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Abstract: Application Programming Interface (API) call feature analysis is the
prominent method for dynamic android malware detection. Standard bench-
mark android malware API dataset includes features with high dimensionality.
Not all features of the data are relevant, filtering unwanted features improves
efficiency. This paper proposes fuzzy and meta-heuristic optimization hybrid
to eliminate insignificant features and improve the performance. In the first
phase fuzzy benchmarking is used to select the top best features, and in the
second phase meta-heuristic optimization algorithms viz., Moth Flame Opti-
mization (MFO), Multi-Verse Optimization (MVO) & Whale Optimization
(WO) are run with Machine Learning (ML) wrappers to select the best from
the rest. Five ML methods viz., Decision Tree (DT), Random Forest (RF),
K-Nearest Neighbors (KNN), Naïve Bayes (NB) & Nearest Centroid (NC) are
compared as wrappers. Several experiments are conducted and among them,
the best post reduction accuracy of 98.34% is recorded with 95% elimination of
features. The proposed novel method outperformed among the existing works
on the same dataset.

Keywords: Wrapper feature selection; multi-verse optimization; moth flame
optimization; whale optimization; malware detection; classification

1 Introduction

Android smartphones and tablets are quickly gaining popularity, and with that growth has come
an increase in security risks for those devices [1]. Today, risks to smart phones include the theft of user
testimonials, the activation of malicious services without the user’s knowledge, and service denial,
among others. As a result of Android applications being susceptible to reverse engineering, attackers
identify the Android-Operating System (OS) as a soft target. Malicious attackers regularly use this
issue to their advantage because they frequently try to include malicious elements into legitimate apps.
In contrast to other mobile OS, Android maintains openness and places little restrictions on users’
ability to download and upload apps. Unfortunately, users are not the best people to evaluate the
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intents of programs since they lack security awareness. Users struggle to make the best choice because
they are unaware of the risks related to permissions.

As a common method for malware detection using API calls, feature selection has received
considerable attention [2]. The Android app’s API call vector could include up to 100 features. But the
complexity of these enormous data makes handling them quite challenging. It could make learning
more difficult and slow down the learning process. Because some attributes in datasets are redundant
or useless, feature reduction approaches are therefore crucial for reducing the dimensionality of data.
These superfluous features ought to be eliminated without lowering the categorization accuracy. The
total number of all feature reduces (sets of some selected attributes) is 2n if the number of attributes
is n and the value of n is large enough. Heuristic algorithms can surely be taken into consideration
because exhaustive searching methodology in this context is an NP-hard problem. As a result, the
feature selection stage, in which a suitable feature subset is automatically chosen by evaluating possible
feature subsets, is one of the key design processes in a pattern classifier system.

In this context, a two-tier feature selection process associating fuzzy logic [3,4] with metaheuristic
optimization is explored. A hybrid model based on fuzzy optimization combined with meta-heuristic
optimization algorithms viz., MVO [5], MFO [6] & WO [7–9] are examined as wrappers for its
efficiency in detecting and classifying Android malware applications [10]. The main contributions on
this paper are:

• Identifying problematic APIs for consistent and accurate classification of Android applications
from malware and benign.

• The formulation and application of hybrid feature minimization techniques using fuzzy logic
and swarm optimization.

• Using a variety of ML classifiers, such as NB, KNN, NC, RF & DT, to evaluate the suggested
methodology.

• Depending on number of variables, the selection of optimal optimization algorithm for predict-
ing Android malware.

The remainder of the paper is structured as follows: The literature review is explained in Section 2,
the methodology of the proposed work is presented in Section 3, the experimental setup is described
in Section 4, the performance analysis and experimentation results are explained in Section 5, and the
conclusion and future work are provided in Section 6.

2 Literature Survey

Researchers worked extensively in recent years to develop methods for detecting malware on
Android devices. Parnika et al. [11] demonstrated a multi-tiered feature selection approach using
Information Gain. Using five different ML classifiers, they extracted the Optimal Static Feature Set
(OSFS) and Most Important Features (MIFs). Their experimented methodology achieved an accuracy
of 96.28% using Random Forest classifier. Qingguo et al. [12] proposed a classification model based
on neural networks to distinguish between malware and benign applications. Their experimented
methodology is compared with other competing machine learning classifier with various evaluation
metrics and resulted in an improved accuracy of 97.85%.

