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Abstract: A neural networks(NN) hysteresis compensator is proposed for
dynamic systems. The NN compensator uses the back-stepping scheme for invert-
ing the hysteresis nonlinearity in the feed-forward path. This scheme provides a
general step for using NN to determine the dynamic pre-inversion of the reversi-
ble dynamic system. A tuning algorithm is proposed for the NN hysteresis com-
pensator which yields a stable closed-loop system. Nonlinear stability proofs are
provided to reveal that the tracking error is small. By increasing the gain we can
reduce the stability radius to some extent. PI control without hysteresis compen-
sation requires much higher gains to achieve similar performance. It is not easy to
guarantee the stability of such highly nonlinear dynamical system if only a PI con-
troller is used. Initializing the NN weights is simple. The initial weights of hidden
layer are randomly selected and initial weights of output layer are set to zero. A PI
loop with integerted an unity gain feedforward path keeps the system stable until
the NN starts learning. Simulation results show its efficacy of the NN hysteresis
compensator on a system. This work is applicable to xy table-like precision con-
trol system and also shows neural network stability proofs. Moreover, the NN
hysteresis compensation can be further extended and applied to dead-zone, back-
lash, and other actuator nonlinear compensation.

Keywords: Hysteresis compensation; neural networks; dynamic inversion;
velocity control

1 Introduction

Industrial dynamical control systems have generally the structure of a nonlinear system in front of some
nonlinearity in the actuator, for example, dead-zone, backlash, and hysteresis, etc. Hysteresis phenomena
caused by magnetism, stiction or gear with backlash generally exist in control system [1–3] and often
severely reduce system performance such as giving rise to oscillations and/or undesirable inaccuracy,
even leading to instability. Hysteresis characteristics are usually unknown and/or generally non-
differentiable nonlinearities. Most results of adaptive control system are for differentiable nonlinear or
linear systems, and are not applicable to control systems with non-differentiable nonlinearities.
Developing an adaptive control scheme for systems with unknown hysteresis is a challenge of practical
primary concern. The controlled plant may or may not have been known and the hysteresis is considered
unknown. The goal is to achieve tracking and stabilization under influence of unknown hysteresis.
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In recent years, several rigorously guided adaptive schemes for compensation of actuator nonlinearities have
been provided in detailed studies [4]. Backlash compensation with dynamic inversion is shown in [5,6],
where NN is used to eliminate the inversion error. Adaptive control of plants with unknown hysteresis
was developed using an adaptive inverse scheme [7]. In [8–10], NN compensation of gear backlash-like
hysteresis in the position control mechanism was proposed.

In this paper, the author presents a NN hysteresis compensation design for a system. A rigorous design
procedure with validation is provided to generate a PI tracking loop using an adaptive neural network system
in a feed-forward loop for hysteresis compensation. The authors derive practical limits for tracking errors
through tracking error dynamics analysis, and investigate the performance of NN hysteresis compensator
in the system from computer simulations.

2 Neural Networks

NN has been used widely in feedback control systems [11–14]. Most applications are temporary, with no
proven stability. The proof of stability that exists almost invariably relies on the property of a universal
approximation to NN [15,16]. The three-layer NN in Fig. 1 is composed of an input, a hidden, and an
output layer. There are L neurons in the hidden layer and m neurons in the output layer. Multilayer NN is
a nonlinear function from input space Rn to output space Rm. The NN output y is a vector with m
components determined by the equation as the n components of the input vector x.

yi ¼
XL
k¼1

½wikrð
Xn
j¼1

vkjxj þ vk0Þ þ wi0�; i ¼ 1; 2; . . . ; m (1)

where σ(∙), the hyperbolic tangent functions, vkj the weight of the interconnection from the input layer to the
hidden layer, and wik the weight of the interconnection from the hidden layer to the output layer. The
threshold offsets are described as vk0, wi0.

