
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceJournal on Artificial Intelligence
DOI: 10.32604/jai.2022.029141

Article

Tibetan Sorting Method Based on Hash Function

AnJian-CaiRang1,2 and Dawei Song3,4,*

1College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
2The Computer College, Qinghai Minzu University, Qinghai, 810007, China

3School of Computer Science, Beijing Institute of Technology, Beijing, 10008, China
4School of Computing and Communications, The Open University, Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom
*Corresponding Author: Dawei Song. Email: dwsong@bit.edu.cn

Received: 26 February 2022; Accepted: 21 April 2022

Abstract: Sorting the Tibetan language quickly and accurately requires first
identifying the component elements that make up Tibetan syllables and then
sorting by the priority of the component. Based on the study of Tibetan text
structure, grammatical rules and syllable structure, we present a structure-
based Tibetan syllable recognition method that uses syllable structure instead
of grammar. This method avoids complicated Tibetan grammar and recog-
nizes the components of Tibetan syllables simply and quickly. On the basis
of identifying the components of Tibetan syllables, a Tibetan syllable sorting
algorithm that conforms to the language sorting rules is proposed. The core of
the Tibetan syllable sorting algorithm is a hash function. Research has found
that the sorting of all legal Tibetan syllables requires eight components of
information. The hash function is based on this discovery and can be assigned
corresponding weights according to different sorting verify the effectiveness
of the Tibetan sorting algorithm, we established an experimental corpus using
the Tibetan sorting standard document recognized by the majority of Tibetan
users, namely the New Tibetan Orthographic Dictionary. Experiments show
that this method produces results completely consistent with standard refer-
ence works, with an accuracy of 100%, and with minimal computational time.

Keywords: Hash function; Tibetan; component element; priority

1 Introduction

Research into sorting the Chinese and English languages is both mature and widely used, but
similar research for the Tibetan language is still immature. Tibetan sorting differs from sorting Chinese
and English. English and Chinese sorting algorithms are not usable with Tibetan, as the order of
Tibetan does not depend upon the order of consonants and vowels in Tibetan syllables. It is necessary
to combine Tibetan syllabification, grammatical rules, and component priority in conjunction with
the root characters to sort the words properly.

http://dx.doi.org/10.32604/jai.2022.029141
mailto:dwsong@bit.edu.cn

86 JAI, 2022, vol.4, no.2

Tibetan information processing scholars have previously explored the ordering of Tibetan lan-
guages. The first attempt at automated sorting proposed an implementation for Tibetan syllable
ordering but did not provide test data [1]. Other methods analyze the characteristics of Tibetan
characters, structure, traditional character sequence, length, and layer height of Tibetan syllables
and construct a mathematical model of Tibetan ordering that assigns a numerical value for each
type of Tibetan components and sorts words by numerical value [2–5]. This method has difficulty
assigning values to Tibetan components, the sorting work is closely integrated with the grammar
of Tibetan syllables and is complicated, and no test data are provided. Another method finds the
sorting code of each character from the Default Unicode Collation Element Table (DUCET) [6–8],
generates the sorting code string of Tibetan syllables, and finally performs the sorting of Tibetan
syllables by comparing the sorting code strings. However, this method does not consider the differences
between Tibetan alphabetic characters and main characters. For example, the sort code of the Tibetan
alphabetic character ‘ ’ is smaller than the sort code of the main character ‘ ’. The sorted result is ‘ ’
in the front and ‘ ’ in the back by this method, a result that is completely inconsistent with traditional
expected sorting results. No test data are available for the method provided in the article. A method
for sorting Tibetan according to the Tibetan national coding standard has also been proposed [9], but
the results differ greatly from traditional sorting results. As with the others, no test data are available.
Another technique normalizes the number of Tibetan components to seven, using spaces to fill in
missing Tibetan syllable components, and then compares the normalized syllables to perform sorting
[10]. However, the sorting rules of this method differ from standard sorting conventions, and the
method does not address special situations such as double-subscript characters or suffixes in Tibetan
syllables. The test experiment for this method only demonstrated its work with four Tibetan syllables,
which is not representative. Another approach converts Tibetan syllables into one-dimensional letter
strings, recognizing base characters and adjusting the order of letters (components) that constitute
Tibetan syllables: root character, superscript character, prefix character, subscript character, vowel
character, suffix character, and additional suffix character, with spaces added for missing components
[11]. The method then uses the quick sort method to sort the resulting strings, but the sorting results
remain inconsistent with general Tibetan sorting rules. Moreover, the included test experiment only
gives examples for illustration without any specific actual data.

