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Abstract: In this research, we propose the new mixed control chart called the
mixed Moving Average-Cumulative Sum (MA-CUSUM) control chart used for
monitoring parameter changes in asymmetrical and symmetrical processes. Its
efficiency was compared with that of the Shewhart, Cumulative Sum (CUSUM),
Moving Average (MA), mixed Cumulative Sum-Moving Average (CUSUM-MA)
and mixed Moving Average-Cumulative Sum (MA-CUSUM) control charts by
using their average run lengths (ARLs), the standard deviation of the run length
(SDRL), and median run length (MRL) via the Monte Carlo simulation (MC).
The simulation results show that the MA-CUSUM control chart was more effi-
cient than the other control charts for small-to-moderate parameter changes for
all distributions tested. To compare their applicability to real-world situations,
the control charts were applied to data for the River Nile flow from 1871–1930
and mine explosions in the UK from 1875–1951. It was found that the MA-
CUSUM control chart could more quickly detect parameter changes than the
other control charts.

Keywords: Average run length; mixed control chart; moving average-cumulative
sum control chart; cumulative sum control chart; moving average control chart;
cumulative sum control chart

1 Introduction

Controlling product quality is essential in the manufacturing industry, and themost popular and widely
used tool is the statistical process control chart. The statistical process control chart is used to control,
monitor, detect changes, and develop production processes by making them more consistent or increasing
the production capacity limit while keeping the process under control to achieve the objectives of
consumer’s needs and make the product meet the specific requirements. As well as in the manufacturing
industry, control charts have been applied in various fields, such as environmental science, epidemiology
and emerging diseases, telecommunication, economics, finance, etc.

Therefore, statistical process control charts are commonly used for detecting change in processes. As a
result, many control charts were invented.
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Shewhart [1] proposed the first use of a control chart (known as the Shewhart control chart) by applying
statistical principles to control and detect large changes in the process mean. Later, Page [2] presented the
cumulative sum (CUSUM) control chart using weighted historical data that is effective at detecting small-
to-meoderate changes in process parameters. Roberts [3] proposed the exponentially weighted moving
average (EWMA) control chart in which historical data are weighted, which is also effective at detecting
small-to-moderate changes in process parameters. Khoo [4] developed moving average (MA) control
chart by calculating the moving average by time period that could detect small changes and be applicable
to data that from both continuous and discrete distributions. Abbas et al. [5] presented the combined
EWMA-CUSUM control chart, which was more effective at detecting changes than the EWMA or
CUSUM control charts separately. Khaliq et al. [6] presented the combined EWMA-Tukey’s (TCC)
control chart and tested it using the mean run length as the benchmark performance measurement; their
results indicate that EWMA-TCC was more effective at detecting changes than either the TCC or the
EWMA control chart, although it did not perform well when the observations were skewed and the
parameter change size was reduced. Riaz et al. [7] proposed the mixed Tukey’s EWMA-CUSUM (MEC-
TCC) control chart to detect changes in the process mean and found that the new proposed control chart
was more effective in detecting micro-changes than the combined EWMA-CUSUM parameter-based
control chart, non-parametric combined control charts EWMA-TCC, CUSUM-TCC and TCC. Taboran
et al. [8] proposed the new control chart: MA-EWMA to detect a change in process mean underlying
asymmetric and symmetric processes, and compare the efficiency in monitoring the change with
Shewhart, EWMA and MA control charts at the parameter change levels. Phanthuna et al. [9] proposed
the explicit formula for evaluating the average runlength on a two-sided modified exponentially weighted
moving average chart under the observations of a first-orderautoregressive process, referred to as AR(1)
process, with an exponential white noise. Later, Sukparungsee et al. [10] proposed the mixed EWMA-
MA control chart to detect changes in the mean of processes with underlying symmetric and asymmetric
distributions; the results of performance comparison showed that the mixed EWMA-MA control chart
performed better and detected process mean shifts more quickly than the individual Shewhart, MA, and
EWMA control charts.

