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Abstract: In this article, Bayesian techniques are adopted to estimate the shape
parameter of the generalized inverted exponential distribution (GIED) in the case
of complete samples. Normal approximation, Lindley’s approximation, and Tier-
ney and Kadane’s approximation are used for deriving Bayesian estimators. Dif-
ferent informative priors are considered, such as Jeffrey’s prior, Quasi prior,
modified Jeffrey’s prior, and the extension of Jeffrey’s prior. Non-informative
priors are also used, including Gamma prior, Pareto prior, and inverse Levy prior.
The Bayesian estimators are derived under the quadratic loss function. Monte
Carlo simulations are carried out to make a comparison among estimators based
on the mean square error of the estimates. All estimators using normal, Lindley’s,
and Tierney and Kadane’s approximation techniques perform consistently since
the MSE decreases as the sample size increases. For large samples, estimators
based on non-informative priors using normal approximation are usually better
than the ones using Lindley’s approximation. Two real data sets in reliability
and medicine are applling to the GIED distribution to assess its flexibility. By
comparing the estimation results with other generalized models, we prove that
estimating this model using Bayesian approximation techniques gives good
results for investigating estimation problems. The models compared in this
research are generalized inverse Weibull distribution (GIWD), inverse Weibull
distribution (IWD), and inverse exponential distribution (IED).

Keywords: Bayesian estimation; generalized inverted exponential distribution;
informative and non-informative priors; Lindley’s approximation; Monte Carlo
simulation; normal approximation; Tierney and Kadane’s approximation

1 Introduction

Lifetime models are widely used in the statistical inference field. These models are very important in
many areas such as engineering, medicine, zoology, and forecasting. The generalized inverted exponential
distribution (GIED) is one of the important lifetime models. It is first proposed by Bakoban et al. [1].
GIED is a flexible model because it has various shapes of the hazard function.
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The probability density function (PDF) of a two-parameter GIED is

a—1
f(x) = <O;—§\> exp<—%> [l—exp<—%ﬂ , x> 0,A 0> 0, (D

and the cumulative distribution function (CDF) is
)\ o

F(x) = 1—[1—exp<——)] , x>0, 0> 0, 2
X

where « is the shape parameter and A is the scale parameter.

The GIED distribution has attracted the recent attention of statisticians but has not been discussed in
detail in the Bayesian approach. Some authors are interested in this distribution or its generalization [2—8].

On the other hand, others study GIED using Bayesian methods. Ahmed [9] obtains the Bayesian
estimators of GIED based on Type II progressive censored samples by applying Lindley’s approximation
and importance sampling technique. In addition, Oguntunde et al. [10] discuss Bayesian predictors based
on progressive Type-II censoring. Further, Hassan et al. [11] derive the Bayesian estimators based on the
Markov Chain Monte Carlo method. Abouammoh et al. [12] study the exponentiated generalized inverse
exponential distribution. They derive statistical properties and study applications to real-life data as
compared with some other generalized models. Moreover, Singh et al. [13] study Bayesian estimators of
reliability function based on upper record value and upper record ranked set sample using Lindley’s
approximation. Eraikhuemen et al. [14] discuss Bayesian and maximum likelihood estimation of the
shape parameter of the exponential inverse exponential distribution. They use a comparative approach.
Bayesian estimation is derived with informative and non-informative priors. In Bayesian analysis, it is
well known that Bayesian estimators are usually expressed in an implicit form. Therefore, many
approximation procedures are used to evaluate Bayesian estimators. Shawky et al. [15], Singh et al. [16],
Sultan et al. [17,18], and Fatima et al. [19] discuss some approximation approaches as the Lindley’s,
Tierney and Kadane’s (T-K), and normal approximation methods to compute the Bayesian estimators of
the exponentiated Gamma, Marshall-Olkin extended exponential, Kumaraswamy, Topp-Leone, and
inverse exponential distributions, respectively. So, in this article, we use normal, Lindley’s, and Tierney
and Kadane’s approximation methods to derive Bayesian estimators for the shape parameter of GIED in
Sections 2 and 3. The rest of the article is organized as follows. Section 4 studies the simulation and
presents numerical results. Section 5 applies the model to real data sets. Finally, Sections 6 and 7 discuss
the results and present the conclusion of the study.

