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Abstract: Plant diseases have become a major threat in farming and provision of
food. Various plant diseases have affected the natural growth of the plants and the
infected plants are the leading factors for loss of crop production. The manual
detection and identification of the plant diseases require a careful and observative
examination through expertise. To overcome manual testing procedures an auto-
mated identification and detection can be implied which provides faster, scalable
and precisive solutions. In this research, the contributions of our work are three-
fold. Firstly, a bi-linear convolution neural network (Bi-CNNs) for plant leaf dis-
ease identification and classification is proposed. Secondly, we fine-tune VGG
and pruned ResNets and utilize them as feature extractors and connect them to
fully connected dense networks. The hyperparameters are tuned to reach faster
convergence and obtain better generalization during stochastic optimization of
Bi-CNN(s). Finally, the proposed model is designed to leverage scalability by
implying the Bi-CNN model into a real-world application and release it as an
open-source. The model is designed on variant testing criteria ranging from
10% to 50%. These models are evaluated on gold-standard classification mea-
sures. To study the performance, testing samples were expanded by 5x (i.e., from
10% to 50%) and it is found that the deviation in the accuracy was quite low
(0.27%) which resembles the consistent generalization ability. Finally, the larger
model obtained an accuracy score of 94.98% for 38 distinct classes.

Keywords: Bilinear convolution neural networks (Bi-CNN’s); plant disease
classification; mobile API; deep learning; neural networks

1 Introduction

Agriculture is the only way for crop production and livelihood. One of the major risk factors of crop
productions is dealing with plant diseases. Every single crop produced is linked with a plant disease,
which is an obstacle for healthy crop production and this tops the list of reasons for the loss of crop
production. If a crop has a plant disease then the symptoms can be noticed by keen observation of
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different parts of the leaves. Plant diseases are categorized into pests, weeds and plant pathogens. The
annually estimated average loss due to pathogens and pests are nearly 13%–22% on the world’s major
crop productions like Rice, Wheat, Maize, Potatoes etc. Over the past few decades, farmers used to
identify these diseases by observing the leaves through naked-eye. However, this requires the farmer to
be extremely skilled or would require the guidance of an agricultural scientist to notice the disease and
this process consumes a lot of time.

One of the major reasons for the loss in production is due to diseases like bacterial spot, early blight, late
blight, and leaf mould that occur frequently on the leaves of the tomato plant at different stages of its growth.
Potatoes are one of the most dominant food crops where the yield of potatoes is reduced by diseases
Phytophthora infestans (late blight) and Alternaria solani (early blight). The average yield loss at a global
level due to pathogens and pesticides is around 17.2% in potatoes. Apple is been one of the most produced
fruits because of its nutritional and medicinal importance where the severity caused by the diseases
(Mosaic, Rust, Brown spot, and Alternaria leaf spot) on apple leaves led to huge production and economic
loss which also affected the quality in production. Early detection of these types of conditions in the plants
that are unhealthy allows us to take precautionary measures and alleviate the production of crops.

In this research, we mainly focus on developing automatic, accurate and less expensive Restful-API into
a Mobile-App to detect and classify variant kinds of leaves using Bi-Linear Convolution Neural Networks
(Bi-CNNs). The contributions to the body of the knowledge are mentioned as,

1. We propose a bi-linear convolution neural network (Bi-CNNs) for plant disease identification and
classification with a leaf images as input.

2. Secondly, we fine-tune VGG and pruned ResNets and utilize them as feature extractors and they’re
connected to fully connected dense networks. The hyperparameters are tuned to reach faster
convergence and obtain better generalization during stochastic optimization of Bi-CNN(s).

3. Lastly, the proposed model is designed to leverage scalability by implying the Bi-CNN model into a
real-world application and release it as an open-source. The detailed explanations of the product are
mentioned in the last section.

2 Motivation

The design paradigm of the proposed architecture is motivated by the two distinct cortical pathways of
the human brain. These two cortical pathways oblige to understand the object vision and spatial vision
separately. The occipitoparietal, the dorsal system, helps understand the visual location of the targeted
object whereas, the occipitoparietal, the ventral stream, extracts the visual representations of objects i.e.,
identifying the objects [1]. These two critical pathways extract the information regarding an object from
retrieval input to the striate cortex at a juncture. But, the occipitotemporal pathway interconnects the
striate the pre-striate and activated to inferior temporal regions which eventually helps to identify the
visual stimulus understanding the physical properties of the targeted object.