In summary, the existing sorting methods of Tibetan syllables must all adjust the order of
components in Tibetan syllables. However, other syllable components in Tibetan syllables, except
the root component, can be omitted, which causes the structure of Tibetan syllables to be complex
and the length to be un-fixed; in addition, the complexity of the Tibetan syllable sorting rules is
increased. Thus, it is difficult and unsatisfactory to perform Tibetan sorting by only adjusting the
composition order of Tibetan syllables. Tibetan syllables are composed of seven components, and
different components have different sorting functions. According to this feature, a hash function of
Tibetan syllables is constructed and the corresponding hash value is generated to solve the problem of
sorting Tibetan syllables.

To successfully sort Tibetan words, we must first correctly identify the component elements that
make up a Tibetan syllable. One method for doing this includes a modern Tibetan component element
recognition algorithm based on a study of Tibetan character structure, writing rules, and grammatical
rules [12]. A second method uses Tibetan syllables’ glyph, collocation rules, and syllable length
characteristics, combined with Tibetan grammar rules to design a root character recognition algorithm
to help determine the position of other characters in the syllable [13]. Other works comprehensively
consider many features such as syllable length and script collocation rules when identifying the

JAI, 2022, vol.4, no.2 87

component elements of Tibetan syllables [6,5,10]. However, the rules for Tibetan script are complicated
and strict. The resulting algorithms are complex and difficult to use.

Based on the shortcomings and limitations of existing Tibetan component element recognition
algorithms, we present a structure-based recognition design that does not rely on Tibetan grammar.

2 Structure-based Recognition Algorithm for Tibetan Syllable Components

The Tibetan language consists of horizontally linear and vertically superimposed alphabetic
characters, spelled out using 30 consonants and 4 vowels [14,15]. Any collection of scripts or syllables
can then be spelled with seven components, as shown in Fig. 1. Each component includes its own
elements and must satisfy strict constraints [15,16], e.g., the prefix must be one of the four Tibetan
letters ‘ ’,’ ’, ‘ ’, ‘ ’, ‘ ’, and the Superscript must be one of ‘ ’, ‘ ’, ‘ ’. However, as the prefix is
‘ ’, there can be no superscript, but as the prefix is ‘ ’, there can be a superscript, and so on. Our
previous research has suggested that Tibetan grammatical rules are mainly used for the proper writing
of Tibetan syllables. Once a syllable is generated, the positions of its components are fixed and no
longer depend on grammar.

Figure 1: Tibetan syllable composition

2.1 Converting Tibetan Syllables into Syllable Structures (CTSISS)
Syllables in the National Standard Tibetan Basic Set [14] are divided into two types: alphabetic

and main characters. The number of Tibetan scripts and syllables is relatively large and the recognition
of components is correspondingly complicated. To simplify this complexity, we converted Tibetan
syllables into syllable structures using an algorithm that can be described as follows. Strings in Tibetan
syllables were scanned in order and alphabetic characters were replaced with “T” The characters “ ,
, , ” were replaced by “D”, other main characters were substituted with “M”, and vowels were

replaced by “Y”. For example, supposing that the Tibetan syllable T is represented by t0, . . . , tm, where
m = length (syllable) –1 and 0 ≤ i ≤ m, gives

y = s (T)

= s (t0 . . . tm)

= s0 . . . sm

, (1)

si =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T , ti ∈ {
, , . . . ,

}
M, ti ∈ { , , . . . , } − { , , , }
D, ti ∈ { , , , }
Y , ti ∈ { , , , }

.

88 JAI, 2022, vol.4, no.2

This CTSISS algorithm was applied to 17,525 Tibetan syllables to produce 60 different syllable
structures, as shown in Tab. 1.