2 Bayesian Approximation Methods
The Bayesian estimate of any function of v, say u(v), under squared error loss function is

o0

[ u(v) L(x|v) n(v)dv
a(v) = E,),[u(v)] = ° : 3)
L(x|v) n(v) dv

where P(v|x) = L(x|v) n(v) is the posterior function; L(x|v) and n(v) are the likelihood function and the
prior distribution of v, respectively. The estimator #(v) is also called the posterior mean. The Bayesian
method is one of the important estimation methods. Sometimes the posterior distribution contains
complicated functions and requires further computation. So, an approximation is needed for the posterior
distribution. Thus in this article, we use the following approximation techniques.
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2.1 Normal Approximation
When the posterior distribution P(v|x) has a unimodal symmetric curve, it could be approximated by a
normal distribution centered at the mode, so we can write the approximation as
P(vlx) ~ N[v, 17 ()], )
—0*Log L(v|x)
Ov?
2.2 Lindley’s Approximation

where [ (V) = is the negative Hessian and L(x|v) is the likelihood function.

Lindley [20] gives an approximation to the following integration ratio

B fQu(y)eL(vHU(v)dy
- fo ety

1 ®)

where L(v) is the log-likelihood function; u(v) and U(v) are arbitrary functions of v; {2 represents the value

range of v. Thus the posterior mean, / = E[u(v)|x], can be evaluated as

12 u(3) + 3 W) + 24 (0) U] + 3 19 6) (3] (B, ©
where

. 0WLogL A - . ou

10 == i=1,2,3,¢7 = [, U) = Loga(v), U'(v) = gﬂ, -

1=1°= Log L(x|v),
where L(x|v) is the likelihood function and n(v) is the prior distribution.

2.3 Tierney and Kadane’s (T-K) Approximation
For any arbitrary function u(v) Tierney et al. [21] propose a Laplace form to compute the posterior mean
Elu(v)|x] as

5*

fe""*(")dv ¢ et ()

E[”(V)’X] = fenno(v)dv = Go eno(V) ©
nn* =nn, —|—L0g u(V), (9)
o [ ]
% =~[gam] "
o [ ]
] m

where nn, = Log P(v|x), and P(v|x) is the posterior distribution.

In the following section, we derive Bayesian estimators for GIED using these approximation methods
with different priors.

3 Bayesian Estimators of GIED

In this section, Bayesian approximation techniques are studied for estimating the shape parameter of the
generalized inverted exponential distribution based on complete samples. Normal, Lindley’s, and Tierney
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and Kadane’s approximation methods are used to compute the Bayesian estimators. Also, Bayesian
estimators are derived based on squared error loss function for different prior distributions.

Letx = (x1, x2, ..., X,) be random samples of size n drawn from a GIED, then by using Eq. (1), the log-
likelihood function could be written as

[ = LogL(x|o) = nLog(a) +nLog(\) —aT + ZLog(xi_z) - A in_l - ZLog(l — e M), (12)
i=1 i=1 i1
where
T=-— ZLog(l — e”\/x"). (13)
i=1

The posterior distribution is obtained by multiplying Eq. (12) with the prior distribution 7(«) as
P(afx) o< I7t(a). (14)

In this article, we choose some informative and non-informative priors, as shown in Tab. 1. In the
following subsections, the Bayesian estimators are obtained based on the squared error loss function
E(a|x), which is the posterior mean.

Table 1: Informative and non-informative priors

Name Probability density function
Non-informative priors Jeffrey’s prior n(a) o< 1/a; o0 > 0.

Quasi prior n(e) oc 1/0d; d >0, o> 0.

Modified Jeffrey’s prior n(a) o 1/Vo3; o> 0.

Extension of Jeffrey’s prior m(e) oc 1/02% 7> 0, o> 0.
Informative priors Gamma prior n(a) o< ot e % a, b >0, o> 0.

Pareto prior n(a) oc Bt by >0, o > 0.

Inverse Levy prior n(e) o< o 0%~ %2; qp >0, o > 0.