Further, the occipital parietal pathway the striate then pre-striate are activated to inferior parietal areas
which help to localize the visual stimulus i.e., understanding the spatial location of the targeted object.
Finally, the two cortical pathways are reintegrated by providing selective attention by adjoining the visual
stimulus. These 2 selective attentions are provided to the external feature representation such as color,
shape and spatial locations. These activations are seen in the exhaustive cortex. Thus, the neural
architecture provides selective attention from the learned representations [2].

The main motive of this research is to provide an application-oriented deep bi-linear convolution neural
network that provides selective attention in the neural network by adapting a neuroscience perspective for
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classifying distinct plant leaves from their infection classes. The mathematical study is furnished in the
methodology section.

3 Previous Research

Siddharth et al. [3] developed a model for the identification and classification of diseases in plant leaf
images. The proposed model is based on Radial Basis Function Neural Network (BRBFNN) which uses
bacterial foraging for optimization and increases the training speed of the network. The algorithm
(Bacterial Forging) searches for the common attribute by the grouping of seed points for identifying the
features. Their classification results are based on validation evaluation partition coefficient (Vpc) and
validation evaluation partition entropy (Vpe). They also compared their model with traditional machine
learning methods such as K-means and SVM. The specificity of the proposed model for segmentation is
0.558 and for classification upon Vpc and Vpe is 0.8621 and 0.1118 respectively.

Aydin et al. [4] has experimented on various transfer learning models to analyze the classification
performance. During experimentation, they have four models and analyzed this performance on publicly
available datasets. Additionally, they have proposed a CNN model adjoined with LDA to classify the
deep featured extracted from the pre-trained network (AlexNet & VGG16). To analyze the performance
of the model five-fold cross-validation procedure was adapted and the input size of an image was
considered as 100 � 100. The proposed model obtained an accuracy score of 96.93% whereas the pre-
trained VGG16 model outperformed with an accuracy of 99.80%. Karthik et al. [5] has researched tomato
leaves diseases and proposed two variant CNN architectures. with the help of Residual Progressive
Feature Extraction, the model has extracted spatial features with 0.6M parameters. By performing five-
fold cross-validation the model obtained an accuracy of 98%.

Mohanty et al. [6] performed experimentation on plant village dataset by using AlexNet & GoogleNet.
By contemplating variant types GoogleNet got an accuracy of 98% on grayscale, 99.34% on colour, and
99.25% on segmented images with 5 different splits on 20% test samples. Uday Pratap et al. [7]
Multilayer Convolutional Neural Network (MCNN) for classification of mango leaves that are infected
with anthracnose disease. The dataset consists of 1070 images of mango leaves which is a real-time
dataset captured in a university. The proposed model was validated by 20% test samples and compared
with various machine learning techniques. The MCNN model got an accuracy of 97.13%. Sandeep
Kumar et al. [8] has implied a new optimization technique called Exponential Spider Monkey
Optimization (ESMO) for plant disease identification. SPAM is applied for feature extraction to classify if
a leaf is healthy or diseased. Distinct machine learning models are used to evaluate the performance, it
was concluded that SVM outperformed other models with an accuracy of 92.1%.

Qiao Kang et al. [9] proposed a network that uses ResNet50 architectures as a backbone model to
diagnose plant disease and severity estimation. The proposed network consists of shuffle units as an
auxiliary structure which increases the performance of the model. The dataset was collected from the AI
challenger Global AI contest which consists of 7 different plant species with an Image size of 256 �
256 � 3. The proposed method got a classification accuracy of 98% and a recognition accuracy of 99%.

Ahmed et al. [10] introduced a model called CaffeNet, It was built on a Caffe framework to label paddy
pest and paddy diseases. This work used a database that has 9 paddy pests and 4 paddy disease classes. The
aforementioned model was fine-tuned over 30,000 iterations and obtained an accuracy score of 87%. Islam
et al. [11] utilized machine learning algorithm and image preprocessing techniques to segment and identify
potato disease from the plant village database. It was observed that SVM had an accuracy of 95% (over
300 images).
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4 Methodology

4.1 Dataset Description

The complete data was collected from the open repository [12]. The dataset was publicly available for
research and hence can be implied for classification and identification of distinct plant disease which can be
achieved by designing a user-friendly mobile application. The experimentation is carried out in three folds.
The First experimentation, which is namedD1, was carried out in 18 classes. In which there are 9 variant fruit
leaf images with healthy and unhealthy kinds. As a note, all the variants of unhealthy classes constructed in
D1 contains various types such as early blight, black rot, bacterial spot etc. This means all the infected kinds
of plant leaves are considered as an unhealthy class of that particular leaf kind.