Table 1: Tibetan syllable structure and component element position values

No. Structure Component element positions Example

1 T p6 = 0, p5 = −1, p4 = −1, p3 = −1, p2 = −1, p1 = −1, p0 = −1
2 TD p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = −1, p1 = −1, p0 = −1
3 TDT p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = −1, p1 = 2, p0 = −1
4 TDTT p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = −1, p1 = 2, p0 = 3
5 TDY p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = 2, p1 = −1, p0 = −1
6 TDYT p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = 2, p1 = 3, p0 = −1
7 TDYTT p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = 2, p1 = 3, p0 = 4
8 TM p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = −1, p1 = −1, p0 = −1
9 TMD p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = −1, p1 = −1, p0 = −1
10 TMDT p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = −1, p1 = 3, p0 = −1
11 TMDTT p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = −1, p1 = 3, p0 = 4
12 TMDY p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = 3, p1 = −1, p0 = −1
13 TMDYT p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = 3, p1 = 4, p0 = −1
14 TMDYTT p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = 3, p1 = 4, p0 = 5
15 TMT p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = −1, p1 = 2, p0 = −1
16 TMTT p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = −1, p1 = 2, p0 = 3
17 TMY p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = 2, p1 = −1, p0 = −1
18 TMYT p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = 2, p1 = 3, p0 = −1
19 TMYTT p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = 2, p1 = 3, p0 = 4
20 TT p6 = 0, p5 = −1, p4 = −1, p3 = −1, p2 = −1, p1 = 1, p0 = −1
21 TTD p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = −1, p1 = −1, p0 = −1
22 TTDT p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = −1, p1 = 3, p0 = −1
23 TTDTT p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = −1, p1 = 3, p0 = 4
24 TTDY p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = 3, p1 = −1, p0 = −1
25 TTDYT p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = 3, p1 = 4, p0 = −1
26 TTDYTT p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = 3, p1 = 4, p0 = 5
27 TTM p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = −1, p1 = −1, p0 = −1
28 TTMD p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = −1, p1 = −1, p0 = −1
29 TTMDT p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = −1, p1 = 4, p0 = −1
30 TTMDTT p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = −1, p1 = 4, p0 = 5
31 TTMDY p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = 4, p1 = −1, p0 = −1
32 TTMDYT p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = 4, p1 = 5, p0 = −1
33 TTMDYTT p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = 4, p1 = 5, p0 = 6
34 TTMT p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = −1, p1 = 3, p0 = −1
35 TTMTT p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = −1, p1 = 3, p0 = 4
36 TTMY p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = 3, p1 = −1, p0 = −1

(Continued)

JAI, 2022, vol.4, no.2 89

Table 1: Continued

No. Structure Component element positions Example

37 TTMYT p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = 3, p1 = 4, p0 = −1
38 TTMYTT p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = 3, p1 = 4, p0 = 5
39 TTT p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = −1, p1 = 2, p0 = −1
40 TTTT p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = −1, p1 = 2, p0 = 3
41 TTY p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = 2, p1 = −1, p0 = −1
42 TTYT p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = 2, p1 = 3, p0 = −1
43 TTYTT p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = 2, p1 = 3, p0 = 4
44 TY p6 = 0, p5 = −1, p4 = −1, p3 = −1, p2 = 1, p1 = −1, p0 = −1
45 TYT p6 = 0, p5 = −1, p4 = −1, p3 = −1, p2 = 1, p1 = 2, p0 = −1
46 TYTT p6 = 0, p5 = −1, p4 = −1, p3 = −1, p2 = 1, p1 = 2, p0 = 3
47 TYTY p6 = 0, p5 = −1, p4 = −1, p3 = −1, p2 = 1, p1 = 2, p0 = 3
48 TTYTY p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = 2, p1 = 4, p0 = 5
49 TTTY p6 = 1, p5 = 0, p4 = −1, p3 = −1, p2 = −1, p1 = 2, p0 = 3
50 TDTY p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = −1, p1 = 2, p0 = 3
51 TDYTY p6 = 0, p5 = −1, p4 = −1, p3 = 1, p2 = 2, p1 = 3, p0 = 4
52 TMTY p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = −1, p1 = 2, p0 = 3
53 TMDTY p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = −1, p1 = 3, p0 = 4
54 TMDYTY p6 = 1, p5 = −1, p4 = 0, p3 = 2, p2 = 3, p1 = 4, p0 = 5
55 TMYTY p6 = 1, p5 = −1, p4 = 0, p3 = −1, p2 = 2, p1 = 3, p0 = 4
56 TTDTY p6 = 1, p5 = 0, p4 = −1, p3 = 2, p2 = −1, p1 = 3, p0 = 4
57 TTMYTY p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = 3, p1 = 4, p0 = 5
58 TTMTY p6 = 2, p5 = 0, p4 = 1, p3 = −1, p2 = −1, p1 = 3, p0 = 4
59 TTMDTY p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = −1, p1 = 4, p0 = 5
60 TTMDYTY p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = 4, p1 = 5, p0 = 6
Note: p6, p5, p4, p3, p2, p1, and p0 represent the root, prefix, superscript, subscript, vowels, suffix, and farther-suffix, respectively, of Tibetan
syllables. A position of −1 indicates there is no such component. In the following text, ‘ε’ is used to represent non-existent components. In
this way, all Tibetan syllables can be represented as strings with a length of seven characters. When expressing components similar to the

syllable ‘ ’, we must consider the two characters as a suffix and a farther-suffix.