By gathering all the NN weights vkj, wik into matrices VT,WT, we can write the NN equation as vector as
follows:

y ¼ WTrðVTxÞ (2)

The threshold is placed as the first column of the weight matrix WT, VT. In other words, the vector x and
σ(∙) needs to be incremented by placing ‘1’ as their first element. That is , x = [1 x1 x2 · · · xn]

T. To express (1)
in this equation, there is sufficient generality σ(∙) to take as a diagonal function from RL to RL, which is σ(z) =
diag{σ(zk)} for a vector z = [z1 z2 · · · zL]

T ∈ RL.
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Figure 1: Three-layer neural networks
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For the convenience of notation, the matrix of all weights is defined as follows.

Z ¼ W
V

� �
: (3)

According to many well-known results, a sufficiently smooth function�ycan be randomly approximated
in a compact set with appropriate weights, i.e., using a three-layer NN

�y ¼ WTrðVTxÞ þ EðxÞ: (4)

Here, it is the NN approximation error ε(x), and ||ε(x)|| ≤ εN on a compact set S [17,18]. The
approximating weights V and W are ideal target weights, and are assumed to be bounded, such that ||
V||F ≤ VM, ||W||F ≤WM, or ||Z||F ≤ ZM.

3 Hysteresis Nonlinearity

In this section, the author presents a hysteresis model and a hysteresis inverse model. The
implementation of hysteresis inverse is provided in the following sections to develop an NN hysteresis
compensation scheme for unknown hysteresis systems. Hysteresis compensation is performed using
dynamic inversion compensation, which uses NN for dynamic inversion compensation [19]. Other types
of hysteresis models, including backlash and electronics, can be identified from references [1–3].
However, general history models will not be convenient because they are complex. Here, we will use a
simplified hysteresis model with most hysteresis properties.

Fig. 2 shows a hysteresis model. The hysteresis properties H(∙) with input u(t) and output T(t): T(t) =H
(u(t)) are described by the constants mt, ct, mb, cb, mr, cr, ml, cl and two half-lines:

TðtÞ ¼ mtuðtÞ þ ct; uðtÞ. u1 ¼ ct þ mlcl
ml � mt

(5)

TðtÞ ¼ mbuðtÞ þ cb; uðtÞ, u2 ¼ cb þ mrcr
mr � mb

(6)

T
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Figure 2: Hysteresis nonlinearity
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and two line segments:

TðtÞ ¼ mrðuðtÞ � crÞ; u2 � uðtÞ, u3 ¼ ct þ mrcr
mr � mt

(7)

TðtÞ ¼ mlðuðtÞ � clÞ; cb þ mlcl
ml � mb

¼ u4 , uðtÞ, u1 (8)

where u1, u2, u3, u4 are the values of u(t) at the four opposite “conners” of the quadrilateral.

Along the segments, the time derivatives of T(t), u(t) are of constant sign, namely, _TðtÞ. 0, _uðtÞ. 0 for
T(t) =mr(u(t) − cr), and _TðtÞ, 0, _uðtÞ, 0 for T(t) =ml(u(t) − cl).

The hysteresis phenomena occur inside the loop formed by the half-lines (5) and (6) and the segments
(7) and (8). Within the hysteresis loop, the relationship between T(t) and u(t) is

TðtÞ ¼ mtuðtÞ þ cdðtÞ for _uðtÞ, 0
mbuðtÞ þ cuðtÞ for _uðtÞ. 0

�
(9)

where cd(t), cu(t)are partial constant function that depends on the point where _uðtÞ changes the sign and the
historical trajectories of (u(t), T(t)).

The motion of T(t) and u(t) inside the half-line (5) and (6) and the segments (7) and (8) and the hysteresis
loop can be mathematically described as