Herein, we proposed the new mixed control chart called the mixed Moving Average-Cumulative Sum
control chart (MA-CUSUM) used for monitoring process parameter changes. We compared its efficiency
with Shewhart, CUSUM, MA and CUSUM-MA control charts. We also compared the efficacies of
the control charts by applying them to real data for the River Nile flow and mine explosions in the UK
from 1875-1951.

2 The Control Charts Used in the Study

The control charts used in this study was the parametric control chart, which were CUSUM and MA
control charts for small-to-moderate parameter changes. We presented new control chart, by mixing
CUSUM and MA control charts (CUSUM-MA, MA-CUSUM) as follow.

2.1 The CUSUM Control Chart

The cumulative deviation from the target value is used in the derivation of this control chart. The
CUSUM control chart is based on the following two statistics [11]:

Cþ
i ¼ max 0;Cþ

i�1 þ Xi � l0 � K1

� �
C�
i ¼ min 0;C�

i�1 þ Xi � l0 þ K1

� �
�

(1)

where i is the time or sample number and Xi are independent and normally distributed observations for
Xi � Nðl0; r0Þ, where l0 and r0 are the in-control mean and standard deviation, respectively. K1 ¼ k1r0
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is the reference value and is used for half of the shift, i.e., k1 ¼ d
2
, where d is the number of shift given as

d ¼ l1�l0j j
r0=

ffiffi
n

p , where l1 is the out-of-control mean, and n is the sample size. Statistics Cþ
i and C�

i are the
upper and lower CUSUM limits, respectively, and are plotted against to the control limit H1 ¼ h1r0.
Initially, we set Cþ

i ¼ C�
0 ¼ 0.

2.2 The MA Control Chart

For each period (w), assume that individual measurements X1;X2;…, where Xi � N l; r2ð Þ,
for i ¼ 1; 2;… are obtained from the process. The MA statistic of span w at time i defined by
Montgomery [12] is

MAi ¼
Xi þ Xi�1 þ Xi�2 þ…

i
; i < w

Xi þ Xi�1 þ…þ Xi�wþ1

w
; i � w

8><
>: (2)

The average of all measurements up to period i are defines for the MA. The respective mean and variance
of the MA statistics, MAi are

E MAið Þ ¼ E Xið Þ ¼ l0 (3)

and

Var MAið Þ ¼
r20
i
; i < w

r20
w
; i � w

8><
>: (4)

where l0 denotes the in-control process mean. The control limits of the MA control chart are as follows:

UCL=LCL ¼
l0 �

K2r0ffiffi
i

p ; i < w

l0 �
K2r0ffiffiffiffi

w
p ; i � w

8>><
>>:

(5)

where K2 is a coefficient of control limits of MA control chart and l0 and r0 are the mean and standard
deviation of the in-control process, respectively.

2.3 The Mixed CUSUM-MA (MCM) Control Chart

In this case, the CUSUM statistics in Eq. (1) are used as inputs for the MA control chart, resulting in

MCMþ
i ¼

Cþ
i þ Cþ

i�1 þ � � �
i

; i < w

Cþ
i þ Cþ

i�1 þ � � � þ Cþ
i�wþ1

w
; i � w

8><
>: (6)

and

MCM�
i ¼

C�
i þ C�

i�1 þ � � �
i

; i < w

C�
i þ C�

i�1 þ � � � þ C�
i�wþ1

w
; i � w

8><
>: (7)

where w is the width of the MA control chart and Cþ
i , C

�
i are the CUSUM statistics.
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The respective mean and variance of the CUSUM-MA (MCM) statistics are

E MCMþ
i

� � ¼ E MCM�
i

� � ¼ lC ¼ l�X (8)

and

Var MCMþ
i

� � ¼ Var MCM�
i

� � ¼ r2C ¼ r2�X (9)

The upper (UCL) and lower (LCL) control limits of the mixed CUSUM-MA (MCM) control chart are
given by

UCL=LCL ¼
lC � K3rCffiffi

i
p ; i < w

lC � K3rCffiffiffiffi
w

p ; i � w

8>><
>>:

(10)

where K3 is a coefficient of the control limits of the mixed CUSUM-MA (MCM) control chart, lC and rC are
the mean and standard deviation of the in-control process, respectively.