Meghna et al. [13] addressed the problem of detecting benign and malware applications using
imbalanced datasets. A Cost-Sensitive Forest (CSForest) consisting a set of DT with cost-sensitive vot-
ing system is explored. The evaluated technique show-cased 0.919% F-measure. Jyoti Kalita et al. [14]
elucidated a framework combining MFO with Knowledge-Based-Search (KBS), considered MFO
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as base optimization algorithm working beneath KBS. In conclusion, their proposed framework
outperformed when compared the integrations of KBS with other optimization algorithms.

Ibrahim et al. [15] proposal of an enhanced binary MOMVO variant addressed the local
optima stagnation issue of the multi-objective variant of multi-verse optimizer (MOMVO). Their
experimented binary MOMVO feature selection technique outperformed compared to other methods.
Julakha et al. [16] suggested a modified multi-verse optimizer, by proposing a selection mechanism
based on average position to address the problem of local optima and incorporated Sine Cosine
algorithm for improving the balancing mechanism of exploration and exploitation phase. The mean
and standard deviations of their proposed method showed improved results when compared with
different bench mark functions.

Pelusi et al. [17] introduced a fitness-based weight factor to update the position of moth between
exploration and exploitation phase. Their experimentation proved that the suggested mechanism
outperformed other competing optimization algorithms in terms of searching and convergence
performance. By changing the update method with the help of the mutation operator and linear
search, Zhao et al. [18] clarified a procedure using the Improved Moth-Flame Optimization (IMFO)
algorithm. In their inquiry, orthogonal opposition-based learning controls the flame formation
mechanism (OOBL). The outcomes demonstrated how the IMFO was proposed enhanced the global
search algorithm.

This paper focuses on coalescing fuzzy logic with swarm optimization for effective detection &
classification of android malware [19]. The most influential features to differentiate benign applica-
tions from malware are initially identified using fuzzy rule-based technique and then by wrapper-
based swarm optimization feature selection methods [20,21]. The proposed feature selection process
is evaluated using ML classifiers for its efficiency in detecting Android malware [22].

3 Methodology

The architecture of the proposed fuzzy based feature selection technique is highlighted in Fig. 1.
The whole data of API calls is split into train and test sets at a ratio of 7:3. The features are extracted
from the preprocessed dataset and fuzzy sets are generated for each feature [23]. The average of each
feature is calculated and compared with a threshold value to obtain the fuzzy optimized feature set. The
filtered features using fuzzification are then passed on to metaheuristic-based swarm optimized MVO,
MFO & WO algorithms [24]. The derived reduced feature set is then passed on to the machine learning
algorithms to evaluate the classification performance in distinguishing the malware and benign API
calls of Android applications.

3.1 Fuzzy Optimized Feature Selection
A class of objects with a range of membership degrees is referred to as a fuzzy set [25]. This type

of set defines a membership (characteristic) function that assigns each object a membership degree
ranging between [0, 1] [26].

Let the labeled dataset be represented as X = {x} , x is an element of X . The fuzzy set A defined
on X is a collection of ordered pairs, defined as shown in Eq. (1)

A = {x, μA (x; a, b, c, d)} , x ∈ X (1)
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Figure 1: Architecture of proposed android malware classification system

The projection of each element x into fuzzy space is carried out using a trapezoidal membership
function: μA (x; a, b, c, d), which is defined as shown in Eqs. (2) and (3)

μtrapezoidal (x; a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a

x − a
b − a

, a ≤ x ≤ b

1, b ≤ x ≤ c

d − x
d − c

, c ≤ x ≤ d

0, d ≤ x

(2)

= max
(

min
(

x − a
b − a

, 1 ,
d − x
d − c

)
, 0

)
(3)

Here, a, b, c & d represents the quantile values of feature as (0.100, 0.25, 0.50 & 0.75) respectively.
For each feature of the obtained fuzzy set, standard deviation is calculated and is represented as shown
in Eq. (4)

Z = [z1, z2, z3, . . . , zn] (4)

where, n is the total number of features. Each feature of Z satisfying the below condition shown in
Eq. (5) is considered as optimized feature. Here, T ∈ [0, 1] is a threshold value.

Zi > T (5)

3.2 Wrapper-Based Multi-Verse Optimized Feature Selection (WMVOFS)
Mirjalili introduced the Multi-Verse Optimizer in 2015. The algorithm used in the MVO method

was motivated by physics [27]. Worm hole, black hole, and white hole are the three cosmological
principles on which this method is defined. Multiverse is the antithesis of universe, which implies the
existence of universes other than the one we all currently inhabit.

Optimization Rules of Multi-Verse Optimizer:

• The likelihood of a white hole is higher when the inflation rate is higher.
• More matter passes through black holes in universes with lower inflation rates.
• Every universe contains elements that can cause random movement in the direction of the

universe that is most suitable. A black hole is less likely to exist if the inflation rate is higher.
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• White holes are used to transmit material through universes with higher inflation rates.
• Worm holes occur when objects travel from a universe with a higher inflation rate to one with

a lower inflation rate, regardless of the inflation rate.