Theorem 1: After a Tibetan syllable is generated, the positions of its components are fixed, do not
depend on syllable grammar, and do not include TTY or TTT structures.

Proof: The exhaustive method.

There are 17,525 Tibetan syllables [15]. Analyzing the structure of each suggested that there are
only 60 structural types, with fixed component positions that are equivalent for syllables with the
same structure. However, components such as , , , , , , , , , , and are
ambiguous and cannot be used to determine component position. In addition, TTY types, such as

and , have the same structure, but the position of its components cannot be uniquely determined
by the structure. TTT types, such as and , have the same structure, but the position of each

90 JAI, 2022, vol.4, no.2

component is different and must be addressed separately. A sample syllable component for is
shown in Fig. 2.

Figure 2: Special syllables

2.2 Technique for Addressing Positional Ambiguity of TTY and TTT Tibetan Syllable Structural
Components (TAPATTTSSC)

Given the Tibetan syllable tibetword, with a length of three characters, the following can be
inferred for tibetword [0], tibetword [1], and tibetword [2].

(1) TTY structure. Thus, if one of the elements in the last two-character combination sets is given
by then t6 = tibetword [0], t5 = ‘ε’, t4 = ‘ε’, t3 = ‘ε’, t2 = ‘ε’, t1 = tibetword [1], and
t0 = tibetword [2]. Otherwise, t6 = tibetword [2], t5 = tibetword [0], t4 = tibetword [1], t3 = ‘ε’, t2 =
‘ε’, t1 = ‘ε’, and t0 = ‘ε’.

(2) TTT structure

Step 1: If the TTT syllable is , , , , , , , , , or , processing proceeds
as prefix, root, and superscript; namely, T6 = tibetword [1], t5 = tibetword [0], t4 = ‘ε’, t3 = ‘ε’, t2 =
‘ε’, t1 = tibetword [2], and t0 = ‘ε’. Otherwise, proceed to step 2.

Step 2: If tibetword [0] is one of the elements found in the prefix set f = {‘ ’,‘ ’,‘ ’,‘ ’,‘ ’}, and
the first and second characters (tibetword [0] and tibetword [1]) are not in the same group of letters,
the three Tibetan characters consist of a prefix, root, and suffix. Specifically, t6 = tibetword [1], t5 =
tibetword [0], t4 = ‘ε’, t3 = ‘ε’, t2 = ‘ε’, t1 = tibetword [2], and t0 = ‘ε’. Otherwise, the three characters
form a root, suffix, and suffix; namely, t6 = tibetword [0], t5 = ‘ε’, t4 = ‘ε’, t3 = ‘ε’, t2 = ‘ε’, t1 =
tibetword [1], and t0 = tibetword [2].

2.3 Structure-based Recognition Algorithm for Tibetan Syllable Components (SBRATSC)
The proposed structural component recognition algorithm can be implemented using the follow-

ing steps.

Step 1: Convert syllables into their corresponding structures using the CTSISS algorithm.

Step 2: If the Tibetan syllable structure is not TTY or TTT, reference Tab. 1 to acquire position
information p = (p6, p5, p4, p3, p2, p1, p0) for all components. The value of p can then be used to
obtain corresponding characters t = (t6, t5, t4, t3, t2, t1, t0) for each component of the syllable string.
Otherwise, proceed to Step 3.

Step 3: Process the TTY and TTT syllable structures using TAPATTTSSC. A flowchart for the
SBRATSC algorithm is provided in Fig. 3.

As an example, the process of applying the CTSISS algorithm to convert into its corre-
sponding syllable structure can be described as follows.

JAI, 2022, vol.4, no.2 91

Step 1: Convert to T, to T, to M, to D, and and to T. The final structure of is then
given by TTMDTT.