3.1 Bayesian Estimators Using Normal Approximation
In this subsection, we derive Bayesian estimators for GIED using the priors in Tab. 1.
i. Jeffreys Prior
According to Eq. (14), the posterior distribution of o is P(a|x) o< o"le™*T; o > 0, where T is defined
in Eq. (13). Then the logarithmic posterior distribution is
Log P(o|x) o< (n—1)Logo.— aT. (15)
By taking the first derivative of Eq. (15) concerning o, we get the posterior mode as & = (n — 1)/T.
Therefore, the negative of Hessian is 1(3) = 7%/(n — 1).

The posterior distribution can be approximated as Eq. (3). Thus, for GIED, the posterior distribution can
be approximated as P(a|x) ~ N[(n—1)/T, (n — 1)/T?]. Hence, the Bayesian estimator of « with Jeffrey’s
prior using normal approximation is & = (n — 1)/T.
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ii. Quasi Prior

The posterior distribution of « is P(a|x) o< o"~%e™*T; d > 0, o > 0, where T is defined in Eq. (12).
Then the logarithmic posterior distribution is
Log P(a|x) < (n —d)Logo— aT. (16)

By taking the first derivative of Eq. (16) concerning o, we get the posterior mode as & = (n — d)/T.
Therefore, the negative of Hessian is 1(&) = T?/(n — d). The posterior distribution can be approximated
as Eq. (3). Thus, for GIED, the posterior distribution can be approximated as P(a|x) ~
N[(n —d)/T, (n —d)/T?]. Hence, the Bayesian estimator of o« with Quasi prior using normal
approximation is & = (n — d)/T.

iii. Modified Jeffrey s Prior

The posterior distribution of o is P(|x) oc o"3/2e7*T; o > 0, where T is defined in Eq. (12). Then the
logarithmic posterior distribution is

Log P(o|x) o< (n—3/2)Logo.— aT. (17)
By taking the first derivative of Eq. (17) concerning o, we get the posterior mode as & = (n — 3/2)/T.
Therefore, the negative of Hessian is 1(&) = 7%/(n — 3/2).

The posterior distribution can be approximated as Eq. (3). Thus, for GIED, the posterior distribution can
be approximated as P(u|x) ~ N|[(n —1.5)/T, (n — 1.5)/T?]. Hence, the Bayesian estimator of o with
modified Jeffrey’s prior using normal approximation is & = (n — 1.5)/T.

iv. Extension of Jeffrey s Prior

The posterior distribution of o is P(x|x) oc & 2%e~*T; 1 > 0, o > 0, where T is defined in Eq. (12).
Then the logarithmic posterior distribution is
Log P(a|x) o< (n—27)Logo— aT. (18)

By taking the first derivative of Eq. (18) concerning o, we get the posterior mode as & = (n —21)/T.
Therefore, the negative of Hessian is 1(&) = 7% /(n — 2 7).

The posterior distribution can be approximated as Eq. (3). Thus, for GIED, the posterior distribution can
be approximated as P(a|x) ~ N[(n —21)/T, (n — 21)/T?]. Hence, the Bayesian estimator of o with the
extension of Jeffrey’s prior using normal approximation is & = (n — 21)/T.

v. Gamma Prior

The posterior distribution of o is P(x|x) o o'~ le=(+1)%: 4 b >0, a > 0, where T is defined in
Eq. (12). Then the logarithmic posterior distribution is
Log P(a|x) < (n+a—1)Loga— (b+T)u. (19)

By taking the first derivative of Eq. (19) concerning o, we get the posterior mode as
4= (n+a—1)/(b+ T). Therefore, the negative of Hessian is 1(&) = (b + T)*/(n+a — 1).

The posterior distribution can be approximated as Eq. (3). Thus, for GIED, the posterior distribution can
be approximated as P(a[x) ~ N[(n+a—1)/(b+T), (n+a—1)/(b+T)*]. Hence, the Bayesian
estimator of o with Gamma prior using normal approximationis & = (n+a —1)/(b+T).

vi. Pareto Prior

The posterior distribution of a is P(a[x) ox "1~ te™*T: by > 0, o > 0, where T is defined in Eq. (12).
Then the logarithmic posterior distribution is
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Log P(o|x) o< (n—b—1)Logo— aT. (20)
By taking the first derivative of Eq. (20) concerning o, we get the posterior mode as
6= (n+a—1)/(b+ T). Therefore, the negative of Hessian is 1(&) = T?/(n — b — 1).