_TðtÞ ¼

mt _uðtÞ if uðtÞ � u3;
or if u4 , uðtÞ, u3; _uðtÞ, 0:
TðtÞ 6¼ mlðuðtÞ � clÞ and
TðtÞ 6¼ mbuðtÞ þ cb;
or if u4 , uðtÞ, u3; _uðtÞ, 0:
TðtÞ ¼ mbuðtÞ þ cb and mt ,mb

or if u4 , uðtÞ, u3; _uðtÞ. 0:
TðtÞ ¼ mtuðtÞ þ ct and mt ,mb

mb _uðtÞ if uðtÞ � u4;
or if u4 , uðtÞ, u3; _uðtÞ. 0:
TðtÞ 6¼ mrðuðtÞ � crÞ and
TðtÞ 6¼ mtuðtÞ þ ct;
or if u4 , uðtÞ, u3; _uðtÞ. 0:
TðtÞ ¼ mtuðtÞ þ ct and mt .mb

or if u4 , uðtÞ, u3; _uðtÞ, 0:
TðtÞ ¼ mbuðtÞ þ cb and mt .mb

mr _uðtÞ if u4 , uðtÞ, u3; _uðtÞ. 0 and
TðtÞ ¼ mrðuðtÞ � crÞ

ml _uðtÞ if u4 , uðtÞ, u3; _uðtÞ, 0 and
TðtÞ ¼ mlðuðtÞ � clÞ

0 if _uðtÞ ¼ 0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10)

Fig. 2 shows a hysteresis model and two typical minor loops. To cancel the hysteresis effect in the
system, the pre-compensator must generate the reciprocal of the hysteresis nonlinearity. Fig. 3 shows the
hysteresis inverse function. The dynamics of the NN hysteresis compensator is as follows
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_uðtÞ ¼ Hinvðu; ud; _udÞ (11)

Also, Fig. 3 shows that hysteresis inverse properties can be decomposed into two functions. Fig. 4 shows
the direct feed forward term and the further modified hysteresis inverse. This decomposition allows us to
design compensator with better structure when NN is used in feed forward paths.

4 NN Hysteresis Nonlinearity Compensation of Dynamic Systems

In this section, the author shows how to design an NN hysteresis compensator using back-stepping
techniques [20]. It also shows how to weight or learn NN online, with small tracking errors and
boundaries for all internal states (such as NN weights). Assume that actuator output can be measured.
The system dynamics without vibration mode can be describes as follows.

J€hþ B _hþ Tf þ Td ¼ T (12)

where _h is the motor velocity, J is the inertia, B is the viscous friction, Tf is the nonlinear friction
components, Td is the bounded unknown disturbance, and T is the control input. Supposed there is |Td| <
τM, with τM, a known positive constant. When a reference signal _hd is given, the tracking error is written
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Figure 3: Hysteresis inverse

0 ud ud

u

m
1

u

0

(a) (b)

Figure 4: Hysteresis inverse decomposition (a) feed forward term (b) modified hysteresis inverse
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by e ¼ _hd � _h. The reference signal is restricted so that it is j _hdj ,�d with a known constant Θd. Using (12)
we can differentiate tracking errors and write the plant dynamics in terms of tracking errors as follows

J _e ¼ �Be� T þ f ðxÞ þ Td (13)

with the nonlinear plant function

f ðxÞ ¼ J€hd þ B _hd þ Tf (14)

The term x includes all the time signals required for calculation f(∙), for example it can be defined as
x � ½ _hd €hd�T . Note that this function f(x) contains all potentially unknown functions without J, B as
shown in (13) – this latter term is revoked from the stability proof. The following tracking controller
provides a robust compensation scheme for unknown terms in f(x):

Tdes ¼ Kf eþ f̂ � v1 (15)

with f̂ ðxÞ, an estimate for nonlinear terms f(x), v1(t) a robustifying term, and Kf > 0.

Fig. 5 illustrates the control structure implied by this scheme. The controller consists of a proportional
and integral tracking loop with gains Kf e ¼ KI

R
eþ Kpe and a hysteresis compensator that is enhanced by a

hysteresis effect. We assume that non-linear function f(x) is unknown, but a fixed estimate f̂ ðxÞ is known to
satisfy function estimation error, ~f ðxÞ ¼ f ðxÞ � f̂ ðxÞ, j~f ðxÞj � fM ðxÞ for some known boundary functions
fM(x).

The following theorem is the first step in the backstepping design, which shows that the desired control
law (15) keeps the tracking error small.