Step 2: TTMDTT is not a TTY-or TTT-type structure. As such, Tab. 1 can be used to acquire the
component position information: p6 = 2, p5 = 0, p4 = 1, p3 = 3, p2 = −1, p1 = 4, and p0 = 5. The
components of are given by t6 = , t5 = , t4 = , t3 = , t2 = ε, t1 = , and t0 = .

Figure 3: A Flowchart of structural Tibetan syllable component recognition algorithm

3 Hash Function of Tibetan Syllables
3.1 Position Weights of Tibetan Syllable Components

Tibetan characters are formed by combining four vowels and 30 consonants in accordance with
grammatical rules [15]. Tibetan scripts are composed of seven letters in order: prefix, superscript
characters, root characters, subscript characters, vowels, suffix characters, and additional suffix.
The same Tibetan letter has different significance based on its position, just like a numerical value.
Additionally, only the root character is absolutely required; the others may be present or not.

According to the sorting rule (SR) of Tibetan characters in the book New Tibetan Orthographic
Dictionary [17], sorting takes place according to (in order): root character, superscript character
1, prefix character, superscript character 2, subscript character, vowel character, suffix character,
and additional suffix character. Ordering Tibetan syllables requires eight comparisons, with the
superimposed characters participating in two comparisons. In order to distinguish the superscript
character participating in the second comparison, we denote the superscript character of the first
comparison as superscript character 1 and the superscript character of the second comparison as

92 JAI, 2022, vol.4, no.2

superscript character 2. The two comparisons have different functions. Superscript character 1 divides
the syllables that need to be sorted into a syllable group with top characters and a group without top
characters. Superscript character 2 sorts the syllables according to their size.

The steps in our Tibetan sorting method are as follows. (Tibetan syllables with the same base
character are put into a set).

1) First, sort the Tibetan syllables according to the size of the root character. At the same time,
Tibetan syllables with the same root character are put into a set Si (1 ≤ i ≤ 30). In this way,
the Tibetan syllables that need to be sorted are divided into a maximum of 30 sets according
to the order of the root characters.
2) For each set Si, use the presence or absence of the superscript character to divide Si into
two sets. Syllables without the superscript character are placed in set Si0, and syllables with the
superscript character are placed in set Si1.
3) Finally, sort the elements of the sets Sij (where j is 0 or 1) in order of prefix character,
superscript character, subscript character, vowel character, suffix character, and additional
suffix character.

Eight comparisons are required to accomplish the sorting in step 3, with weights assigned for each
comparison according to the position of the component. The position weight distribution is shown in
Tab. 2 and Fig. 4.

Table 2: Position weight of Tibetan syllable components

Position Component Weight

7 root 37(7)

6 superscript 1 37(6)

5 prefix 37(5)

4 superscript 2 37(4)

3 subscript 37(3)

2 vowel 37(2)

1 suffix 37(1)

0 additional suffix 37(0)

Figure 4: The distribution of position weights of Tibetan script components

JAI, 2022, vol.4, no.2 93

3.2 Conversion between Tibetan Alphabetic Characters and Tibetan Main Characters
In the National Standard Tibetan Basic Set [14], the traditional Tibetan syllable alphabet is divided

into t Tibetan alphabetic characters and Tibetan main characters, with the syllables sorted according
to the alphabetic representations. Therefore, when sorting Tibetan syllables, it is necessary to convert
Tibetan main characters into Tibetan alphabetic characters. The Tibetan code shows that the gap
between alphabetic and main characters is 80. The conversion algorithm between the two types of
characters is as follows.

First, we denote the Tibetan main character as c′, c′ ∈ { , , . . . , }. The function f(c′) of the
alphabetic character y is

c = f
(

c

‘)
=

⎧⎨
⎩h−1

(
g

(
h

(
c

‘)))
, c

‘

∈ { , , . . . , } ,

c

‘

, c

‘

/∈ { , , . . . , }
(2)

g = g (m)

= m − 80 (3)

The function h(c) finds the code point of the character c. The function g() converts the code
point h(c) to the code point of the Tibetan alphabetic character. h−1() is the inverse of h(c), converting

the code point back to the original character. In addition, c

‘

∈ {
, , . . . ,

}
, and c = f

(
c

‘)
= c

‘

.