The posterior distribution can be approximated as Eq. (3). Thus, for GIED, the posterior distribution can
be approximated as P(a|x) ~ N[(n—b —1)/T, (n — b — 1)/T?]. Hence, the Bayesian estimator of « with
Pareto prior using normal approximation is & = (n+a —1)/(b+T).

vii. Inverse Levy Prior

The posterior distribution of o is P(a|x) o o'~1/2e~T+@/2)%: g > 0, o > 0, where T is defined in
Eq. (12). Then the logarithmic posterior distribution is
Log P(a|x) o< (n—1/2)Logo — (T +a1/2) . (1)

By taking the first derivative of Eq. (21) concerning o, we get the posterior mode as
4= (n—1/2)/(T + a,/2). Therefore, the negative of Hessian is 1(3) = (T + a;/2)*/(n — 1/2).

The posterior distribution can be approximated as Eq. (3). Thus, for GIED, the posterior distribution can
be approximated as P(a|x) ~ N[(n —1/2)/(T +a1/2), (n —1/2)/(T 4+ a/2)’]. Hence, the Bayesian
estimator of o with inverse Levy prior using normal approximation is & = (n — 1/2)/(T + a,/2).

3.2 Bayesian Estimators Using Lindley’s Approximation

With Lindley’s approximation, we can evaluate the posterior mean as Eq. (4). By setting u(o) = o, the
posterior mean E[u(a)|x] for GIED can be evaluated as

1 . 1 5

S[(8) + 24 (@) U'(8)] 7 + 5 [19)(&) ' (3)] (7). 22)
Using Eq. (12), we obtain Log L(x|a) o< n Logo — o T. Then the maximum likelihood estimator (MLE)

of o is & = n/T. Therefore, the second and third derivatives of the log-likelihood function, as defined in

Eq. (7), are

E(o|x) =2 u(a) +

=57 = —n/o?, and [?(3) = —T?/n, (23)
%) = all =2n073, and [¥)(4) =273 /n’. 24)
o3 ’
Also,
¢* = [-1P@] " =n/T. (25)

By substituting Eqs. (23), (24), and (25) into Eq. (22), we can evaluate the posterior mean for GIED
under different priors as follows.

i. Jeffrey’s Prior
By taking the logarithm of Jeffrey’s prior, we get U(a) ~ —Loga, U'(at) = —1/a, and U’ (&) = —T/n.

Then by using Eqs. (22)—~(25), we obtain the posterior mean for GIED with Jeffrey’s prior as
Ela|x] =2 n/T.
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ii. Quasi Prior

By taking the logarithm of Quasi prior, we get U (o) ~ —d Loga, U’ (o) = —d /o, and U’ (&) = —d T /n.
Then by using Egs. (22)—(25), we obtain the posterior mean for GIED with Quasi prior as
Elolx| 2 (n—d+1)/T.

iii. Modified Jeffreys Prior

By taking the logarithm of modified Jeffrey’s prior, we get U(a) ~ —(3/2)Logo, U'(a) = —3 /20, and
U'(&) = —3T/2n. Then by using Egs. (22)—(25), we obtain the posterior mean for GIED with modified
Jeffrey’s prior as Efo|x] = (2n — 1)/2T.

iv. Extension of Jeffrey s Prior

By taking the logarithm of the extension of Jeffrey’s prior, we get U(a) ~ —2 1 Logo, U'(at) = =21/ a,
and U'(&) = —2 1 T/n. Then by using Eqs. (22)—(25), we obtain the posterior mean for GIED with the
extension of Jeffrey’s prior as E[o|x] = (n — 21+ 1)/T.

v. Gamma Prior

By taking the logarithm of Gamma prior, we get U(a) ~ (a — 1) Logo. — ba, U'(a) = —=b + (a — 1) /2,
and U'(a) = —b + (a — 1) T/n. Then by using Eqs. (22)—(25), we obtain the posterior mean for GIED with
n+a nb