Theorem 1 : Under the system (12), use the tracking control law (15). Select the robustifying signal v1 as
follows

v1ðtÞ ¼ �ðfM ðxÞ þ sM Þ e

jej : (16)

the tracking error is then bounded and can be kept as desired by increasing the gains Kf.

Proof : Choose the Layapnov function candidate

L1 ¼ 1

2
Je2: (17)

e
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Figure 5: NN hysteresis compensation of systems
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Differentiating L1 and using the assumption j _J j ¼ 0 and Eq. (13) yields

_L1 ¼ eð�Beþ f þ Td � TdesÞ: (18)

Using the tracking control law (15) one has

_L1 ¼ eð�Beþ f þ Td � Kf e� f̂ þ v1Þ
¼ �ðKf þ BÞe2 þ eð~f þ Td þ v1Þ

(19)

_L1 ¼ �ðKf þ BÞe2 þ ef~f þ Td � ðfM þ sM Þ e

jejg: (20)

Eq. (20) can be bounded as

_L1 � �ðKf þ BÞjej2 � jejðfM þ sM Þ þ jejj~f þ Tdj: (21)

For as long as |e| ≠ 0, one can conclude that _L1 is guaranteed negative.

Theorem 1 demonstrates a control law that guarantees stability in terms of tracking errors. If there is
unknown hysteresis nonlinearity, the desired control signal and the actual value are different. According
to the dynamic inversion concept, NN is used to compensate for the inversion error originally provided
by Calise et al. [19], the author gives a rigorous analysis of closed-loop system stability. The actuator
output provided in (15) is a desirable signal. To find the overall system error dynamics, define the error
between the desired actuator output and the actual actuator output as follows:

~T ¼ Tdes � T (22)

Differentiating one has

_~T ¼ _Tdes � _T

¼ _Tdes � HðT ; u; _uÞ
(23)

which (13) and related (15) represent complete system error dynamics.

The dynamics of the hysteresis nonlinearity can be written as

_T ¼ f (24)

f ¼ HðT ; u; _uÞ (25)

where ϕ(t) is pseudo-control input [19]. For known hysteresis, the ideal hysteresis inverse is given by

_u ¼ H�1ðu; T ; fÞ (26)

Since hysteresis and thus its inverse are unknown, only the inverse of hysteresis can be approximated as

_̂u ¼ Ĥ�1ðû; T ; f̂Þ (27)

We can now write the hysteresis dynamics as follows

_T ¼ HðT ; û; _̂uÞ
¼ ĤðT ; û; _̂uÞ þ ~HðT ; û; _̂uÞ
¼ f̂þ ~HðT ; û; _̂uÞ

(28)

where f̂ ¼ ĤðT ; û; _̂uÞ and therefore its inverse _̂u ¼ Ĥ�1ðT ; û; _̂uÞ. The unknown function ~HðT ; û; _̂uÞ, that
represent hysteresis inversion error are approximated using NN.
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Introducing the NN approximation property, the hysteresis inversion error can be expressed as

~HðT ; û; _̂uÞ ¼ WTrðVTxnnÞ þ E: (29)

where the NN input vector is selected as xnn ¼ ½1 e _hd ~T T �T , and ε is the NN approximation error.

We define V̂ , Ŵ as estimates of the ideal NN weights provided by NN tuning algorithms. Define the
weight estimation error as

~V ¼ V � V̂ ; ~W ¼ W � Ŵ ; ~Z ¼ Z � Ẑ; (30)

and the hidden layer output error for a given xnn as

~r ¼ r� r̂ ¼ rðVTxnnÞ � rðV̂ T xnnÞ: (31)

To design the stable closed-loop system with hysteresis compensation, nominal hysteresis inverse _̂u ¼ f̂
and pseudo-control input f̂ are selected as

f̂ ¼ Kb~T þ _Tdes � Ŵ TrðV̂ T xnnÞ � v2 (32)

where v2(t) is a robustifying term detailed later.