The encoding of Tibetan characters is relatively large, and it is inconvenient to compare two
Tibetan syllables directly. To solve this problem, we convert the encoding of Tibetan characters into
relatively small eigenvalues. The eigenvalues of Tibetan characters are calculated as follows:

v (c) =

⎧⎪⎨
⎪⎩

h (c) − 3902, c ∈ {
, , . . . ,

}
0, c = ε

1, c =
, (4)

where c is the Tibetan alphabetic character, and v(c) denotes the eigenvalues of c.

The Tibetan characters and their corresponding feature values are shown in Tab. 3.

Table 3: Tibetan characters and corresponding feature values

No. Tibetan alphabet Feature value v No. Tibetan alphabet Feature value v

0 ε (Missing letters) 0 20 28
1 1 21 29
2 2 22 31
3 3 23 32
5 4 24 33
6 6 25 34
7 7 26 35
8 8 27 36
9 9 28 37
10 11 29 38
11 17 30 40
12 18 31 41

(Continued)

94 JAI, 2022, vol.4, no.2

Table 3: Continued
No. Tibetan alphabet Feature value v No. Tibetan alphabet Feature value v

13 19 32 42
14 21 33 52
15 22 34 54
16 23 35 60
17 24 36 62
18 26
19 27

3.3 Hash Function of Tibetan Syllables
For the Tibetan syllable Ti, we use the set {ti6, ti5, ti4, ti3, ti2, ti1, ti0} to represent the combination of

the root, prefix, superscript, subscript, vowel, suffix, and additional suffix characters. The set of values
{vi6, vi5, vi4, vi3, vi2, vi1vi0} are their corresponding feature values. We then define the hash function h of
the Tibetan syllable script Ti as

h (Ti) =
5∑

j=0

37j × vij + 377 × vi6 + 376 × (1 − α) , (5)

where α = 0 when vi4 �= 0, and α = 1 when vi4 = 0 (when there is a superscript character, α = 1; α =
0 otherwise); vij represents the feature value of the j-th component of the i-th Tibetan character, and
37j represents the position weight of the component.

Using this hash function provides all Tibetan syllables with a unique hash value having a maximum
value of 55,148,011,380 and a minimum value of 1,838,265,625. However, these hash values are too
large. By subtracting the minimum value of 1,838,265,625 from the function h(Ti) and taking its log,
Formula (5) becomes Formula (6):

h (Ti) = log

(
5∑

j=0

37j × vij + 377 × vi6 + 376 × (1 − α) − 1838265625

)
(6)

The modified h(Ti) is a logarithmic function with strong functional properties. Its inverse function
is straightforward, with the corresponding Tibetan syllables and components obtainable using the
inverse function on the hash value.

4 Sorting Method of Tibetan Syllables Based on Hash Function (SMTSBHF)

4a: Enter the Tibetan syllable string to be sorted: T0, T1, T2, . . . , Tn.

4b: Use the SBRATSC algorithm to identify the components of the Tibetan syllable Ti as
ti0, ti1, ti2, ti3, ti4, ti5, ti6.

4c: Use Formula (2) to calculate the Tibetan alphabet characters ti0, ti1, ti2, ti3, ti4, ti5, ti6:

JAI, 2022, vol.4, no.2 95

ti0 = f (ti0)

ti1 = f (ti1)

ti2 = f (ti2)

ti3 = f (ti3)

ti4 = f (ti4)

ti5 = f (ti5)

ti6 = f (ti6)

.

Use Formula (3) to obtain the feature values of the characters ti0, ti1, ti2, ti3, ti4, ti5, ti6:

vi0 = v (ti0)

vi1 = v (ti1)

vi2 = v (ti2)

vi3 = v (ti3)

vi4 = v (ti4)

vi5 = v (ti5)

vi6 = v (ti6)

.

Use Formula (4) to calculate the hash value h(T i) of Tibetan syllable T i:

hi = h (Ti)

= log
(∑5

j=0 37j × vij + 377 × vi6 + 376 × (1 − α) − 1838265625
)

Calculate the hash values of the other Tibetan syllables in turn.

The calculations in this third step can be expressed as a single expression:

hi = h (Ti)

= log
(∑5

j=0 37j × v
(
f

(
tij

)) + 377 × v (f (ti6)) + 376 × (1 − α) − 1838265625
)

4d: Sort the hash values h(T0), h(T1), h(T2), . . . , h(Tn) of the Tibetan syllables, and then, adjust
the corresponding Tibetan syllables to obtain the sort sequence of Tibetan syllables.