2.4 The Mixed MA-CUSUM (MMC) Control Chart

Contrary to the mixed CUSUM-MA control chart, the MA statistics in Eq. (2) are used as input for the
CUSUM chart as follows:

MMCþ
i ¼ max 0;MMCþ

i�1 þMAi � l0 � K4

� �
MMC�

i ¼ min 0;MMC�
i�1 þMAi � l0 þ K4

� �
�

(11)

where K4 is the time-varying reference value defined as

K4 ¼ k4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var MAið Þ

p
¼

k4
r0ffiffi
i

p ; i < w

k4
r0ffiffiffiffi
w

p ; i � w

8><
>: (12)

MMCþ
i and MMC�

i are the upper and lower limits statistics, respectively, for the mixed MA-CUSUM
(MMC) control chart. Next, these statistics are represented as a function of the control limit HMAi , which is
defined as follows:

HMAi ¼ hMA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var MAið Þ

p
¼

hMA
r0ffiffi
i

p ; i < w

hMA
r0ffiffiffiffi
w

p ; i � w

8><
>: (13)

where hMA is the coefficient used to set the default false alarm rate. Any value of MMCþ crossing control
limit HMAi indicates an increase in the process mean, and if MMC� goes beyond HMAi for any value of i,
then this will point toward a negative shift in the process.

3 Performance Measurement Evaluation

The average run length (ARL) [12] is widely used to compare the performances of control charts. It is
average number of observations required to be monitored before an out-of-control process is detected for the
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first time. Performance is assessed by setting the value of ARL0 (the in-control process) and the obtaining
ARL1 (the out-of-control process). The ARL is defined as

ARL ¼
PN
i¼1

RLi

N
: (14)

Other criteria used for measuring the performance of the control charts in this study are the standard
deviation of the run length (SDRL) [13] and the median of the run length (MRL) [14,15] which are
respectively calculated as follows:

SDRL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

RLi � ARLð Þ2

N � 1

vuuut
(15)

and

MRL ¼ Median RLð Þ (16)

where RLi is the number of samples before the process is out-of-control for the first time, iis the number of
data simulations, and N is the number of experiment repetitions. In the current study, the following steps
were excuted:

1) Set the sample size (m) for each round of the experiment at 5,000.

2) Set the number of the experiment repetition (R) to 200,000.

3) Set ARL0=370 for the in-control process.

4 Simulation Study Results

The performance of the presented MA-CUSUM control chart was compared with the Shewhart,
CUSUM, MA, and CUSUM-MA control charts for in-control processes with observations following
normal (0,1), Laplace (0,1), exponential (1) and gamma (4,1) distributions. Furthermore, a comparison of
the performance in detecting a change of the control chart when the change was d 2 �4; 4½ �. The
evaluation criteria to evaluate the efficiencies of the control charts were ARL1, SDRL and MRL, with the
control chart with the lowest ARL1, SDRL and MRL being the most efficient.

Tab. 1 and Fig. 1 contain the simulation results for a process with observations following a normal
distribution. When l ¼ 0, r2 ¼ 1, the CUSUM control chart obtained K1 ¼ 0:3866 for
w ¼ 5; h ¼ 5; L ¼ 3 and ARL1, SDRL, and MRL values were lower than the others at parameter change
levels -0.05, -0.10, -0.25, -0.50, -2.00, -3.00, -4.00, 0.05, 0.10, 0.25, 0.50, 2.00, 3.00, and 4.00.
Meanwhile, the MA-CUSUM control chart obtained K4 ¼ 0:6298 and ARL1, SDRL, and MRL values
lower than the others at parameter change levels of -0.75, -1.00, -1.50, 0.75, 1.00, and 1.50.

Tab. 2 and Fig. 1 contain the simulation results for a process with observations following a Laplace
distribution when a ¼ 0, b ¼ 1. The proposed MA-CUSUM control chart obtained K4 ¼ 0:8418 and
lower ARL1, SDRL, and MRL values than the others at all parameter change levels except for -4.00 and
4.00, when the MA control chart performed better.

