of
untranslated RNAs in the NCBI database. The Epigenomics workflow is used to automate various
operations in genome sequence processing.

Fig. 8 illustrates the accuracy comparison of proposed approach with existing Naive Bayes, Random
Forest, Rule Based, and Logistic Regression. The overall accuracy of the proposed approach is 98.2%
which is 2.18% higher than the existing Naive Bayes approach.

Figure 6: Comparison of recall and precision

Figure 7: Comparison of F1 Score
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7 Conclusion

Proactive fault-tolerance mechanism is preferred in scientific workflows in the cloud environment
because they can anticipate the failure well ahead so that there is sufficient time for migration and
mitigation of failures. Proactive mechanisms are mainly based on the historical data to predict the future
faults. The efficiency of such mechanisms is based on several factors of which the prediction accuracy
plays the vital role. Hence the focus of my work is to enhance the prediction accuracy of the proactive
fault-tolerance mechanism. In our proposed IWD-SVR based approach, the prediction accuracy can be
achieved better by nearly 2.18% higher compared to the existing approaches. The future work of the
proposed system is to implement it in real-time to support current working environment.
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