The pseudo-code of the sorting method of Tibetan syllables based on the hash function is as
follows:

The pseudo-code of the sorting method of Tibetan syllables based on the hash function
Input: Tibetan syllables T = {T0, T1, T2, . . . , Tn}, syllable components al = {‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’}, the
feature values ft = {0, 0, 0, 0, 0, 0, 0}, hash values hashes = {0, 0, 0,, 0, 0, 0}, indicating variable
α of the presence or absence of the superscript character, α = 0.
Output: Sorted T .
1: for i = 0 to 6 and each Ti in T do
2: sbratsc(T i)→al, use the SBRATSC algorithm to get al, al = {ti0, ti1, ti2, ti3, ti4, ti5, ti6}
3: for j = 0 to 6 do
4: f (al[j])→al[j], use Formula (2) to calculate the Tibetan alphabet characters
5: end for
6: for j = 0 to 6 do
7: v(al[j])→ ft[j], use Formula (3) to obtain the feature values of the characters
8: end for
9: if ft [4]! = 0 then
10: α = 0

(Continued)

96 JAI, 2022, vol.4, no.2

Algorithm Continued
11: else
12: α = 1
13: end if
14: h = 0.0
15: for j = 0 to 5 do
16: h + 37j ft[j] → h
17: end do
18: h + 377 ft[6] + 376 (1 − α) − 1838265625 → h
19: Append log(h) to set hashes
21: end for
22: hashes.sort(), sort the hash values in the set hashes
23: Adjust the corresponding elements in T according to the hashes ordering.
24: return T

5 Experiment and Analysis
5.1 Experiment

In order to verify our algorithm’s abilities, we collected an experimental corpus consisting of a total
of 4268 standardized modern Tibetan syllables taken from the New Tibetan Orthographic Dictionary
[17], which is an authoritative Tibetan dictionary published by Qinghai Ethnic Publishing House and
recognized by Tibetan scholars. We sorted the syllables according to the sorting rules of that dictionary.
We term this original set S1. We then shuffled this set, denoting the unsorted result as S2.

The experimental hardware environment included a processor with six cores and an Intel® Core™
i5-9400F CPU@ 2.90 GHz, with 16 GB of memory, an 11-GB GPU, running the Ubuntu20.10
operating system. All software was developed in Anaconda 3 using Python 3.9.

In the experiment, we compared our method (called method C) to method A [6] and method B
[13] when sorting S2. Method A finds the sorting code of each character from the Default Unicode
Collation Element Table (DUCET) [6–8], generates the sorting code string of Tibetan syllables, and
finally performs the sorting of Tibetan syllables by comparing the sorting code strings. Method B
establishes the Tibetan spelling rule function, defines the priority of Tibetan components, and uses the
Cartesian product mathematical model to achieve the sorting of Tibetan syllables. The experimental
results are shown in Tab. 4.

Table 4: Experimental results of ordering modern Tibetan syllables

Method Accuracy (%) Performance (syllables/s)

method A 51.1% 0.4597
method B 85% 0.1685
method C 100% 0.1256

5.2 Analysis
The experimental results show that our method efficiently and conveniently completed the sorting

process with an accuracy rate of 100% and using the least time per syllable. Method A was only 51.1%

JAI, 2022, vol.4, no.2 97

accurate, largely because its sorting rules are defective (Its sorting rules are: root character, prefix
character, superscript character, subscript character, vowel character, suffix character, and additional
suffix character. This sorting rule is not completely consistent with the rule in the New Tibetan
Dictionary.). Method A also did not consider the difference between the alphabetic and traditional
Tibetan characters, and its handling of the adhesive affix was not entirely correct. The accuracy
of method B was only 85%, also because of its flawed rules (Its sorting rules are: root character,
superscript character, prefix character, subscript character, vowel character, suffix character, and
additional suffix character. As with method A, this sorting rule differs from the sorting rule in the
New Tibetan Dictionary.). In addition, when the superscript character participated in the sorting for
the first time, S2 was sorted directly according to the superscript character size. However, the actual
sorting rules require that the superscript character participates in the sorting for the first time only
considering whether the superscript character exists; its size should not be used in sorting. In addition,
the ordering of Tibetan syllables with double-suffix characters was also insufficiently considered.