The closed loop system with NN hysteresis compensator is shown in Fig. 5. The proposed hysteresis
compensation scheme follows the hysteresis inverse decomposition in Fig. 4. That is, the exact hysteresis
inverse consists of a direct feed term and the error term in Fig. 4b estimated by NN.

The propod controller (32) allows to write the error dynamics (23) as

_~T ¼ _Tdes � f̂� ~HðT ; û; _̂uÞ
¼ �Kb~T þ Ŵ

T
rðV̂ T

xnnÞ þ v2 �WTrðVTxnnÞ � E : (33)

Taylor series expansions can be used to overcome the strong restriction of linearity in the tunable
parameters. The weights V appear in nonlinear way. Applying the method developed in [15,16] yields the
error dynamics

_~T ¼ �Kb~T � ~WTðr̂� r̂0V̂ TxnnÞ � Ŵ T r̂0 ~VTxnn þ wþ v2 (34)

where the disturbance term is given by

w ¼ � ~WT r̂0VTxnn �WTOð~VTxnnÞ2 � E: (35)

Here, Oð~VTxnnÞ2represents a higher order terms in Taylor series expansion.

Assuming that the approximation property of the neural network are maintained, the norm of the
disturbance term can be bounded as [15,16]

jjwjj � VM jj ~W jjF jjxnnjj þ c1 þ c2jj~V jjF jjxnnjj þ EN (36)

where c1 and c2 are positive constants. The NN input is bounded by

jjxnnjj � c3 þ jej þ�d þ j~T j þ jj~ZjjF (37)

Combination of the inequalities (36) and (37) one has

jjwjj � ðVM jj ~W jjF þ c2jj~V jjFÞðc3 þ jej þ�d þ j~T j þ jj~ZjjFÞ þ c1 þ EN (38)
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jjwjj � C0 þ C1jj~ZjjF þ C2jj~ZjjF jej þ C3jj~ZjjF j~T j þ C4jj~Zjj2F ; (39)

where Ci are computable positive constants.

The following theorem explains how to adjust the neural network weights so the tracking error e(t) and
~TðtÞ achieve small values, whereas the NN weights V̂ , Ŵ are close to V, W. That is, the weight estimation
errors (30) are bounded.

Theorem 2. Let the desired trjectories be restricted. Choose the control input as (27). Select the
robustifying signal v2 as

v2 ¼ �KZ1ðjjẐjjF þ ZM Þð~T þ jej
~T

j~T jÞ � KZ2 jej
~T

j~T j � KZ3ðjjẐjjF þ ZM Þ2
~T

j~T j (40)

where KZ1 . maxðC2; C3Þ, KZ2 . 1, and KZ3 . C4. Let the estimated NN weights be given by the NN
tuning algorithm

_̂V ¼ �Qxnn~TŴ r̂0 � kQj~T jV̂ ; _̂W ¼ �Sðr̂� r̂0V̂ T xnnÞ~T � kSj~T jŴ (41)

with any constant matrices S = ST > 0, Q =QT > 0, and k > 0 small scalar deign parameter. The
tracking error e(t), error ~TðtÞ and NN weight estimates V̂ , Ŵ are then bounded by the limits given by
Eqs. (57) and (58). Also, the error ~TðtÞ can be made arbitrarily small by increasing the gain Kb.

Proof : Select the Lyapnov function candidate

L ¼ L1 þ 1

2
~T 2 þ 1

2
trð ~WS�1 ~W Þ þ 1

2
trð~VQ�1 ~V Þ (42)

which weights both errors e(t) and ~TðtÞ, and NN weights estimation errors. Taking derivative

_L ¼ _L1 þ ~T _~T þ trð ~WTS�1 _~W Þ þ trð~VTQ�1 _~V Þ (43)

and applying (13) and (34) one has

_L ¼ eð�Be� T þ f þ TdÞ þ ~Tð�Kb~T � ~W
Tðr̂� r̂0V̂

T
xnnÞ � Ŵ

T
r̂0 ~V

T
xnn þ wþ v2Þ

þ trð ~WT
S�1 _~W Þ þ trð~VT

Q�1 _~V Þ
(44)