T T

Gamma prior as E[o|x] =

vi. Pareto Prior

By taking the logarithm of Pareto prior, we get U(a) ~ —(by + 1) Loga, U’ (o) = —(by + 1) /o, and

U'(&) = —(by + 1) T/n. Then by using Eqs. (22)—(25), we obtain the posterior mean for GIED with
: —b

Pareto prior as Efo|x] = n—Tl

vii. Inverse Levy Prior
By taking the logarithm of inverse Levy prior, we get U(x) ~ —(1/2)Logo — ay /2, U'(a) =
—1/20 —ay/2,and U'(&) = — (T + ayn)/2n.
Then by using Egs. (22)—(25), we obtain the posterior mean for GIED under inverse Levy prior as
2n+ )T —na
E = .

3.3 Bayesian Estimators Using Tierney and Kadane’s Approximation

To obtain the Bayesian estimator for GIED, we evaluate the posterior mean E[u(o)|x] using Tierney and
Kadane’s approximation technique as Eq. (6). By setting u(a) = o in Eq. (6), recalling T as defined in
Eq. (11), and using the priors in Tab. 1, the Bayesian estimators are derived as follows.

i. Jeffreys Prior
Using Egs. (9)—(11), we get

nny=(n—1)Loga—aT, 63=(mn—1)/T*,nn* =nlogo—oT, & =n/T,and 6** = n/T*. Then
n+0.5 ,—1
the Bayesian estimator for GIED with Jeffrey’s prior is Efo|x] = ﬁ.
" :
ii. Quasi Prior

Using Eqgs. (9)—(11), we get
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nny=(n—d)Logo—aT, 65=(mn—d)/T* nn*=m—d+1)Loga—aT, & =n-d+1)/T,
and 62 = (n—d+1)/T?>. Then the Bayesian estimator for GIED with Quasi prior is
(n—d+ 1)"7d+3/26_l

T (n _ d)ll*d+1/2

iii. Modified Jeffrey’s Prior

Using Eqgs. (9)—(11), we get

nny=(n—3/2)Loga—aT, 65 =m—3/2)/T*, nn*=(n—1/2)Logo—oT, & = (n—1/2)/T,
and 62 = (n—1/2)/T*. Then the Bayesian estimator for GIED with modified Jeffrey’s prior is
(n—1/2)"!
T(n—3/2)""

iv. Extension of Jeffrey s Prior

Using Eqgs. (9)—(11), we get

nny=(n—21t)Loga—aT, 63=(n—21)/T?, np*=m—-2t+1)Loga—aT,
"= (n-2t+1)/T, and 6*> = (n— 21+ 1)/T?. Then the Bayesian estimator for GIED with the
(n—21t+ 1)"_2”3/26’l

T (I’l B 2T)n—21+1/2

Elox]

1%

Elo|x] =

extension of Jeffrey’s prior is E[o|x] =

v. Gamma Prior

Using Eqgs. (9)—(11), we get

nny=(n+a—1)Loga— (b+T)a, 62 =n+a—1)/(b+T) nn = (n+a)Loga— (b+T)a,
4 = (n+a)/(b+T), and 6*> = (n+a)/(b+ T)*. Then the Bayesian estimator for GIED with Gamma

(n + @)+ 2!
(n+a—1)"""2b+1)

vi. Pareto Prior

Using Eqgs. (9)—(11), we get

nny=(mn—>b —1)Loga—aT, 63=m—b—1)/T> nn*=(n—>b)loga—al, & =
(n—by)/T, and 6*> = (n—b)/T*. Then the Bayesian estimator for GIED with Pareto prior is

(n— by)" 01201

T(n—b — 10712

vii. Inverse Levy Prior

Using Eqgs. (9)—(11), we get

nng=(n—1/2)Loga— (T +a/2)a, 2= n—1/2)/(T+ar/2)’, nn* = n+1/2)Loga—
(T+a1/2)a, & =(n+1/2)/(T+a/2), and 62 = (n+1/2)/(T +a/2)*. Then the Bayesian

