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Abstract: One of the great concerns when tackling nonlinear systems is how to
design a robust controller that is able to deal with uncertainty. Many researchers
have been working on developing such type of controllers. One of the most effi-
cient techniques employed to develop such controllers is sliding mode control
(SMC). However, the low order SMC suffers from chattering problem which
harm the actuators of the control system and thus unsuitable to be used in many
practical applications. In this paper, the drawbacks of low order traditional sliding
mode control (FOTSMC) are resolved by presenting a novel adaptive radial basis
function neural network–based generalized rth order sliding mode control strategy
for nth order uncertain nonlinear systems. The proposed solution adopts neural
networks for their excellent capability in function approximation and thus used
to approximate the nonlinearities and uncertainties for systems under considera-
tion. The approximation errors are completely considered in the developed
approach. The proposed approach can be used with any order of sliding mode
and thus can be generally used with various types of applications. The global sta-
bility of the proposed control approach is proved through Lyapunov stability cri-
terion. The proposed approach is validated and assessed through simulations on
the nonlinear inverted pendulum system with severe modeling uncertainties.
The simulations results show that the proposed approach provide superior perfor-
mance compared with other approaches in the literature.

Keywords: SMC; nonlinear systems; PID; Lyapunov stability; radial basis
function neural networks

1 Introduction

One of the most challenging problems while dealing with nonlinear systems is uncertainty [1,2]. This
uncertainty occurs in system dynamics, system parameter variations and external perturbations [1–3]. The
uncertainties may also occur due to un-modeled high frequency dynamics, and neglected nonlinearities in
constructing the system mathematical model [4,5]. These uncertainties usually lead to the degraded
performance of control systems and sometimes to instability [1–3].
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Developing robust controllers for nonlinear systems is a great concern of many researchers over decades
especially for real-time control systems [6,7]. A robust controller is the controller which has the ability to
function properly even in the existence of uncertainties in system parameters or disturbances. Many
methods have been adopted to develop such robust controllers [1,2,6,7]. One of the most popular and
effective methods is sliding mode control (SMC) [8,9]. The most powerful advantage of the sliding mode
strategy is its ability to work effectively even in the existence of uncertainties and external perturbations.
Thus, SMC method is insensitive to changes in system parameters, and perturbations. However, the
sliding mode strategy sometimes has chattering which is harmful to the actuators of the control system.

Generally, the design of the SMC controller follows two main steps. The first step is the choice of a
sliding surface on which the system trajectory is confined to lie and thus the parameters of this surface
will govern the performance of the control system. The second step is to determine an efficient control
law that forces the system states to reach the sliding surface from any initial state. In order to assure the
system stability, the upper bound of uncertainties must be obtained precisely which cannot be guaranteed.
Furthermore, chattering occurs due to the sign function in the overall control.

As a result of the efficiency of SMC in handling uncertainties and nonlinearities of systems, it has been
the focus of many researchers over decades. SMC has been successfully applied in many applications. These
applications include but are not restricted to space crafts [10,11], time delayed control systems [12,13], and
power systems [14,15]. The main power of adopting SMC in these nonlinear systems is its robustness against
the structures and unstructured uncertainties and external disturbances that exist in these practical systems.
However, the SMC is not without disadvantages. The chattering problem is the main problem of using SMC
which may lead to undesirable performance and even instability of the control systems. Thus, many research
efforts have been thoroughly seen in the literature trying to achieve the optimal performance of SMC of
nonlinear systems [8,16–18].

Recently, many attempts have been seen trying to overcome the chattering problem while using the SMC
methodology in nonlinear control systems [19–22]. Many researchers have used the conventional first order
sliding mode control techniques with updated control functions [23,24]. They used continuous functions like
a sigmoid function instead of the intermittent control function. Nevertheless, using such method affects the
robustness of the SMC technique to disturbances as it restricts the system’s trajectories to the vicinity of the
sliding surface. Thus, many efforts have thought about higher order SMC techniques that keep the system
robustness in the presence of disturbances by forcing the system’s variables and their derivatives to
follow the sliding surface [25–28]. Working with higher order SM controllers is very challenging and still
open to further developments.