Tab. 3 and Fig. 1 contain the simulation results for a process with observations following an exponential
distribution. When � ¼ 1, the MA-CUSUM control chart obtained K4 ¼ 0:7622 and lower ARL1, SDRL,
and MRL values than the others at all change levels except for 2.00, 3.00, and 4.00, when the CUSUM
control chart was better.
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Tab. 4 and Fig. 1 contain the simulation results for a process with observations following a gamma
distribution. When a ¼ 4, b ¼ 1, the MA-CUSUM control chart obtained K4 ¼ 0:8663 and lower ARL1,
SDRL, and MRL values than the others at all parameter change levels except for 3.00 and 4.00, when the
CUSUM control was better.

5 Performance Evaluation of the Control Charts with Real Data

For this evaluation, we considered two real datasets of River Nile flow data from 1871–1930 and mine
explosions in the UK from 1875-1951 [16].

5.1 The River Nile Flow Data from 1871–1930

This data follows a normal distribution when the process is in control with a mean of 1,100 m3/s and a
standard deviation of 125 m3/s. In 1900, the process had changed, with the mean decreasing to 850 m3/s.

Table 1: Performance comparison of the charts with w ¼ 5; h ¼ 5; L ¼ 3 for normal distribution

Shift Shewhart CUSUM MA CUSUM-MA MA-CUSUM

K=3.0000 K1=0.3866 K2=3.0000 K3=0.9039 K4=0.6298

ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL

–4.00 1.19 0.00 1.00 0.06 0.00 0.00 1.00 0.00 1.00 1.01 0.00 1.00 1.00 0.00 1.00

–3.00 2.00 0.00 1.00 0.49 0.00 0.00 1.10 0.00 1.00 1.20 0.00 1.00 1.13 0.00 1.00

–2.00 6.28 0.01 4.00 1.76 0.00 2.00 2.00 0.00 2.00 2.27 0.00 2.00 1.78 0.00 2.00

–1.50 14.97 0.03 11.00 3.23 0.00 3.00 3.77 0.01 3.00 3.87 0.01 3.00 2.74 0.00 2.00

–1.00 43.93 0.10 31.00 6.77 0.01 6.00 10.15 0.02 7.00 8.79 0.02 7.00 5.66 0.01 4.00

–0.75 81.31 0.18 56.00 11.26 0.02 9.00 20.59 0.04 15.00 16.11 0.03 12.00 10.18 0.02 7.00

–0.50 155.53 0.35 108.00 23.16 0.04 18.00 51.43 0.11 36.00 36.04 0.08 26.00 23.52 0.06 16.00

–0.25 281.07 0.63 196.00 70.30 0.15 50.00 162.27 0.36 113.00 101.88 0.22 72.00 79.96 0.18 51.00

–0.10 352.43 0.79 246.00 178.28 0.39 125.00 311.01 0.69 216.00 214.05 0.47 149.00 188.10 0.44 126.00

–0.05 366.14 0.82 255.00 254.22 0.56 178.00 353.84 0.79 246.00 279.75 0.62 195.00 261.67 0.62 176.00

0.00 370.62 0.83 258.00 370.07 0.82 258.00 370.23 0.83 257.00 370.66 0.83 256.00 370.66 0.86 251.00

0.05 366.29 0.82 255.00 254.44 0.56 177.00 354.20 0.79 246.00 279.95 0.62 194.00 261.66 0.62 176.00

0.10 352.89 0.79 246.00 178.20 0.39 125.00 313.04 0.70 216.00 213.58 0.47 148.00 187.82 0.44 126.00

0.25 281.55 0.63 195.00 70.16 0.15 50.00 162.74 0.36 113.00 101.58 0.22 71.00 76.50 0.18 51.00

0.50 155.24 0.35 107.00 23.10 0.04 18.00 51.63 0.11 36.00 35.92 0.08 26.00 23.41 0.06 16.00

0.75 81.34 0.18 57.00 11.25 0.02 9.00 20.59 0.04 15.00 16.05 0.03 12.00 10.13 0.02 7.00

1.00 43.88 0.10 31.00 6.77 0.01 6.00 10.13 0.02 7.00 8.75 0.02 7.00 5.63 0.01 4.00