(n41/2)" e

(n—=1/2)(T +a1/2)

prior is Efo|x] =

Elox]

1%

I

estimator for GIED with inverse Levy prior is E|[o/x]

4 Simulation and Numerical Results

In this section, a simulation study is conducted to assess the performance of the estimators in the
previous section. Mathematica V. 11.0 is used to run a Monte Carlo simulation with 10,000 iterations.
Samples of sizes n» = 20, 50, 100, and 500 are generated from GIED using the quantile formula
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x = —A/Log[1(1 — U)"*), U ~ Uniform(0, 1),with true values o = 2 and A = 2. Bayesian estimates are
computed using normal, Lindley’s, and Tierney and Kadane’s approximation methods. All estimates are
evaluated and tabulated in Tabs. 2—4. Mean square error (MSE) is computed to assess the performance of
Bayesian estimates with informative and non-informative priors.

Table 2: Parameter estimates and MSEs (in parentheses) with normal approximation

n

20

50

100

500

Jeffrey’s prior

Quasi prior (d = 0.3)

Modified Jeffrey’s prior

Extension of Jeffrey’s prior (t = 0.3)
Gamma prior (¢ = 2, b = 2)

Pareto prior (b = 2)

Inverse Levy prior (a; = 2)

1.99483 (0.222595)
2.06833 (0.243939)
1.94234 (0.214333)
2.03683 (0.233395)
1.80807 (0.155632)
1.78485 (0.224467)
1.84407 (0.175374)

2.00469 (0.084319)
2.03333 (0.087834)
1.98424 (0.082834)
2.02106 (0.086123)
1.92589 (0.071410)
1.92287 (0.083505)
1.94402 (0.075963)

1.9955 (0.040405)
2.00961 (0.041050)
1.98543 (0.040190)
2.00357 (0.040725)
1.95619 (0.037693)
1.95519 (0.040777)
1.96557 (0.038788)

1.99999 (0.008002)
2.0028 (0.008032)

1.99799 (0.007990)
2.00159 (0.008017)
1.99201 (0.007876)
1.99197 (0.008002)
1.99399 (0.007926)

Table 3: Parameter estimates and MSEs (in parentheses) with Lindley’s approximation

n

20

50

100

500

Jeffrey’s prior

Quasi prior (d = 0.3)

Modified Jeffrey’s prior

Extension of Jeffrey’s prior (t =0.3)
Gamma prior (a = 2, b =2)

Pareto prior (b; = 2)

Inverse Levy prior (a; = 2)

2.11179 (0.267256)
2.1857 (0.307389)

2.05899 (0.245661)
2.15402 (0.288775)
1.85152 (0.123425)
1.90061 (0.216234)
1.92886 (0.163465)

2.04215 (0.089613)
2.07074 (0.095317)
2.02173 (0.086560)
2.05849 (0.092668)
1.95351 (0.068629)
1.96047 (0.082512)
1.97741 (0.075649)

2.01730 (0.042703)
2.03142 (0.043987)
2.00721 (0.042033)
2.02537 (0.043387)
1.9754 (0.037872)

1.97695 (0.041256)
1.98626 (0.039572)

2.00359 (0.008033)
2.0064 (0.008083)

2.00159 (0.008006)
2.0052 (0.008060)

1.99552 (0.007847)
1.99558 (0.007975)
1.99755 (0.007913)

Table 4: Parameter estimates and MSsE (in parentheses) with Tierney and Kadane’s approximation

N 20 50 100 500

Jeffrey’s prior
Quasi prior (d = 0.3)
Modified Jeffrey’s prior

2.107860 (0.255409) 2.03905 (0.087647) 2.01537 (0.042290) 2.003061 (0.007884)
2.18161 (0.294111)  2.0676 (0.093119)  2.02948 (0.043513) 2.005865 (0.007932)
2.05519 (0.23479)  2.01866 (0.084756) 2.00053 (0.041662) 2.001058 (0.007860)
Extension of Jeffrey’s prior (t = 0.3) 2.150000 (0.27612) 2.05536 (0.090570) 2.02343 (0.042940) 2.004663 (0.007909)
1.90039 (0.138757)  1.95788 (0.069096) 1.97527 (0.037854) 1.995057 (0.007712)
1.89718 (0.208051) 1.9575 (0.081177)  1.97507 (0.041010) 1.995049 (0.007837)
1.94552 (0.167934)  1.97721 (0.074942) 1.98504 (0.039379) 1.997048 (0.007774)