Several second order SMC solutions are developed for nonlinear systems [9,16,18]. Twisting and
supertwisting algorithms are among the well-known solutions [16,19,21,27,29]. However, these
algorithms are constrained with the necessary knowledge of the time derivative of the sliding variables’
which is unluckily not always available. In order to get adequate controller gains’ values, the time
derivative of the sliding variable should be bounded. On the other hand, various adaptive SMC
techniques have been developed to adequately tune the controller gains with regards to disturbances [30–
32] without considering that s

� ðtÞ is bounded. Also, using soft computing techniques in developing
adaptive SMC approaches for nonlinear systems have been given extensive attention. The main power of
using the soft computing techniques comes from their ability to intelligently estimate the system states
even for complex systems [33,34]. In [35], the nonlinear terms of the fractional order system are
estimated using a radial basis function (RBF) neural network.

It has been apparent that working with higher order SMC is very efficient in overcoming the chattering
problem which is the main concern of using SMC in many applications as it may cause high frequency
oscillations which leads to actuators damage. However, as the order of SMC increases, the system model
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turns to be more complex. Developing the adaptive control laws for such complex systems is very
challenging. Additionally, the time convergence of these systems cannot be guaranteed. This paper
presents a novel adaptive generalized neuro-based SMC for nonlinear systems. The presented approach is
of general order which means that we are able to deal with any order of SMC. The developed approach
in this paper is supported with strong mathematical analysis and proofs. The main contributions of this
work can be summarized as follows:

1. Developing a neuro-based SMC control approach for nonlinear systems which is capable of
completely eliminating the chattering. The proposed approach can be used with any order of
sliding mode and thus can be generally used with various types of applications. The neural
networks are exploited in the proposed approach for their excellent capabilities in function
approximation and thus used to approximate the nonlinearities and uncertainties in the system
under consideration. The approximation errors are completely considered in the developed
approach. All types of uncertainties have been taken into consideration.

2. The proposed approach is able to completely and adaptively estimate the uncertainties and thus the
problems exist with either estimating the upper bound of the uncertainties (like in [16,19,21,27,29])
or with adaptation of system gains (like in [30–32]) are released.

3. The stability of the designed system is validated using a suggested quadratic Lyapunov function. The
estimated uncertainties are considered in the developed Lyapunov analysis. The developed control
law guarantees that the system will reach the sliding surface in finite time with any order of
sliding mode. The mathematical proof for the developed approach and the stability analysis are
given in details below.

The proposed control algorithm is applied to a position trajectory tracking problem of an inverted
pendulum nonlinear system through simulations. The proposed approach is compared to the existing
conventional controllers. The simulation results indicate that the control performance of the develoepd
control strategy is satisfactory and better than those of the existing conventional controllers.

The remainder of this paper is organized as follows: the problem under consideration is formulated in
Section 2. Section 3 presents the proposed higher order sliding mode control for nonlinear systems. The
presented adaptive neural network-based higher order sliding mode control is introduced in Section 4.
Some simulation results and discussions are presented in Section 5. Finally, conclusions and some future
directions are summarized in Section 6.

2 Problem Formulation

The nth order uncertain nonlinear single-input single-output system may be described by:

y nð ÞðtÞ ¼ f ðxðtÞ; tÞ þ gðxðtÞ; tÞuðtÞ þ qðtÞ
yðtÞ ¼ x1ðtÞ (1)

where uðtÞ is the system input and xðtÞ ¼ y _y €y……:y nð Þ yðn�1Þ� �T
is the vector of the system states with

x1ðtÞ ¼ yðtÞ. The f ðxðtÞ; tÞ and gðxðtÞ; tÞ are nonlinear unknown functions. The q tð Þ denotes the external
perturbations.