1.50 14.95 0.03 10.00 3.23 0.00 3.00 3.77 0.01 3.00 3.87 0.01 3.00 2.74 0.00 2.00

2.00 6.31 0.01 5.00 1.76 0.00 2.00 1.99 0.00 2.00 2.26 0.00 2.00 1.78 0.00 2.00

3.00 2.00 0.00 2.00 0.49 0.00 0.00 1.10 0.00 1.00 1.20 0.00 1.00 1.13 0.00 1.00

4.00 1.19 0.00 1.00 0.06 0.00 0.00 1.00 0.00 1.00 1.01 0.00 1.00 1.03 0.00) 1.00

Note: The bold is minimal of ARL1, SDRL and MRL
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These data were applied to the Shewhart, CUSUM, MA, CUSUM-MA, and MA-CUSUM control charts, see
Fig. 2. It can be concluded that the MA-CUSUM control chart was the quickest to detect a change in the
River Nile flow in 1872, followed by the CUSUM control chart in 1896, the MA control chart in
1901 and the Shewhart control chart in 1902. The CUSUM-MA was unable to detect any change in the
River Nile flow data.

5.2 The Mine Explosion Data in the UK from 1875-1951

For the in-control process, the mean was 129 days/time. At the 51st obsevation, the process changed with
a mean of 339 days/time. Again, we applied this data to all five control charts, see Fig. 3. This time, the MA-
CUSUM control chart was the quickest to detect change in the mine explosion data at the 4th observation,
followed by the CUSUM control chart at the 49th and the Shewhart and MA control charts at the 54th.
Once again, the CUSUM-MA control chart not detect a change in the process mean.

6 Conclusions and Discussions

We proposed the mixed MA-CUSUM control chart, which is a combination of the MA and CUSUM
control charts to detect shifts in the mean of processes that follow an asymmetrical distribution
(exponential (1) and gamma (4,1)) and a symmetrical distribution (normal (0,1) and Laplace (0,1)) and
ARL0 = 370. The results are summarized in Tab. 5.

Figure 1: Average run length (ARL) curves of Shewhart, CUSUM, MA, CUSUM-MA, and MA-CUSUM
for (A) normal distribution; (B) Laplace distribution; (C) exponential distribution and (D) gamma
distribution
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For the process following a normal distribution, the MA-CUSUM control chart was the most efficient
for process changes of�1:50 	 d 	 �0:75and 0:75 	 d 	 1:50, while the CUSUM chart was better than
other for d 	 �2:0, �0:50 	 d 	 �0:05, 0:05 	 d 	 0:50, and d � 2:0. For the process following a
Laplace distribution, MA-CUSUM chart was the most efficient at all process change levels except for
d 	 �2:0andd � 2:0, when the MA control chart was better than the others. For the process following an
exponential distribution, the MA-CUSUM control chart was more than efficient than others for
0:05 	 d 	 0:50and0:75 	 d 	 1:50, while the CUSUM control chart was the better for d � 2:0. For the
process following a gamma distribution, the MA-CUSUM control chart was more efficient than the
others for 0:05 	 d 	 0:50and 0:75 	 d 	 1:50, while the CUSUM control chart was the best for d � 2:0.

For the River Nile flow dataset, the MA-CUSUM control chart was the quickest at detecting a change in
the process mean in 1872, while for the mine explosion dataset, the MA-CUSUM control chart was the
quickest. Indeed, the proposed MA-CUSUM control chart was more efficient than the MME-TCC in
Taboran et al. [17] with the same dataset.

Table 2: Performance comparison of the charts with w ¼ 5; h ¼ 5; L ¼ 3 for Laplace distribution

Shift Shewhart CUSUM MA CUSUM-MA MA-CUSUM

K=2.9592 K1=1.0887 K2=2.1989 K3=1.2429 K4=0.8418

ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL

–4.00 13.64 0.03 10.00 1.31 0.00 1.00 1.20 0.00 1.00 1.66 0.00 2.00 1.32 0.00 1.00

–3.00 37.09 0.08 26.00 2.29 0.00 2.00 1.98 0.00 2.00 2.66 0.00 2.00 1.97 0.00 2.00