Next, the experimentation was carried out (D2) where three variant plant leaf images are considered with
their multiple infected classes. Lastly, the experimentation was carried out with (D3) which contains the
complete 38 classes. The description of the train and test for D1, D2, and D3 is clearly illustrated below
(refer to Tab. 1). The complete partitions of the dataset into D1, D2, and D3 are mentioned in the repository1.

4.2 Feature Extraction Models

VGG Models were utilized while developing a Bi-CNN model where, the two models considered for
extracting features are VGG16 and VGG19. The VGG16 and VGG19 contain consecutive convolution
and pooling layers with a depth of 16 and 19 layers respectively. These models are pre-trained on the
finest weights. The VGG16 and VGG19 models consume 138.3 and 143.6 Million parameters with an
input shape of 224 � 224 with three coloring channels. While developing the Bi-CNN model it is
assumed that one of the VGG models do capture spatial invariances and the other captures the location of
an entity residing in the image [13].

ResNet Models ResNet models are also considered for feature extraction. Two flavors of ResNet’s are
implied which are 50 layers deep and the other is 101 layers deep. These ResNet models can capture the
invariances of the input by overcoming the problem of degradation. The deep residual connections help
to rectify the vanishing gradients and regulate learning for deeper layers. These ResNets are not only
computationally cheap but are much deeper and capable of capturing invariances with greater
performance. Hence, the two flavors are implied by pruning the network appropriately [14].

The bottom layers with greater feature maps i.e., 2048 activations are excluded. The ResNet model is
pruned by truncating the last four activations. During experimentation, it is observed that these
activations (final activations) led to high computations. But the original model performance was higher
than that of the pruned model. Hence, the ResNet model was pruned by truncating the last four layers

Table 1: Variant models designed for different data sampling

Dataset Variants Train-Test kinds Classes Train Test Total

G1 18 20,006 20,004 40,010

D1 G2 18 32,007 8003 40,010

G3 18 36,008 4002 40,010

Tomato (70–30) 10 12,712 5448 18,160

D2 Potato (70–30) 3 1506 646 2,152

Maize (70–30) 4 4480 1920 6400

D3 Whole data (70–30) 38 38,013 16,292 54,305

1
Source: https://github.com/LalithBharadwaj/BiCNN-plant-leaf.
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with 512 as final activation maps (similar to that of VGG). Similarly, while developing the Bi-CNN model it
is assumed that one of the ResNet models do capture spatial invariances and the other captures the location of
an entity residing in the image.

Finally, these models (VGG and ResNet models) are fine-tuned with regulated training procedure to
reach faster convergence with greater generalization.

4.3 Bi-Linear Convolution Neural Network (Bi-CNN’s)

As mentioned, Bi-CNN’s are motivated by the visual perception of the human brain through two cortical
visual pathways. This motivation led to the design of a neural network that extracts spatial locations of the
entity residing in an image and captures the structural invariances. So, to extract features bottleneck
activations of the pre-trained network are utilized. A set of features for extracting spatial location and
morphology of input are chosen as Net − X and Net – Y [15].

Whereas, in our methodology, we utilize not only pre-trained VGG models (as [15]) but also ResNet’s
intermediate activations by cautious architecture pruning. To classify D1 only VGG models i.e., VGG16 and
VGG19 are utilized. In the case of D2, Pruned ResNet and also VGG models are utilized. But for D3, only
pruned ResNet is employed.

fvx; fvy  Net � X Dð Þ; Net � Y Dð Þ; (1)

fvz  1

N

X
i¼1 fvx : fv

T
y

h i
þ eI (2)

Which can be simplifies as,

fvz  fvx � fvy (3)

where � represents the element-wise product for given two feature vectors.