In order to consider uncertainties in the system model, the controlled system can be modified as
follows:

y nð ÞðtÞ ¼ fnðxðtÞ; tÞ þ Df ðxðtÞ; tÞ þ gnðxðtÞ; tÞ þ DgðxðtÞ; tÞð ÞuðtÞ þ qðtÞ
y nð ÞðtÞ ¼ fnðxðtÞ; tÞ þ gnðxðtÞ; tÞuðtÞ þ dðtÞ (2)
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where fnðxðtÞ; tÞ and gnðxðtÞ; tÞ represent the nominal values of the nonlinear functions f x tð Þ; tð Þ and
gðxðtÞ; tÞ. Df ðxðtÞ; tÞ and DgðxðtÞ; tÞ represent the parameter variations (uncertainties) of the nonlinear
functions f ðxðtÞ; tÞ and gðxðtÞ; tÞ. All parameters' variations (uncertainties) can be lumped in one variable
as follows:

dðtÞ ¼ Df ðxðtÞ; tÞ þ DgðxðtÞ; tÞuðtÞ þ qðtÞ (3)

The sliding surface of order r is chosen as:

sðr�1Þ þ ar�2sðr�2Þ þ . . .þ a1 _sþ aos ¼ eðn�1Þ þ kn�2eðn�2Þ þ …:þ k1 _eþ koeþ kI
R
eðnÞdn

sðr�1Þ þPr�2
j¼0 aj s

jð Þ ¼ eðn�1Þ þPn�2
i¼0 ki e ið Þ þ kI

R
eðnÞdn

(4)

where eðtÞ ¼ yðtÞ � ydðtÞ is the tracking error, and yðtÞ, and ydðtÞ are the actual and desired system responses
respectively. The parameters ao;…::ar�2ð Þ, ko;…::kn�2ð Þ and kIð Þ are positive constants. The addressed
problem in this work is to design an adaptive and continuous neuro-based sliding mode control for
nonlinear perturbed systems such that the system output yðtÞ successfully follows a bounded desired
signal ydðtÞ, in the presence of uncertainties. Two models are proposed; discontinuous, and continuous as
explained in details below.

3 Higher Order Sliding Mode Control for Higher Order Nonlinear Systems

In this section, a generalized extension of the authors' work in [35] is presented. The developed extended
work in this section is based on the design of a discontinuous rth order sliding mode control (DROSMC) for
nth order uncertain nonlinear single-input single-output system. In order to achieve that, the trajectory
tracking error must approach zero and the ROSMC control law must steer the sliding surface sðtÞ and all
its derivatives (sðtÞ ¼ _sðtÞ ¼ €sðtÞ ¼ …:: ¼ sðr�1ÞðtÞ ¼ 0) to zero. To reach this goal, the proposed
DROSMC control law is chosen as [15]:

uðtÞ ¼ ueqðtÞ þ urðtÞ (5)

where ueqðtÞ and urðtÞ denote the equivalent control effort and the switching control signal respectively. The
equivalent control effort ueqðtÞ can be obtained as a solution of s rð ÞðtÞ ¼ 0 under nominal system dynamic
model dðtÞ ¼ 0ð Þ.

The time derivative of sliding surface in Eq. (4) is obtained as:

s rð Þ þ
Xr�1

j¼1
aj�1s

jð Þ ¼ e nð Þ þ
Xn�1

i¼1
ki�1e

ið Þ þ kI e (6)

The rth time derivative of sliding surface is computed as:

s rð Þ ¼ �
Xr�1

j¼1
aj�1s

jð Þ þ e nð Þ þ
Xn�1

i¼1
ki�1e

ið Þ þ kI e (7)

Substituting e nð Þ tð Þ ¼ y nð ÞðtÞ � y nð Þ
d ðtÞ into Eq. (7) and using Eq. (2), we get:

s rð Þ ¼ �
Xr�1

j¼1
aj�1s

jð Þ þ fn þ gnuðtÞ þ dðtÞ � y nð Þ
d ðtÞ þ

Xn�1

i¼1
ki�1e

ið Þ þ kI e (8)

In order to keep the error variables of the nominal system dðtÞ ¼ 0ð Þ on the sliding surface, the condition
s rð ÞðtÞ ¼ 0 must be satisfied. Thus, the control signal is recognized as the equivalent control action ueq tð Þ
which can be calculated from Eq. (8) as:

388 IASC, 2023, vol.36, no.1



ueqðtÞ ¼ 1

gn

Xr�1

j¼1
aj�1s

jð Þ � fn þ y nð Þ
d ðtÞ �

Xn�1

i¼1
ki�1e

ið Þ � kI e
� �

(9)

The switching control signal urðtÞ can be chosen as:

urðtÞ ¼ �1

gn
kr�1s

ðr�2Þ þ krsign sðr�1Þ
� �

þ
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e

 !
(10)

where kr is a design parameter representing the reaching control gain, sign sðr�1Þ� �
denotes the signum

function, and e is a small positive number.