_L ¼ eð�Beþ f þ Td � TdesÞ þ e~T þ ~Tð�Kb~T � ~W
T ðr̂� r̂0V̂

T
xnnÞ

� Ŵ
T
r̂0 ~V

T
xnn þ wþ v2Þ þ trð ~WT

S�1 _~W Þ þ trð~VT
Q�1 _~V Þ

(45)

_L ¼ eð�Beþ f þ Td � TdesÞ þ e~T þ ~Tð�Kb~T þ wþ v2Þ
þ tr½ ~WT ðS�1 _~W � ðr̂� r̂0V̂

T
xnnÞ~TÞ� þ tr½~VTðQ�1 _~V � xnn~TŴ

T
r̂0Þ� : (46)

Using (15) and tuning rules yields

_L ¼ eð�Beþ ~f ðxÞ þ Td � Kf eþ v1Þ þ e~T þ ~Tð�Kb~T þ wþ v2Þ
þ kj~T jtr½ ~WTðW � ~W Þ� þ kj~T jtr½~VTðV � ~V Þ�

(47)
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Applying the same inequality as for (20), expression (47) can be bounded as

_L � �ðKf þ BÞjej2 � jejðfM þ sM Þ þ jejj~f þ Tdj þ kj~T j jjZjjFðZM � jj~ZjjFÞ

� Kbj~T j2 þ ~Twþ e~T � ~TKZ1ðjjẐjjF þ ZM Þð~T þ jej
~T

j~T jÞ �
~TKZ2 jej

~T

j~T j

� ~TKZ3ðjjẐjjF þ ZM Þ2
~T

j~T j

: (48)

Intorducing (39) and applying some norm properties, one can has

_L � �ðKf þ BÞjej2 � jejðfM þ sM Þ þ jejj~f þ Tdj þ kj~T j jjZjjFðZM � jj~ZjjFÞ
� Kbj~T j2 þ j~T jjej þ C0j~T j þ C1j~T j jj~ZjjF þ C2j~T j jj~ZjjF jej
þ C3jj~ZjjF j~T j2 þ C4j~T jjj~Zjj2F � KZ1 j~T j2jj~ZjjF � KZ1 jejj~T jjj~ZjjF
� KZ2 j~T jjej � KZ3 j~T jjjẐjj2F ;

(49)

_L1 � �ðKf þ BÞjej2 þ kZM j~T j jj~ZjjF � kj~T jjj~Zjj2F � Kbj~T j2 þ j~T jjej
þ C0j~T j þ C1j~T j jj~ZjjF þ C2j~T j jj~ZjjF jej þ C3jj~ZjjF j~T j2 þ C4j~T jjj~Zjj2F
� KZ1 j~T j2jj~ZjjF � KZ1 jejj~T jjj~ZjjF � KZ2 j~T jjej � KZ3 j~T jjjẐjj2F :

(50)

Taking KZ2 . 1 yields

_L � �ðKf þ BÞjej2 þ kZM j~T j jj~ZjjF � kj~T jjj~Zjj2F � Kbj~T j2

þ C0j~T j þ C1j~T j jj~ZjjF þ C2j~T j jj~ZjjF jej þ C3jj~ZjjF j~T j2 þ C4j~T jjj~Zjj2F
� KZ1 j~T j2jj~ZjjF � KZ1 jejj~T jjj~ZjjF � KZ3 j~T jjjẐjj2F :

(51)

Choosing KZ1 . maxðC2; C3Þ and KZ3 .C4 one has

_L � �ðKf þ BÞjej2 þ kZM j~T j jj~ZjjF � kj~T jjj~Zjj2F � Kbj~T j2
þ C0j~T j þ C1j~T j jj~ZjjF

(52)

_L � �ðKf þ BÞjej2 � j~T j½Kbj~T j þ kjj~Zjj2F � ðkZM þ C1Þ jj~ZjjF � C0�: (53)

Completing the square yields

_L � �ðKf þ BÞjej2 � j~T j½Kbj~T j þ kf jj~ZjjF � ðZMk þ C1

2k
Þg 2 � kðZMk þ C1

2k
Þ2 � C0�: (54)