For a clear understanding, the bottleneck activations extracted from the feature extracting models i.e.,
fvx and fvy are pooled by implying second-order pooling i.e., outer-product is applied to pool those
features to linearize to form fvz as a feature vector. This feature vector contains the fine-grained features
and the outer-product is appropriately described below. Next, to regularize the model normalization is
adapted. This normalization is processed in three steps i.e., three normalization layers are sequentially
attached. The first normalization layer is chosen as either natural logarithm of the square root of the
individual features extracted from fvz. So, after the first normalization, the features are followed up with a
signed square-root as a normalization step. The mathematical formulation for the signed square-root is
described below. Thirdly, the feature vectors are regularized through an l2-normalization constraint. When
the non-linearities are not regulated properly the maximum probability mass function for each sample is
assigned as logit i.e., activated via sigmoid. These assignments certainly cause fragile activations with a
high chance for saddle points.

This scenario can be prevented by choosing l2-normalization as the final activation layer. Hence,
these three normalization layers can produce effective outcomes by transforming features into a regulated
latent space.

N1  
ffiffiffiffiffi
fvz

p
or log fvzð Þ (4)

Both the normalizations i.e., square-root and logarithm are chosen. As a note, both the normalizations
are not chosen at a time.

N2  sgn N1ð Þ: N1j j
1
2 (5)
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N3  L2 � Norm N2ð Þ (6)

where,

L2 � Norm xipðPi¼1 x
2
i Þ

(7)

Next, these latent representations which capture the information regarding the whole image are to be
classified appropriately. Tsung Yu et al. [15] implied SVD and LYAP methods for computing the
matrices. They are not end-to-end trained neural architectures. They do not have GPU computation end-
to-end where; they only compute the extracted feature vectors by classifying them through CPU. For
efficient end-to-end training, a fully connected neural network is chosen with successive dropout and
batch normalization layers. The major differences from Tsung Ye et al. [15] is, they implied only VGG as
pre-trained network and did not imply end-to-end training via backpropagation. But, in this research, a
better feature extractor i.e., ResNet’s are implied with end-to-end training.

As a note, the feature-extraction method is the same for all the models mentioned in Tab. 1. But the final
layer activations are varied from 3 to 38 depending upon the model. In the given Fig. 1, it can be observed
that N is mentioned at final softmax activation which is chosen based on the specific model to be fine-tuned.
The feature extraction part is fine-tuned and the classification part is fully trained. In this complete procedure,
the gradient flow in the network is appropriately analyzed.

4.4 Architecture Parameters

This section gives a complete illustration of the hyperparameter tuning and optimization of model during
the course of training Bi-CNNs. The classification architecture is built by fully connected networks with 256-
128-N as the pattern. Where N is number of classes for discriminating the input. Firstly, the feed is activated
via ReLU as non-linearity. Further, the batch normalization layer is implied to reduce the problem of
covariate shift [16]. Next, a dropout layer is added as a regularization method which eventually reduces
overfitting [17]. The drop ratio of neurons for reducing overfitting using dropout is chosen as 30% (which
is chosen while optimization). The weights for the initialization of the learning procedure are chosen to
be glorot-normal [18].

There are variant models trained. The D1 models are trained using negative log-likelihood as cost
function (Loss1). Whereas, for both of the D2, andD3 squared hinge (Loss2) is used as a cost function
for stochastic optimization of neural network. The equations are formulated as mentioned as,

Loss2  
X

i

X
k
max 0;

1

2
� y ið Þ

k
c
y ið Þ
k

� �
(8)

Loss1  �
X

i

X
k
y ið Þ
k : log

c
y ið Þ
k

� �
(9)

where i is no. of instances (feature samples) and k is no. of class labels. y(i) is the ground truth class labels for
the class k with an ith instance. ŷ k

(i) is the predicted class label. Further to optimize the model adam [19] is
chosen as an optimizer with an initial learning rate of 0.0005. The training schedules are designed by
motivating from the work by Samuel L et al. [20]. Where the noise during the training procedure is either
reduced by increasing batch size or decaying learning rate (keeping the momentum variable to be
constant). The noise during the training is mathematically understood as,

noise / Dtrain
rate

batch: ð1� momentum

� �
(10)
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The aim is to decrease noise during training either tweaking the learning rate schedules or batch size. So,
slowly increase the learning rate by increasing batch size to obtain faster convergence with greater
generalization ability. As the training samples are large regularization provided by l2 would be useful and
accordingly learning rates are scheduled [21]. To provide appropriate learning with faster convergence
and proper generalization a definite training schedule is obtained, where for every single iteration
(≈ 4 epochs) batch size and learning rate are updated cautiously.