Theorem 1. Assume the uncertain controlled system (2) is controlled by u(t) (5) which guarantees the
global boundedness of all sliding variables and the tracking error approaches zero, the global stability of (2)
is verified.

Proof. Consider the following Lyapunov function:

V ðtÞ ¼ k1
2
s2 þ k2

2
_sð Þ2 þ k3

2
€sð Þ2 þ……:þ kr�1

2
sðr�2Þ
� �2

þ 1

2
sðr�1Þ
� �2

V ðtÞ ¼ 1

2

Xr�2

i¼1
kiþ1 s ið Þ

� �2
þ 1

2
sðr�1Þ
� �2 (11)

where k1; k2;…:kr�1 are strict positive constants.

By differentiating V(t), we get:

_V ðtÞ ¼ k1s _sþ k2 _s€sþ k3€s€s_þ……:þ kr�1sðr�2Þsðr�1Þ þ sðr�1Þs rð Þ
_V ðtÞ ¼Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ þ kr�1sðr�2Þsðr�1Þ þ sðr�1Þs rð Þ (12)

Substituting from Eq. (8) into Eq. (12), then:

_V ðtÞ ¼Pr�3
i¼1 kiþ1s ið Þsðiþ1Þ þ kr�1sðr�2Þsðr�1Þ þ sðr�1Þ

n
�Pr�1

j¼1 aj�1s jð Þ þ fn þ gnuðtÞ þ dðtÞ
�y nð Þ

d ðtÞ þPn�1
i¼1 ki�1e ið Þ þ kI e

o (13)

Substituting from Eqs. (5) and (9), then:

_V ðtÞ ¼
Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ þ kr�1s
ðr�2Þsðr�1Þ þ sðr�1Þ gnurðtÞ þ dðtÞf g (14)

Substituting Eq. (10) into Eq. (14):

_V ðtÞ ¼
Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ � sðr�1Þ
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e

( )
� krs

ðr�1Þsign sðr�1Þ
� �

þ sðr�1ÞdðtÞ (15)

By using sðr�1Þ�� �� ¼ sðr�1Þsign sðr�1Þ� �
and for small positive, Eq. (15) can be rewritten as:

_V tð Þ � �kr s r�1ð Þ�� ��þ s r�1ð Þd tð Þ
_V tð Þ � � s r�1ð Þ�� �� kr � d tð Þj jf g (16)

In order to ensure that the closed loop system is globally stable and the reaching condition _V ðtÞ, 0 is
guaranteed, the switching control gain kr must be selected as:
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kr . jdðtÞj (17)

End of Proof

The total control law of the developed DROSMC controller can be deduced by substituting from Eqs. (9)
and (14) into Eq. (5) as follows:

uðtÞ ¼ 1

gn

Pr�1
j¼1 aj�1s jð Þ � fn þ y nð Þ

d ðtÞ �Pn�1
i¼1 ki�1e ið Þ � kI e� kr�1sðr�2Þ � krsign sðr�1Þ� �

�
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e

0BB@
1CCA (18)

The block diagram of the proposed DROSMC is shown in Fig. 1.