In each iteration, the universes are sorted according to its inflation rates and select one from them
using the roulette wheel as a white hole. The following steps are done in order to achieve this:

Assume,

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x2

1 . . . xd
1

x1
2 x2

2 . . . xd
2

. . . . . .

. . . . . .

. . . . . .
x1

n x2
n . . . xd

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

xj
i =

{
xj

k r1 ≤ NI (Ui)
xj

i r1 ≥ NI (Ui)
(7)

where, d defines the number of parameters and n defines the number of universes, xj
i is the jth parameter

of ith universe, Ui is the ith universe, NI (Ui) is the normalized inflation rate of ith universe, r1 is a random
number in [0, 1], xj

k indicates the jth parameter of kth universe selected by a roulette wheel selection
mechanism.

Algorithm 1: WMVOFS
Random Universe (U) creation
WEP, TDR & Best_universe initialization
SU = Sorted universes
NI = Normalize the inflation rate (fitness) of the universe
While end criterion is not satisfied

Fitness evaluation of all universes
For each universe i

Updation of WEP & TDR
Blackholeindex

= i
For each object j

r1 = random number
If r1 < NI (Ui)

Whiteholeindex
= RouletteWheelSeleciton (−NI)

U
(
Blackholeindex

, j
) = SU

(
Whiteholeindex

, j
)

End if
r2 = random number
If r2 < WEP

r3, r4 = random number, random number
If r3 < 0.5

U (i, j) = Best_universe + TDR * ((ubj − lbj) ∗ (
r4 + lbj

)
)

(Continued)
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Algorithm 1: Continued
Else
U (i, j) = Best_universe − TDR * ((ubj − lbj) ∗ (

r4 + lbj

)
)

End if
End if

End for
End for

End while

The likelihood of sending objects through white or black hole tunnels increases with decreasing
inflation rate. The universe is currently swapping objects without interruption. Each universe is
thought to include worm holes that randomly transfer its things around space in order to preserve
the diversity of the universe and carry out exploitation. Assume that wormhole tunnels are always
created between a universe and the best universe that has yet to be created, as shown by Eq. (8).

xj
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi

⎧⎪⎨
⎪⎩

Xj + TDR * ((ubj − lbj) ∗ (
r4 + lbj

)
r3 < 0.5, r2 < WEP

Xj − TDR * ((ubj − lbj) ∗ (
r4 + lbj

)
r3 ≥ 0.5, r2 ≥ WEP

j (8)

where, Xj is the jth parameter of best universe formed so far, lbj is the lower bound of jth variable,
ubj is the upper bound of jth variable, r2, r3 & r4 are random number in [0, 1]. Worm hole Existence
Probability (WEP) is required to increase linearity over the iteration in order to emphasize exploitation
as the progress of optimization process. It is calculated using Eq. (9)

WEP = min + I ×
(

max − min
L

)
(9)

where, I is the current iteration and L is the maximum number of iterations. Using Eq. (10) it is possible
to determine the distance rate (variation) at which an object can travel through the best universe.

Travelling Distance Rate (TDR) = 1 − l1/p

L1/p
(10)

The larger the, p value, the quicker and more accurate the exploitation/local search over the
iterations.

3.3 Wrapper-Based Moth-Flame Optimized Feature Selection (WMFOFS)
The Moth-Flame optimizer was also introduced by Mirjalili [28]. This optimizer was primarily

inspired by moths’ natural transverse orientation navigational strategy. Moths use an efficient method
of long-distance straight-line movement at night by maintaining a stable angle in relation to the moon.
These elegant insects are, however, entangled in a pointless or fatal spiral journey around artificial
lights. To conduct optimization, the MFO method simulates this behavior mathematically.

Here, l defines current iteration number, N indicates the maximum number of flames, T introduces
the maximum number of iterations, Di represents the ith moth for jth flame, b indicates the shape of
logarithmic spiral constant, t defines random number ε [−1, 1], Mi defines the ith moth, Fj represents
the jth flame and r is a variable linearly decreasing from −1 to −2 during the course of iteration.
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Algorithm 2: WMFOFS

Update the no. of flames using flameno = round
(
N − l ∗ N−1

T

)
Moth’s population initialization
Defining objective function
For all moths i

For all parameters j
Update t and r
Calculate D using Di = ∣∣Fj − Mi

∣∣ w.r.t corresponding moth
Update matrix M using Mi = S (Mi, Fi) & S (Mi, Fi) = Di.ebt.Cos (2πt) + Fj w.r.t
corresponding moth

End for
Calculate objective values
Update flames

End for

3.4 Wrapper-Based Whale Optimized Feature Selection (WWOFS)
WO algorithm introduced by Seyedali Mirjalili, mimics the bubble-net attack strategy used by

humpback whales when attacking prey [29]. The ideal solution is regarded as the best available
candidate. regarding the best candidate solution, the remaining whales adjust their positions. The three
stages of this techniques are the encircle the prey phase, the exploration phase, and the search phase.