At the first iteration, the batch size is initialized as 10 (batch0 ← 10) and the learning rate is initialized as
0.5� 10-3 (rate0 ← 0.5� 10-3). Next, in the second iteration learning is increased to 0.001 and batch size is
increased twice of the previous batch i.e., 20. Finally in the third iteration learning is held constant to
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Figure 1: The proposed Bi-linear convolution neural network-integrated in a Mobile App
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0.001 and the batch is increased by 5 units per batch i.e., 25. This iterative computation for stochastic
optimization of a neural network is chosen for D1, D2, and D3 respectively. This eventually aided to
reach faster convergence with cautious hyperparameter tuning as mentioned2 [22].

5 Results

To determine the performance of the Bi-CNN’s, classification metrics are implied based on their
significance. The metrics such as accuracy score, Receiver operating characteristics (ROC) area under the
curve (AUC) [23] and mean-squared error (MSE) are utilized to determine the performance. Accuracy is
chosen as the gold standard metric to evaluate classification performance as it aggregates the instances
which are correctly classified and divide them with complete instances which are both classified as
correct and incorrect.

Next, MSE is utilized as a metric to determine the performance of regression models which observes the
deviation from the ground truth to that of predicted instances. So, the deviation can also help determine the
performance of the model even when ground truth labels are provided. Finally, AUC is calculated by plotting
the true positive rate on the y-axis and the false positive rate on the x-axis. The performance evaluation is
carried out by developing variant models as per Tab. 1. The complete result section is divided into two
different sections and is are explained below.

5.1 Evaluated on D1

In D1 one of the models is produced either by applying square-root as the first normalization layer and
the other as a logarithm. Each of the models mentioned in Tab. 1 is evaluated with various metrics. During the
evaluation, it is observed that the Bi-CNN model with square-root as the first normalization layer
outperformed the logarithm in all of the generalization’s splits.

But, to know whether the proposed model is providing visual attention to the required regions or not
heat maps are generated. These heat maps are also known as class activation maps (CAM’s). Heat maps
visually describe the final layer activations of the model and impart color to the highly activated regions
(i.e., coloring the region of interest). So, to understand these activations from the bottleneck layer fvz heat
map is plotted for three different plant leaf kinds (apple, corn, peach) with infection classes and visually
depicted in Figs. 2 and 3.

Figure 2: Infected leaves. (a) Unhealthy apple leaf (b) Unhealthy corn leaf (c) Unhealthy peach leaf

2
To implement the proposed methodology Tensorflow is utilized in the backend [22].
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They have the unique property of being insensitive to alterations in the class distributions and can
provide good relative instance scores. For handling multiple classes, ROC is calculated by considering
one class (chosen) as positive and the remaining classes are considered to be negative ones. So,
18 different AUC-ROC curves are generated. These AUC-ROC curves are generated for the model Bi-
CNN (sqrt), as its performance was optimal, for all the generalization splits and visualized in Fig. 4.
Further, AUC-ROC curves [23] are generated for an individual class. AUC is used as a metric in Tab. 2
as they provide detailed characteristics of the classifier.

5.2 Evaluated on D2 and D3

In this section, D2, and D3 models are evaluated with appropriate metrics. D2 models are trained on
highly imbalanced classes of plant leaves. The D2 models consist of a single plant leaf with its healthy
class and he remaining unhealthy classes.

To understand the model’s performance, as mentioned, two variant feature extractors i.e., VGG and
ResNet models are implied. When the model was fine-tuned as mentioned in Section 4.4, it is seen that
ResNet models were able to extract invariant features and have good learning compared to that of VGG
models. To see the convergence of the models D2 set i.e., the plant leaves of tomato, potato, and maize
(corn) are fine-tuned on both ResNet’s and VGG models. It is observed that. For very few iterations
(epochs = 25), the ResNet models were able to outperform VGG models in every scenario. The learning
curves for the D2 for both the feature extractors are plotted in Fig. 5. The performance of the individual
D2 model is illustrated in Tab. 3.