4 Adaptive Neural Network-based Higher Order Sliding Mode Control

Although, the DROSMC controller described in Eq. (18) can ensure the stability of the control system,
chattering occurs when using this controller as it contains a discontinuous signum function krsign sðr�1Þ� �� �

.
Furthermore, the gain Kr is concerned with the boundaries of unknown uncertainties. Thus, it is difficult to
implement this controller in practical applications as it requires a precise knowledge of the unknown
nonlinear functions fnð Þ and gnð Þ. In this section, the radial basis function neural network (RBFNN) is
exploited to develop an adaptive RBFNN continuous rth order sliding mode control strategy (ARBFNN-
CROSMC). The developed continuous strategy is based on replacing the discontinuous term with a
continuous control action. The approximation property of the RBFNN is used to approximate the
unknown nonlinear functions fnð Þ and gnð Þ as follows:

Figure 1: Block diagram of DROSMC
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fn x tð Þ; t;Wo
f

� �
¼Pm

l¼1
wo
flwl xð Þ þ eof ¼ WoT

f � xð Þ þ eof

gn x tð Þ; t;Wo
g

� �
¼Pm

l¼1
wo
glwl xð Þ þ eog ¼ WoT

g � xð Þ þ eog

(19)

where Wo
f ¼ wo

f 1 w
o
f 2……wo

fm

h iT
and Wo

g ¼ wo
g1 w

o
g2……wo

gm

h iT
are the optimal output weight vectors of

the output layers of the RBFNNs used to approximate the unknown nonlinear functions fnð Þ and gnð Þ. eof
and eog are the optimal (minimum) estimation errors. �ðxÞ ¼ w1ðxÞ w2ðxÞ……wmðxÞ½ �T is m-dimensional

vector whose elements denote the Gaussian activation function of hidden layer neurons for each RBFNN
and are given by:

wlðxÞ ¼ exp � x� clk k2
r2l

 !
; l ¼ 1; 2; 3;……::m (20)

where cl and rl are the center and width of the lth Gaussian function.

The adaptive RBFNN continuous rth order sliding mode control strategy (ARBFNN-CROSMC) is
chosen as:

uðtÞ ¼ ueqðtÞ þ ucsmcðtÞ þ udðtÞ
� �

(21)

where ueqðtÞ is the equivalent control action and is calculated as:

ueqðtÞ ¼ 1

ĝn

Xr�1

j¼1
aj�1s

jð Þ � f̂ n þ y nð Þ
d ðtÞ �

Xn�1

i¼1
ki�1e

ið Þ � kI e
� �

(22)

where f̂n and ĝn are the approximated nonlinear functions fnð Þ and gnð Þ, and are given as:

f̂ n ¼
Pm
l¼1

ŵflwl xð Þ ¼ Ŵ f
T
� xð Þ

ĝn ¼
Pm
l¼1

ŵglwl xð Þ ¼ Ŵ g
T
� xð Þ

(23)

where Ŵf ¼ ŵf 1 ŵf 2……ŵfm

� �T
and Ŵg ¼ ŵg1 ŵg2……ŵgm

� �T
are the m-dimensional adaptive output

weight vectors of the linear output layers for the radial basis function neural networks (RBFNNs).

The control signal ucsmcðtÞ in Eq. (21) is a smooth continuous sliding mode control action that replaces
the switching control signal to completely eliminate the chattering amplitude. udðtÞ is an adaptive control
term employed to compensate for the unknown uncertainty. The smooth continuous sliding mode control
signal ucsmcðtÞ is chosen as:

ucsmcðtÞ ¼ �1

ĝn
kr�1s

ðr�2Þ þ kr sðr�1Þ
� �

þ
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e

 !
(24)

From Eq. (8), one can have:

s rð Þ ¼ �
Xr�1

j¼1
aj�1s

jð Þ þ fn þ gnuðtÞ þ dðtÞ þ ĝnuðtÞ � ĝnuðtÞ � y nð Þ
d ðtÞ þ

Xn�1

i¼1
ki�1e

ið Þ þ kI e (25)
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Substituting u tð Þ from Eq. (21) into Eq. (25) yields:

s rð Þ ¼ �Pr�1
j¼1 aj�1s jð Þ þ fn þ gnu� ĝnuð Þ þ dðtÞ þ ĝn ueq þ ucsmc þ ud

� �� y nð Þ
d ðtÞ

þPn�1
i¼1 ki�1e ið Þ þ kI e

(26)

Using Eqs. (22) and (24), Eq. (26) becomes:

s rð Þ ¼ fn � f̂n þ gnu� ĝnuð Þ þ dðtÞ þ ĝnud � kr�1s
ðr�2Þ � kr sðr�1Þ

� �
�
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e
(27)