–2.00 99.26 0.22 69.00 5.18 0.01 5.00 5.35 0.01 4.00 5.47 0.01 5.00 3.39 0.00 3.00

–1.50 157.95 0.35 110.00 10.09 0.02 8.00 12.52 0.03 9.00 10.30 0.02 8.00 5.59 0.01 4.00

–1.00 240.60 0.53 167.00 29.51 0.06 22.00 38.69 0.08 27.00 28.19 0.06 21.00 13.27 0.03 10.00

–0.75 287.13 0.64 200.00 58.39 0.12 41.00 74.15 0.16 52.00 52.23 0.11 37.00 25.50 0.06 18.00

–0.50 329.12 0.73 229.00 115.97 0.25 81.00 147.29 0.33 103.00 99.53 0.22 70.00 56.35 0.13 38.00

–0.25 358.92 0.80 250.00 216.05 0.48 151.00 275.57 0.62 192.00 192.06 0.42 134.00 139.31 0.32 95.00

–0.10 368.69 0.82 256.00 302.13 0.67 211.00 350.64 0.79 243.00 284.69 0.63 199.00 249.07 0.58 170.00

–0.05 369.84 0.82 257.00 335.41 0.75 234.00 364.62 0.82 253.00 324.34 0.72 227.00 303.20 0.70 207.00

0.00 370.23 0.82 257.00 369.89 0.83 257.00 370.15 0.83 256.00 370.58 0.82 256.00 370.13 0.85 253.00

0.05 370.48 0.82 257.00 334.37 0.75 232.00 365.16 0.82 252.00 324.97 0.72 225..00 303.24 0.70 207.00

0.10 368.87 0.82 256.00 301.23 0.67 208.00 351.14 0.79 243.00 284.39 0.63 198.00 249.02 0.58 170.00

0.25 360.32 0.80 250.00 216.00 0.48 150.00 276.62 0.62 191.00 191.58 0.42 133.00 139.51 0.32 94.00

0.50 329.99 0.74 228.00 115.74 0.25 81.00 147.33 0.33 103.00 99.29 0.22 70.00 56.25 0.13 38.00

0.75 287.08 0.64 199.00 58.44 0.13 41.00 74.32 0.16 52.00 51.89 0.11 37.00 25.36 0.06 18.00

1.00 240.86 0.54 167.00 29.39 0.06 22.00 38.57 0.08 27.00 28.10 0.06 20.00 13.35 0.03 10.00

1.50 158.22 0.35 110.00 10.08 0.02 8.00 12.55 0.03 9.00 10.28 0.02 8.00 5.58 0.01 4.00

2.00 98.92 0.22 69.00 5.17 0.01 5.00 5.34 0.01 4.00 5.46 0.01 5.00 3.38 0.00 3.00

3.00 37.01 0.08 26.00 2.28 0.00 2.00 1.97 0.00 2.00 2.66 0.00 2.00 1.97 0.00 2.00

4.00 13.59 0.03 10.00 1.30 0.00 1.00 1.20 0.00 1.00 1.66 0.00 2.00 1.32 0.00 1.00

Note: The bold is minimal of ARL1, SDRL and MRL
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In further research studies, we plan to extend the efficiency comparision of the control chart, with
alternative methods for determining the ARL and application examples with real data following different
distributions.

Table 3: Performance comparison of the charts with w ¼ 5; h ¼ 5; L ¼ 3 for exponential distribution

Shift Shewhart CUSUM MA CUSUM-MA MA-CUSUM

K=4.9157 K1=0.8005 K2=3.3394 K3=1.1134 K4=0.7622

ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL

0.00 370.02 0.82 257.00 370.10 0.83 256.00 370.00 0.82 257.00 370.07 0.83 256.00 370.11 0.86 253.00

0.05 279.30 0.62 194.00 259.63 0.58 180.00 252.28 0.57 174.00 259.04 0.58 180.00 246.82 0.57 168.00

0.10 216.46 0.48 150.00 188.06 0.42 131.00 180.08 0.40 125.00 188.56 0.42 131.00 173.17 0.41 118.00