As observing the ability of ResNets, a set of 38 classes are end-to-end fine-tuned to compare the model’s
ability to generalize on unseen samples. This D3, consist of all the infected and healthy leaf images of variant
plants. This model was trained as mentioned in Section 4.3, and further, the convergence appeared slow
because the model utilized squared hinge as the objective function. The model attained an accuracy of
94.98% fine-tuned for ≈ 112 epochs. The performance of D3 model is illustrated in Tab. 3.

Figure 3: Class activation maps (CAM’s) of Infected leaves. (a) CAM’s of apple infected leaf (b) CAM’s of
corn infected leaf (c) CAM’s of peach infected leaf
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Figure 4: AUC-ROC curves of Bi-CNN’s(sqrt) models. (a) AUC-ROC of Bi-CNN’s(sqrt):G1 (b) AUC-
ROC of Bi-CNN’s(sqrt):G1 (c) AUC-ROC of Bi-CNN’s(sqrt):G1

Table 2: Performance of Bi-CNN models tested on D1

Models Generalization Accuracy (%) AUC (%) MSE

Bi-CNNs
(log)

G–1
G–2
G–3

96.72
97.36
96.95

99.92
99.94
99.93

2.02
1.66
2.17

Bi-CNNs
(sqrt)

G–1
G–2
G–3

97.26
97.88
97.53

99.94
99.94
99.95

1.91
1.27
1.58
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6 Discussion

Most of the previous research was held in extracting the features using machine learning methods that do
not capture invariances for generic kinds i.e., these models are task-specific and required hand-engineered
features. To overcome the problem of extracting features from hand-picked learning mechanisms deep-
vision approaches are imparted. Most of the previous work was on developing a convolution neural

Figure 5: Learning curves of variant models forD2. (a) Accuracy curve of corn (b) Accuracy curve of potato
(c) Accuracy curve of tomato
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architecture for extracting features with precise optimization. But, after the evolution of transfer learning
[24], many researchers tend to imply these pre-trained weights onto a similar task.

The advantage is, they do not require precise hyperparameter tuning and reduce the computational
budget to a greater extent. Hence, these architectures provide pre-trained weights and many kinds of
research apply these transfer learning techniques to extract innate bottleneck feature vectors from the
given input to classify either using fully connected neural networks or utilizing machine learning
classifiers such as SVM, decision trees etc. But, most of the research lack in providing appropriate visual
attention to the models an important property of visual recognition task. Providing visual attention to the
models can extract fine-grained features containing detailed and precisive information regarding each
entity. Further, training or fine-tuning mechanisms should be appropriate for the model to converge fast
and generalize well. These problems are addressed by providing a resilient model for capturing detailed
invariances and providing 3 level generalizations sets with faster convergence. Further, a Restful-API [25]
and mobile application is created for capturing real-time images and classifying them by inserting the
proposed model in the back-end. The details about the Restful-API and the application are described in
the next section.

Table 3: Performance of D2, and D3 models

Models Datasets Classes Accuracy (%)

D2-Potato 3 91.33

VGG D2-Corn 4 90.22

D2-Tomato 10 80.41

D2-Potato 3 94.12

ResNet D2-Corn 4 90.92

D2-Tomato 10 91.20

ResNet D3 38 94.98

Table 4: Performance compared to previous literature

Authors Methodology Train-Test Classes Accuracy score

Siddharth et al. [3] BRBFNN – 6 –

Mohanty et al. [6] CNN(GoogleNet) 80–20 38 99.35

U.P.Singh et al. [7] MCNN 80–20 4 97.13

Q.Liang et al. [9] PD2-SENet50 – 9,27,45 91,99,98

Cruz et al. [26]
A.Marco et al. [27]

CNN(Abstract-level Fusion)
PDNet

75–35
70–30

3
42

98.6 ± 1.47
93.67

J.Miaomiao et al. [28] CNN(Inception+ResNet50) 80–20 4 98.57

K.Adithya et al. [29] CNN+Auto encoders 60–30 6 97.50

E.C.Toor et al. [30] CNN(DenseNet) 80–20 38 99.75

Dammalavalam et al. [31] VGGNet(pre-trained) 80–20 2 (9) 97.48

Ramesh B et al. [32] Bi-CNN (D1) 90–10; 80–20;
50–50

18 97.26;97.88;97.53
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The D1 BiCNN’s model performs outrageously even for large test samples providing minute
deviation (0.27% for Bi-CNN (sqrt)) from test samples when increased by 5�. Bi-CNN (sqrt) model
obtained the highest accuracy 97.88% for 20% test split and CAM activations [33] are visualized to
illustrate visual attention.