Substituting Eqs. (19) and (23) into Eq. (27) yields:

s rð Þ ¼ ~Wf
T�ðxÞ þ eof þ ~Wg

T�ðxÞuþ eoguþ dðtÞ þ ĝnud � kr�1sðr�2Þ � kr sðr�1Þ� �
�
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e

(28)

where ~Wf ¼ Wo
f � cWf , ~Wg ¼ Wo

g � cWg

Define & tð Þ as the total lumped uncertainty that is given as:

&ðtÞ ¼ eof þ eoguþ dðtÞ (29)

Substituting Eq. (29) into Eq. (28) yields:

s rð Þ ¼ ~Wf
T�ðxÞ þ ~Wg

T�ðxÞuþ &ðtÞ þ ĝnud � kr�1s
ðr�2Þ � kr sðr�1Þ

� �
�
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e
(30)

The adaptive control term udðtÞ is chosen as:

udðtÞ ¼ � 1

ĝn
&̂ðtÞ (31)

where &̂ðtÞ is an adaptive term representing the estimated perturbation that is used to estimate the lumped
uncertainty &ðtÞ in Eq. (29). The global stability of the closed loop system can be proved using the
following Lyapunov function:

Theorem 2. Assume the uncertain controlled system (2) is controlled by u(t) (21) which guarantees the
global boundedness of all sliding variables and the tracking error approaches zero, the global stability of (2)
is verified.

Proof. Consider the following Lyapunov function:

V ðtÞ ¼ 1

2

Xr�2

i¼1
kiþ1 s ið Þ
� �2

þ 1

2
sðr�1Þ
� �2

þ 1

2
cf ~Wf

T ~Wf þ 1

2
cg ~Wg

T ~Wg þ 1

2
c& ~&

2 (32)

where ~&ðtÞ is estimation error of the lumped uncertainty which is defined as:

~&ðtÞ ¼ &ðtÞ � &̂ðtÞ (33)

The first derivative of Lyapunov function _V ðtÞ is:

_V ðtÞ ¼
Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ þ kr�1s
ðr�2Þsðr�1Þ þ sðr�1Þs rð Þ þ cf ~Wf

T Wf

�� þcg ~Wg
T Wg

�� þc& ~& &
��

(34)
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Substituting from Eq. (30) into Eq. (34):

_V ðtÞ ¼Pr�3
i¼1 kiþ1s ið Þsðiþ1Þ þ kr�1sðr�2Þsðr�1Þ þ sðr�1Þ

	
~Wf

T�ðxÞ þ ~Wg
T�ðxÞuþ &ðtÞ þ ĝnud

� kr�1s
ðr�2Þ � kr sðr�1Þ

� �
�
Pr�3

i¼1 kiþ1s ið Þsðiþ1Þ

sðr�1Þ þ e



þ cf ~Wf

T Wf

�� þcg ~Wg
T Wg

�� þcd~& &
��

(35)

Substituting from Eq. (31) into Eq. (35):

_V ðtÞ ¼Pr�3
i¼1 kiþ1s ið Þsðiþ1Þ � kr sðr�1Þ� �2 � sðr�1Þ

Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ

sðr�1Þþe
þ sðr�1Þ

n
~Wf

T�ðxÞ

þ ~Wg
T�ðxÞuþ ~&ðtÞ

o
þ cf ~Wf

T Wf

�� þcg ~Wg
T Wg

�� þcd~& &
��

(36)

Rearranging Eq. (36) results in:

_V ðtÞ ¼Pr�3
i¼1 kiþ1s ið Þsðiþ1Þ � krðs

ðr�1Þ � sðr�1Þ
Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ

sðr�1Þþe
þ ~Wf

T sðr�1Þ’ðxÞ � cf Wf

^�
 !

þ ~Wg
T sðr�1Þ’ðxÞu� cg Wg

^�
 !