Gamma prior (a =2, b = 2)
Pareto prior (b; = 2)

Inverse Levy prior (a; = 2)

From Tabs. 2—4, we note that all estimators using normal, Lindley’s, and Tierney and Kadane’s
approximation techniques perform consistently that the MSE decreases as the sample size increases. In
addition, we conclude that the estimator with Gamma prior has the lowest MSE for all techniques.
Tierney and Kadane’s technique works more effectively with large samples (» = 100 and 500) than
normal and Lindley’s approximations. However, the normal approximation is better than Lindley’s and
Tierney and Kadane’s approximations with non-informative priors for » = 20 and 50, and Tierney and
Kadane’s approximation is better than Lindley’s approximation in this case. Moreover, estimators under
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informative priors for » = 20 and 50 using Lindley’s approximation are usually better than normal and
Tierney and Kadane’s approximations. For n = 100 and 500, estimators based on non-informative priors
using normal approximation are usually better than the ones using Lindley’s approximation. The normal
approximation works as well as Lindley’s approximation with informative priors for » = 100, but
Lindley’s works better than normal for » = 500 with informative priors.

5 Applications to Real Data

In this section, the GIED distribution is applied to real-life data sets to assess its flexibility over its
baseline distribution and some other generalized models. The baseline models are generalized inverse
Weibull distribution [22, GIWD], inverse Weibull distribution [23, IWD], and inverse exponential
distribution [24, IED]. The fitting performance is evaluated by Kolmogorov-Smirnov (K-S) statistic and
some information criteria. A model is the best if it has the lowest Akaike information criteria (AIC), log-
likelihood (LL), Bayesian information criterion (BIC), consistent Akaike information criterion (CAIC),
and Hannan-Quinn information criterion (HQIC) [25]. The formulas of these criteria are

AIC = —21(¥) + 2k, (26)
BIC = —2/(V) + k Log n, 27
CAIC = AIC + %tll) (28)
HQIC = —2/(V) + 2k Log(Logn), (29)
LL = —21(%), (30)

where /() denotes the log-likelihood function evaluated at the maximum likelihood estimates V; & is the
number of parameters, and » is the sample size. The following two case studies illustrate the estimators’
validity in applications.

1. Animal Vaccination Data Set

The first data is the numbers (in thousands) of animals vaccinated against the most widespread epidemic
diseases in the 13 regions of Saudi Arabia from 1/1/2020 to 6/30/2020, according to the introduction on the
electronic platform (Anaam). This data is downloaded from (https://data.gov.sa/Data/en/dataset/the-
numbers-of-animals-vaccinated-against-the-most-widespread-epidemic-diseases).

The statistics of the data set and the performance measures of the models are presented in Tabs. 5 and 6,
respectively.

Table 5: Statistics for animals (in thousands) vaccinated against widespread epidemic diseases

n  Minimum Maximum Mean Median Standard deviation Standard error Kurtosis Skewness

13 4 322 86.067 72 86.3331 23.9445 5.32907 1.5678
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Table 6: MLEs of the model parameters and the statistics of AIC, BIC, CAIC, HQIC, LL, and K-S for animals
(in thousands) vaccinated

Model MLE AlIC BIC CAIC HQIC LL K-S

GIED a = 0.487556 158.957 159.522 159.321 158.841 156.957 0.295612
IWD B=0.414868 163.709 164.274 164.072 163.593 161.709 0.473431
IED a=7.8756 167.434 167.999 167.797 167.317 165.434 0.517542
GIWD vy =2.32802 241.601 242.166 241.965 241.485 239.601 0.754442

Fig. 1 plots the empirical distribution of the number of animals vaccinated and the estimated CDFs of
GIE, IW, IE, and GIW distributions.
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Figure 1: The empirical distribution of the number of animals vaccinated and the estimated CDFs of GIED
and other competitive models
1I. Medical Data Set

The second data below shows the survival time (in months) of patients with Hodgkin’s disease and
heavy therapy (nitrogen mustards) [26].