Therefore, the _L is negative as long as

j~T j .
kðZMk þ C1

2k
Þ
2

þ C0

Kb
; (55)

or

jj~ZjjF .
ZMk þ C1

2k
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZMk þ C1

2k
Þ
2

þ C0

k

s
: (56)
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From the standard Layapnov theorem, the error, ~T , decrease if the error is greater than the right side of
(55). Eq. (57) gives a practical bound on the error

j~T j �
kðZMk þ C1

2k
Þ
2

þ C0

Kb
; (57)

Similarly, Eq. (56) gives

jj~ZjjF � ZMk þ C1

2k
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZMk þ C1

2k
Þ
2

þ C0

k

s
: (58)

Notice that by increasing the gain Kbwe can reduce the stability radius to some extent. Also, note that PI
control without hysteresis compensation requires much higher gains to achieve similar performance.
Moreover, it is not easy to guarantee the stability of such highly nonlinear dynamical system if only a PI
controller is used. NN hysteresis compensation demonstrates the stability of the system and can increase
gain Kb to keep the tracking error arbitrary small. The NN weight errors are essentially constrained in
terms of VM, WM. Due to the form of the feedforward compensator with integreted an unity feedforward
path and a NN parallel path, initializing the NN weights is simple. The initial weights Vare randomly
selected and initial weights W are set to zero. Then, a PI loop with integerted an unity gain feedforward
path keeps the system stable until the NN starts learning.

5 Simulation Results

In this section, the author described the effective of a NN hysteresis compensator through computer
simulations. One consider a plant with linear parts [21]:

GðsÞ ¼ 1

0:0143 sþ 0:9785
(59)

and the hysteresis characteristic H(mt, ct, mb, cb, mr, cr, ml, cl; ·) where mt = 1, mb = 0.5, mr = 4.0, ml = 5.5, ct
= 0.5, cb = −0.5, cr = 0.3, cl = −0.3. The NN weight tuning parameters are chosen as S = 8I9, Q = 9I4, and
k = 0.002, when IN is N ×N identity matrix. The robustifying signal gains are KZ1 ¼ 4, KZ2 ¼ 2:5, and
KZ3 ¼ 6. The controller parameter Kp = 4, KI = 2, and Kb = 0.4. There are eight nodes in hidden layer in
NN, i.e., L = 8. The input to hidden layer weights V is randomly initialized. Distributed uniformly
between –1 and 1. The hidden to output layer weights W are initialized at 0. Because the weights W are
initialized at zero, this weight initialization does not affect system stability, so initially there is no input to
the system except for the PI loop. Filters that generates the signal _Tdes is implemented as s

sþ100. Without
the NN hysteresis compensation, the tracking performance of the closed-loop system is shown in Fig. 6.
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Figure 6: Velocity of a plant with/without hysteresis (a) sinusoidal reference signal (b) rectangular reference
signal
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Figure 7: Velocity of a plant with/without hysteresis compensation (a) sinusoidal reference signal (b)
rectangular reference signal
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Hysteresis causes a loss of information about the signal each time u(t) change direction, indicating that
system performance is degraded. Applying the NN hysteresis compensator significantly reduces the tracking
error. Fig. 7 shows the velocity of a plant when a NN compensator is included. Fig. 8 shows the control signal
u(t) in both cases when NN is applied and when NN is not present. In the simulation it is clear that the
proposed NN hysteresis compensation is an efficient method to compensate for hysteresis nonlinearities.

6 Conclusion

A new technique for the hysteresis compensation has been proposed for systems. The compensator
scheme has a dynamic inversion structure, and the NN of the feed-forward path approximating the
hysteresis inversion error and filter dynamics required for back-stepping design. We show how to adjust
the NN weights so that the hysteresis inversion error is learned on line. Using nonlinear stability
techniques, the boundaries for tracking error are derived from the tracking error dynamics. Through
simulation, we show the significant improvement in system performance by NN hysteresis compensation
scheme.
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