þ ~&ðtÞ sðr�1Þ � cd &
^�

� � (37)

In order to ensure that the closed loop system is globally stable and the reaching condition _V ðtÞ, 0 is
guaranteed, the adaptive output weight vectors of the linear output layers for the radial basis function neural
networks (RBFNNs) must be selected as:

Wf

^� ¼ 1

cf
sðr�1Þ’ðxÞ

Wg

^� ¼ 1

cg
sðr�1Þ’ðxÞu

(38)

The time evolution of the estimated uncertainty &̂ can be chosen as:

&
^� ¼ 1

cd
sðr�1Þ (39)

Substituting Eqs. (38) and (39) into Eq. (37) yields:

_V ðtÞ ¼
Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ � kr sðr�1Þ
� �2

� sðr�1Þ
Xr�3

i¼1
kiþ1s

ið Þsðiþ1Þ

sðr�1Þ þ e
(40)

For a small positive number e, Eq. (40) can be rewritten as:

_V ðtÞ � �kr sðr�1Þ
� �2

(41)

From the above analysis, the global asymptotic stability of the closed loop system is guaranteed.

End of Proof

5 Simulation Results

In order to validate the effectiveness of the proposed ARBFNN-CROSMC control methodology, the
stabilization control of the inverted pendulum (IP) system [36,37] is implemented in this section.
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5.1 Second Order Sliding Mode Control

First, a discontinuous second order sliding mode control approach (D2SMC) and an adaptive RBFNN
continuous second order sliding mode control strategy (ARBFNN-C2SMC) are implemented using the
inverted pendulum system. The performance of both conventional PID controller and D2SMC are
compared to demonstrate the efficacy of the proposed ARBFNN-C2SMC control strategy. Two main
problems are implemented; the set point tracking control problem, and the trajectory tracking control
problem.

5.1.1 Set Point Tracking Control Problem
To check the ability of the proposed strategy to reach a desired reference point, a desired angular position

is set at hd ¼ 0. A step disturbance force 5000 N is suddenly applied at t ¼ 2:5 s to clarify the robustness of
the proposed ARBFNN-C2SMC control scheme in the presence of uncertainties. The standalone PID
parameters are set as: kp ¼ 100, ki ¼ 10 and kd ¼ 100. The parameters of the D2SMC are set as:
ao ¼ 0:6, ko ¼ 1:2, kI ¼ 1, k1 ¼ 2:5 and k2 ¼ 150. The parameters of the proposed ARBFNN-C2SMC
are set as: ao ¼ 0:5, ko ¼ 1:25, kI ¼ 1, cf ¼ 0:8, cg ¼ 0:75, cd ¼ 1, k1 ¼ 100 and k2 ¼ 150. Fig. 2
shows the angular position response.

Fig. 2 shows the superiority of the proposed ARBFNN-C2SMC for set point tracking control compared
with other approaches even in the presence of external disturbance. In order to assess more the performance
of the proposed approach, a comparison of the performance of the proposed approach is compared with other
approaches using three performance indices; integral absolute error (IAE), integral time multiplied absolute
error (ITAE) and integral of squared error (ISE) which are given by [9]:

IAE ¼ R eðtÞj jdt
ITAE ¼ R t eðtÞj jdt
ISE ¼ R e2ðtÞdt (42)

Tab. 1 summarizes the results of the performance comparison.
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Figure 2: Angular position response in set-point control
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5.1.2 Trajectory Tracking Control Problem
In this subsection, the performance of the proposed approach is assessed in case of trajectory tracking

control problem. The standalone PID parameters are set as: kp ¼ 150, ki ¼ 75 and kd ¼ 140. The parameters
of the D2SMC are set as: ao ¼ 1:2, ko ¼ 1:5, kI ¼ 1, k1 ¼ 3:2 and k2 ¼ 175. The parameters of the proposed
ARBFNN-C2SMC are set as: ao ¼ 1, ko ¼ 1:1, kI ¼ 1, cf ¼ 1:2, cg ¼ 1:1, cd ¼ 1, k1 ¼ 150 and k2 ¼ 200.
A step disturbance force of 1000 N is suddenly applied at the pole at t = 5 s to check the robustness of the
developed approach in the presence of uncertainties. Fig. 3 shows the system response profile. Fig. 4
illustrates the position error.