Where,
→
X represents the whale’s position vector, t defines iterations,

→
X best explains best whale’s

position vector,
→
A &

→
C are co-efficient vectors calculated using Eqs. (11) and (12), b interprets a

constant and
→
X random is a random number in [0, 1].

→
A = 2 ∗ →

a ∗ →
r1 − →

a (11)
→
C = 2 ∗ →

r2 (12)

where,
→
r1,

→
r2 ε [0, 1] are random vectors and

→
a is a linear component decreasing from 2 to 0.

Algorithm 3: WWOFS
Initialization of whale population
Fitness of whale is calculated
Determination of best whale
While end criterion not obtained

For each whale
Update: a, A, C, l & p
If p < 0.5

If |A| < 1
→
D =

∣∣∣→
C · →

X best (t) − →
X (t)

∣∣∣
Else →

X (t + 1) = →
X random (t) − →

A.
→
D

End if
Else

(Continued)
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Algorithm 3: Continued
→
D =

∣∣∣→
C · →

X random (t) − →
X (t)

∣∣∣
→
X (t + 1) =

→
Dl.ebl. cos (2π l) + →

X best (t)
End if

End for
Update best whale

End while

4 Experimental Setup

The overall experimentation was executed on a Intel® Core™ i5 processor clocked at 1.80 GHz,
Windows 10 (64-bit) operating system with an, 4 GB of RAM, and a 2 TB hard drive installed with
Anaconda, a Python platform with machine learning supporting packages as its setup.

Data on API call sequences for the experiment was gathered through the IEEE Data Port. They
are 100 features and 43,876 samples out of which 42,797 are malware, while 1,079 of them are benign
applications [30]. Data for the experiment is gathered using the Cuckoo Sandbox environment, and it
is then confirmed with Virus Total.

5 Performance Analysis and Experimental Results

Through a variety of classification analysis measures, including Root Mean Square Error
(RMSE), Mean Squared Error (MSE), Precision, Recall, F1-Score, and Accuracy, the suggested
approach for Android malware detection verifies the classification accuracy.

Precision = Truepos

Falsepos + Truepos

(13)

Recall = Truepos

Falseneg + Truepos

(14)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(15)

Accuracy = Truepos + Trueneg

Truepos + Falsepos + Trueneg + Falseneg

(16)

MSE = 1
n

∑n

i=1

(
Yi − Ŷi

)2

(17)

RMSE =
√

1
n

∑n

i=1

(
Yi − Ŷi

)2

(18)

where, Truepos characterizes the samples identified correctly as good ware, Trueneg represents the
samples identified correctly as malware, Falsepos is the samples incorrectly categorized as goodware,
Falseneg is the samples incorrectly described as malware, Ŷi is the predicted output, Yi is the actual
output, and n defines the number of samples. On the API calls sequence dataset, the MVO, MFO,
and WO algorithms are examined for their performance when wrapped with KNN, NC, DT, NB, and
RF classifiers using the suggested methodology. The free parameter used for all the experiments are
described in Table 1. The results of the experimentation conducted using different thresholds (0.41,
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0.42, 0.43, 0.44 & 0.45) for fuzzy optimized feature selection followed by wrapped-based feature
selection are listed from Tables 2–6. Their graphical illustrations are shown from Figs. 2–6.

Table 1: Free parameters of MVO, MFO & WO

MVO MFO WO

Iterations = 20 Iterations = 20 Iterations = 20
Lb = −1 Lb = −1 Lb = −1
Ub = 1 Ub = 1 Ub = 1
WEP_MAX = 1 N = 20 Search_Agents_No = 20
WEP_MIN = 0.2
N = 20