Next, when tested on, D2, and D3 the model attained the highest accuracy score of 94.98 for 38 classes. When
it is evaluated for individual leaf plants with high-class imbalance, ResNet models tend to outperform with an
accuracy score of 94.12%, 90.92%, and 91.20% for potato, corn, and tomato plant leaf images respectively
from Tab. 4.

7 Restful-API and Mobile Application

In this research, a deep learning model is created and deployed it as a Restful API and connected it to the
mobile application for making predictions using an image as input. The RESTarchitectural style is used because
of its simplistic interface and modifiability of elements and its ability to adapt to changing needs (even when the
application is running) portability of elements by moving data along the program code. It is also scalable for a
large number of users. Fig. 6 shows the work-flow of the Restful API that is created. A deep learning model is
deployed as RESTAPI which is the most reliable and industrially practiced method for deployment of the deep
learning model for making predictions remotely. As you can see in Fig. 6, API accepts base64 encoded image
string as input and gives prediction result back in the JSON format. Flask is used for creating the API and also to
act as a web server and gateway handler for the input request.

In the next stage, the input base64 encoded image string is passed for pre-processing in this stage the
base64 encoded image string is decoded and converted back into the image format and also resized the
image to 128 � 128 � 3 to be compatible with the model. After the fulfilment of the pre-processing stage,

Figure 6: The complete mobile restful-API

Table 4 (continued).

Authors Methodology Train-Test Classes Accuracy score

Proposed Bi-CNN (Potato) 70–30 3 94.12

Proposed Bi-CNN (Corn) 70–30 4 90.92

Proposed Bi-CNN (Tomato) 70–30 10 91.20

Proposed Bi-CNN (D3) 70–30 38 94.98
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the image is passed as input to the model to make the prediction. The predicted result is passed as output in
JSON format. The whole process is wrapped in a single function in API which accepts the base64 encoded
image string and outputs the predicted result. We connected this API to a mobile application. Where the
user can download the app and predict by uploading or by capturing an image through the camera. Fig. 1
show and walk you through different stages and flow of the mobile app. When an image is uploaded or
captured it is converted into a base64 encoded image string and passed to the API handler to handle with
proper function then the function runs on the server by invoking the model and passing given
base64 encoded image string as the input to the function. This working process is carried out by flask
framework using gunicorn as a server in the backend. The restapi was deployed on the Heroku platform.3

The advancement in deep learning is leveraging the performance with the increase in size of data. This
eventually led to designing an adaptable kernel [34] which would enhance the feature extraction process both
for shallow and deep networks. It is observed that, smaller receptive field implied by VGG, a wavelet kernel
[35] and Gaussian kernels [36] obliged in improving the quality of features acquired. The advancement in
similarity metrics can acquire scalable features [37–42]. Transforming a sequence of redundant pixels
using a specific similarity measure [43–46] is challenging and chosen as future scope for the present work.

8 Conclusion

This research provides unification with the extension of our conference work [32]. This study is
motivated by the human visual cortex in designing an end-to-end trainable neural network named bilinear
convolution neural network for plant leaf disease identification and classification. Bi-CNN models are
developed for variant data divisions i.e., D1, D2, and D3. These models outperform the existing literature
by extracting fine-grained features to provide visual attention through a second-order pooling mechanism.
The model attained the highest accuracy score of 94.98% for D3, where 38 variant classes are considered.
During this understudy, it is observed that ResNet when implied as a feature extractor outperform the
VGG model and provide less computational expense with higher performance. Finally, the model is
embedded in a mobile API and released as an opensource. Even with numerous advantages, the
methodology didn’t imply 10-fold cross-validation. The 10-fold cross-validation consumes high
computational efforts. The proposed second-order pooling generally tend to provide attention only when
bottleneck activations which of the same size. Whereas, a new pooling technique has to overcome this
disadvantage. The present experiment was carried out on individual leaf images. In future, it is aimed to
provide the solution by capturing aerial imaging techniques to extract a bunch of features from clustered
plant leaf images with better precision and performance.
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