6 Concluding Remarks

Currently, Tibetan information processing technology lags behind Chinese information process-
ing technology, and Chinese and English sorting technology is not applicable to Tibetan. By studying
the grammar and character formation rules of Tibetan syllables, we propose a method of sorting
Tibetan syllables using a hash function. This method is useful in research and in practical applications
connected with Tibetan language analysis, text recognition, speech recognition, publishing, and
printing.

Acknowledgement: We thank Accdon (www.accdon.com) for its linguistic assistance during the
preparation of this manuscript.

Funding Statement: This work was supported by the National Natural Science Foundation of China
(No. 61862054) and Applied Basic Research Project of Qinghai Province (No. 2019-ZJ-7066).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Cereng-Zhaxi, “The sorting rules of Tibetan language and the realization of automatic sorting by com-

puter,” China Tibetology, vol. 12, no. 4, pp. 128–135, 1999.
[2] D. Jiang and C. J. Kang, “The sorting mathematical model and algorithm of written Tibetan language,”

Chinese Journal of Computer, vol. 27, no. 4, pp. 524–529, 2004.
[3] D. Jiang and J. W. Zhou., “On the sequence of Tibetan words and the method of making sequence,” Journal

of Chinese Information Processing, vol. 14, no. 1, pp. 56–64, 2000.
[4] D. Jiang, “The current status of sorting order of tibetan dictionaries and standardization,” in The 20th

Pacific Asia Conf. on Language, Information and Computation, Wuhan, China, 2006.
[5] Tshedpa, “Research on the automatic recognition and sorting of Tibetan word components on the unicode,”

Journal of Tibet University, vol. 29, no. 2, pp. 81–86, 2014.
[6] H. M. Huang and C. X. Zhao., “A ducet-based Tibetan sorting algorithm,” Journal of Chinese Information

Processing, vol. 22, no. 4, pp. 109–113, 2008, 2008.
[7] Z. X. Zhong and H. M. Huang, “The design and implementation of a Tibetan syllables sorting rule based

on VBA,” Journal of Qinghai Normal University (Natural Science), vol. 33, no. 3, pp. 46–49, 2011.

98 JAI, 2022, vol.4, no.2

[8] H. M. Huang and C. X. Zhao, “Introducing sort code to realize Tibetan characters’ sort,” Computer
Technology and Development, vol. 18, no. 10, pp. 68–74, 2008.

[9] Zhujie and Erzhu, “Research on Tibetan sorting method based on Tibetan code GB,” Journal of Tibet
University (Natural Science Edition), vol. 23, no. 2, pp. 33–35, 2008.

[10] W. L. Wang and S. C. Wang, “Implementation method and process of Tibetan basic characters positioning,”
China Tibetology, vol. 32, no. 4, pp. 215–221, 2019.

[11] P. Liu and H. M. Huang, “Algorithm design of local Tibetan syllable sorting,” Journal of Northwest Normal
University (Natural Science), vol. 48, no. 6, pp. 44–47, 2012.

[12] Wanme-Zhaxi and Nima-Zhaxi, “Research about Tibetan-sort based on ISO/IEC 10646(Tibetan),” Com-
puter Engineering and Applications, vol. 49, no. 8, pp. 146–150, 2013.

[13] Bianba-Wangdui, Zhuoga, Z. C. Dong and Q. Wu, “Study on the sorting algorithm of Tibetan dictionary,”
Journal of Chinese Information Processing, vol. 29, no. 1, pp. 191–196, 2015.

[14] of PRC, “National standard,” Information Technology, Tibetan Coded Character Sets for Information
Interchange, Basic Set (GB169592-1997). Beijing: Standards Press of China, 1998.

[15] Caidan-Xiarong, “Explanation of Tibetan related forms,” Detailed Explanation of Tibetan Grammar.
Qinghai, China: Qinghai Ethnic Publishing House, 1954.

[16] E. Roux and H. Hildt, “Algorithmic description of the decomposition and checking of a Classical Tibetan
syllable,” Himalayan Linguistics, vol. 17, no. 1, pp. 50–66, 2018.

[17] Dictionary writing group, New tibetan orthographic dictionary. Qinghai, China: Qinghai Ethnic Publishing
House, 1978.

	Tibetan Sorting Method Based on Hash Function
	1 Introduction
	2 Structure-based Recognition Algorithm for Tibetan Syllable Components
	3 Hash Function of Tibetan Syllables
	4 Sorting Method of Tibetan Syllables Based on Hash Function SMTSBHF
	5 Experiment and Analysis
	6 Concluding Remarks