The statistics of the data set and the performance measures of the models are presented in Tabs. 7 and 8,
respectively.

Table 7: Statistics for the survival time (in months) of patients with Hodgkin’s disease

n  Minimum Maximum Mean Median Standard deviation Standard error Kurtosis Skewness

15 1.05 41.34 13.1227 9.08 11.7144 3.02466 1.12941 3.29126
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Table 8: MLEs of the model parameters and the statistics of AIC, BIC, CAIC, HQIC, LL, and K-S for the
survival time (in months) of patients with Hodgkin’s disease

Model MLE AIC BIC CAIC HQIC LL K-S

GIED a=1.36753 111.681 112.389 111.989 111.674 109.681 0.130717
IWD B =0.830007 121.663 122.371 121.971 121.655 119.663 0.415029
IED a = 5.32951 111.785 112.493 112.093 111.778 109.785 0.120955
GIWD vy =2.91472 132.498 133.206 132.806 132.490 130.498 0.439125

According to the experiments, GIED shows flexibility to real data sets since it has the lowest AIC, BIC,
CAIC, HQIC, LL, and K-S as is shown in Tabs. 6 and 8. Our model fits better than the competitive models of
IED, IWD, and GIWD. We choose IWD and GIWD as competitive models because GIED is a special case
for them. So researchers can use GIED instead of those models. It decreases the amount of computation for
estimating and gets better results. On the other hand, GIED shows better fitting performance than its special
case IED. Plots in Figs. 1 and 2 show that GIED has the best approximate fitting performance especially for
survival time of patients with Hodgkin’s disease.
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Figure 2: The empirical distribution of survival time of patients and the estimated CDFs of GIED and other
competitive models

6 Discussion

It is well known that the Bayesian estimators usually have explicit forms, which is hard for a researcher
to code, program, and compute the estimates. Therefore, it is very important to study and compare Bayesian
approximation techniques using different priors in statistical inference and especially in Bayesian analysis.
These approximations are useful for computing non-closed form estimators, which are very important for
reliability analysis. This article presents a comparison among normal, Lindley’s, and Tierney and
Kadane’s approximations for Bayesian estimators using seven informative and non-informative priors.

Singh et al. [16] compare Lindley’s, Tierney and Kadane’s, and Markov Chain Monte Carlo (MCMC)
methods for Marshall-Olkin extended exponential distribution. Their results show that for » =20 and 50 with



TASC, 2022, vol.31, no.1 141

informative priors, Lindley’s works better than Tierney and Kadane’s and MCMC. However, with non-
informative priors (Gamma prior), Tierney and Kadane’s has the best estimators.

Fatima et al. [19] compare two techniques: normal and Tierney and Kadane’s for [ED. Their results show
that normal approximation with the extension of Jeffrey’s prior performs better.

Our results on simulated data show that estimators under informative priors for n = 20 and 50 using
Lindley’s approximation are usually better than normal and Tierney and Kadane’s approximations. But
with non-informative priors for n = 20 and 50, Tierney and Kadane’s approximation is better than
Lindley’s approximation, which agrees with the results of Singh et al. [16].

Moreover, our results in the simulation study show that normal approximation is better than Tierney and
Kadane’s approximation with non-informative priors for » = 20 and 50, which agrees with the results of
Fatima et al. [19].

Furthermore, in this article, a flexible model, generalized inverted exponential distribution, is used as a
lifetime model and applied to two data sets of reliability and medicine. So estimating this model using
Bayesian approximation techniques gives good results for investigating estimation problems.

7 Conclusion

In this article, we estimate the shape parameter of GIED using three Bayesian approximation techniques,
which are the normal, Lindley’s, and Tierney and Kadane’s approximations. Tierney and Kadane’s works
better than the rest of the other methods for large samples. Estimates with informative priors are better
than those with non-informative priors. Estimates with Gamma prior are the best among all estimators
with the three techniques. This work is a generalization of the inverted exponential distribution studied by
Fatima et al. [19].
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