Again, the simulation results illustrate the superiority of the proposed control approach compared with
other approaches in case of trajectory tracking control problem. As seen, the D2SMC controller has severe
chattering while the proposed approach is able to completely eliminate any type of chattering. A comparison
of tracking response characteristics are summarized in Tab. 2 which shows the efficiency of the proposed
approach compared with other approaches.

Table 1: Performance comparison for set point tracking control problem

Algorithm ITAE IAE ISE

PID 309.3860 100.429 5.5939

D2SMC 120.8765 55.4535 3.6689

ARBFNN-C2SMC 21.4102 15.9799 2.0412
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5.2 Third Order Sliding Mode Control

Second, the performance of the proposed approach is assessed in case of using third order sliding mode
control (r = 3). Thus, the performance of the proposed adaptive RBFNN continuous third order sliding mode
control strategy (ARBFNN-C3SMC) is compared with a discontinuous third order sliding mode control
approach (D3SMC), and conventional PID controller.

5.2.1 Set Point Tracking Control Problem
The reference desired angular position is set as: hd ¼ 0. In order to clarify robustness of the proposed

ARBFNN-C3SMC control scheme, a step disturbance force of 5000 N is suddenly applied at t = 2.5 sec. The
standalone PID parameters are set as: kp ¼ 100, ki ¼ 10 and kd ¼ 100. The parameters of the D3SMC are set
as: ao ¼ 1, a1 ¼ 1:2, ko ¼ 1:4, kI ¼ 1, k2 ¼ 2:5 and k3 ¼ 175. The parameters of the proposed ARBFNN-
C3SMC are set as: ao ¼ 1, a1 ¼ 1, ko ¼ 1, kI ¼ 1, cf ¼ 1, cg ¼ 1, cd ¼ 1, k2 ¼ 120 and k3 ¼ 250. Fig. 6
shows the angular position hð Þ response profile.

As seen in Fig. 5, the performance of the proposed ARBFNN-C3SMC approach is superior compared
with other approaches even in the presence of uncertainties. The proposed approach is able to completely
eliminate chattering which other approaches suffer from. A comparison of tracking response
characteristics are summarized in Tab. 3 which shows the efficiency of the proposed approach compared
with other approaches.
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Table 2: Performance comparison for trajectory tracking control problem

Algorithm ITAE IAE ISE

PID 1054.3 1583.8 749.314

D2SMC 118.6571 20.8729 0.5459

ARBFNN-C2SMC 34.9895 5.3656 0.0089
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Table 3: Performance comparison for set-point tracking control

Algorithm ITAE IAE ISE

PID 309.3860 100.429 5.5939

D3SMC 105.3567 50.9653 2.4885

ARBFNN-C3SMC 15.4102 10.3421 1.0982
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5.2.2 Trajectory Tracking Control Problem
In this subsection, the performance of the proposed approach is assessed in case of trajectory tracking

control problem. A step disturbance force of 1000 N is suddenly applied at the pole at t = 5 sec to check the
robustness of the developed approach in the presence of uncertainties. Fig. 6 shows the system response
profile. Fig. 7 illustrates the position error.

Again, the simulation results illustrate the superiority of the proposed control approach compared with
other approaches in case of trajectory tracking control problem. As seen, the D3SMC controller has severe
chattering while the proposed approach is able to completely eliminate any type of chattering. A comparison
of tracking response characteristics are summarized in Tab. 4 which shows the efficiency of the proposed
approach compared with other approaches.

6 Conclusions

An adaptive radial basis function neural network-based generalized rth order sliding mode control
approach for nth order uncertain nonlinear systems is developed in this paper. The proposed approach is
able to deal with severe uncertainties even for high order nonlinear systems. The proposed approach
employed the radial basis function neural networks for their efficiency in approximating nonlinear
functions. The proposed approach has been validated theoretically for generalized rth order sliding mode
control. The simulation results showed that the proposed approach has great performance compared with
other approaches.
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Table 4: Performance comparison for trajectory tracking control problem

Algorithm ITAE IAE ISE

PID 1054.3 1583.8 749.314

D3SMC 116.6991 18.3527 0.3769

ARBFNN-C3SMC 31.5485 3.9646 0.0067
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