0.25 113.46 0.25 79.00 84.97 0.19 59.00 79.42 0.18 55.00 86.64 0.19 60.00 73.50 0.17 49.00

0.50 51.79 0.11 36.00 33.43 0.07 23.00 31.56 0.07 22.00 35.50 0.08 25.00 28.22 0.07 19.00

0.75 29.30 0.06 21.00 17.69 0.04 12.00 17.04 0.04 12.00 19.60 0.04 14.00 15.33 0.04 10.00

1.00 19.31 0.04 14.00 11.14 0.03 8.00 10.99 0.02 8.00 12.90 0.03 9.00 10.05 0.02 7.00

1.50 10.70 0.02 8.00 5.84 0.01 4.00 6.10 0.01 4.00 7.32 0.01 6.00 5.83 0.01 4.00

2.00 7.19 0.01 5.00 3.72 0.01 2.00 4.15 0.01 3.00 5.04 0.01 4.00 4.13 0.01 3.00

3.00 4.38 0.01 3.00 1.97 0.01 1.00 2.58 0.01 1.00 3.16 0.01 2.00 2.73 0.01 2.00

4.00 3.26 0.01 2.00 1.25 0.00 0.00 1.97 0.00 1.00 2.36 0.00 1.00 2.13 0.00 1.00

Note: The bold is minimal of ARL1, SDRL and MRL

Table 4: Performance comparison of the charts with w ¼ 5; h ¼ 5; L ¼ 3 for gamma distribution

Shift Shewhart CUSUM MA CUSUM-MA MA-CUSUM

K=1.9469 K1=3.1087 K2=1.5109 K3=0.8324 K4=0.8663

ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL ARL SDRL MRL

0.00 370.12 0.83 257.00 370.11 0.83 257.00 370.21 0.83 256.00 370.09 0.82 258.00 370.13 0.85 253.00

0.05 325.40 0.73 225.00 318.57 0.71 221.00 284.76 0.64 197.00 267.97 0.59 187.00 261.69 0.60 179.00

0.10 286.60 0.64 199.00 274.22 0.61 191.00 219.93 0.49 152.00 193.82 0.42 136.00 185.94 0.43 127.00

0.25 199.12 0.44 138.00 177.35 0.40 123.00 108.69 0.24 76.00 83.91 0.17 60.00 76.24 0.17 52.00

0.50 113.33 0.25 79.00 88.35 0.20 61.00 41.37 0.09 29.00 30.04 0.05 23.00 25.30 0.05 18.00

0.75 68.25 0.15 47.00 46.41 0.10 32.00 19.46 0.04 14.00 15.79 0.02 13.00 12.37 0.02 10.00

1.00 42.92 0.09 30.00 25.71 0.06 18.00 10.72 0.02 8.00 10.43 0.01 9.00 7.75 0.01 6.00

1.50 19.41 0.04 14.00 9.55 0.02 7.00 4.51 0.01 3.00 6.29 0.01 6.00 4.36 0.01 4.00

2.00 10.07 0.02 7.00 4.49 0.01 3.00 2.52 0.00 2.00 4.57 0.00 5.00 3.07 0.00 3.00

3.00 3.82 0.01 3.00 1.60 0.00 1.00 1.32 0.00 1.00 2.85 0.00 3.00 1.98 0.00 2.00

4.00 2.06 0.00 2.00 0.74 0.00 1.00 1.05 0.00 1.00 1.95 0.00 2.00 1.47 0.00 1.00

Note: The bold is minimal of ARL1, SDRL and MRL
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Figure 2: Comparison of detect the change of the Nile river flow between Shewhart, CUSUM, MA,
CUSUM-MA and MA-CUSUM control charts, (A) Shewhart chart; (B) CUSUM chart; (C) MA chart;
(D) CUSUM-MA chart and (E) MA-CUSUM chart

644 IASC, 2022, vol.31, no.1



Figure 3: Comparison to detect a change in the mine explosion in the UK from 1875-1951 between
Shewhart, CUSUM, MA, CUSUM-MA, and MA-CUSUM control charts, (A) Shewhart chart; (B)
CUSUM chart; (C) MA chart; (D) CUSUM-MA chart and (E) MA-CUSUM chart
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