Table 2: Accuracy comparison of MVO, MFO & WAO wrapped with KNN

S. No Accuracy
before
feature
selection

Threshold Fuzzy
optimized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

% change
in
accuracy

% decrease
in
features

1 98.40% 0.41 62 MVO 18 98.36% −0.0400% 82%
MFO 26 98.40% 0.0000% 74%
WOA 21 98.40% 0.0000% 79%

2 0.42 44 MVO 15 98.40% 0.0000% 85%
MFO 16 98.25% −0.1500% 84%
WOA 13 98.42% 0.0200% 87%

3 0.43 28 MVO 8 98.22% −0.1800% 92%
MFO 12 98.40% 0.0000% 88%
WOA 5 98.34% −0.0600% 95%

4 0.44 15 MVO 4 98.27% −0.1300% 96%
MFO 7 98.27% −0.1300% 93%
WOA 4 98.25% −0.1500% 96%

5 0.45 8 MVO 1 97.32% −1.0800% 99%
MFO 1 97.47% −0.9300% 99%
WOA 1 97.32% −1.0800% 99%
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Table 3: Accuracy comparison of MVO, MFO & WAO wrapped with NC

S. No Accuracy
before
feature
selection

Threshold Fuzzy
optimized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

% change
in
accuracy

% decrease
in
features

1 78.94% 0.41 62 MVO 42 81.78% 2.8400% 58%
MFO 44 83.36% 4.4200% 56%
WOA 30 82.47% 3.5300% 70%

2 0.42 44 MVO 25 79.17% 0.2300% 75%
MFO 26 78.54% −0.4000% 74%
WOA 35 78.53% −0.4100% 65%

3 0.43 28 MVO 18 80.37% 1.4300% 82%
MFO 17 78.27% −0.6700% 83%
WOA 20 78.57% −0.3700% 80%

4 0.44 15 MVO 6 76.44% −2.5000% 94%
MFO 11 74.99% −3.9500% 89%
WOA 7 74.11% −4.8300% 93%

5 0.45 8 MVO 4 76.34% −2.6000% 96%
MFO 4 76.34% −2.6000% 96%
WOA 4 76.34% −2.6000% 96%

Table 4: Accuracy comparison of MVO, MFO & WAO wrapped with DT

S. No Accuracy
before
feature
selection

Threshold Fuzzy
opti-
mized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

%
change
in
accuracy

%
decrease
in
features

1 98.42% 0.41 62 MVO 25 98.18% −0.2400% 75%
MFO 29 98.11% −0.3100% 71%
WOA 18 98.12% −0.3000% 82%

2 0.42 44 MVO 15 98.08% −0.3400% 85%
MFO 18 98.03% −0.3900% 82%
WOA 10 98.12% −0.3000% 90%

3 0.43 28 MVO 8 98.12% −0.3000% 92%
MFO 7 98.12% −0.3000% 93%
WOA 8 98.12% −0.3000% 92%

4 0.44 15 MVO 4 98.02% −0.4000% 96%
MFO 6 98.02% −0.4000% 94%
WOA 4 97.71% −0.7100% 96%

5 0.45 8 MVO 1 97.44% −0.9800% 99%

(Continued)
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Table 4: Continued
S. No Accuracy

before
feature
selection

Threshold Fuzzy
opti-
mized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

%
change
in
accuracy

%
decrease
in
features

MFO 1 97.44% −0.9800% 99%
WOA 1 97.44% −0.9800% 99%

Table 5: Accuracy comparison of MVO, MFO & WAO wrapped with NB

S. No Accuracy
before
feature
selection

Threshold Fuzzy
opti-
mized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

%
change
in
accuracy

%
decrease
in
features

1 89.06% 0.41 62 MVO 27 98.18% 9.1200% 73%
MFO 27 98.09% 9.0300% 73%
WOA 19 97.36% 8.3000% 81%

2 0.42 44 MVO 15 98.14% 9.0800% 85%
MFO 17 97.44% 8.3800% 83%
WOA 15 98.19% 9.1300% 85%

3 0.43 28 MVO 10 97.45% 8.3900% 90%
MFO 10 97.67% 8.6100% 90%
WOA 9 98.19% 9.1300% 91%

4 0.44 15 MVO 7 97.42% 8.3600% 93%
MFO 9 97.43% 8.3700% 91%
WOA 8 97.43% 8.3700% 92%

5 0.45 8 MVO 1 97.43% 8.3700% 99%
MFO 1 97.43% 8.3700% 99%
WOA 1 97.43% 8.3700% 99%

Table 6: Accuracy comparison of MVO, MFO & WO wrapped with RF

S. No Accuracy
before
feature
selection

Threshold Fuzzy
optimized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

%
change
in
accuracy

%
decrease
in
features

1 98.92% 0.41 62 MVO 25 98.61% −0.3100% 75%
MFO 26 98.62% −0.3000% 74%
WOA 25 98.64% −0.2800% 75%

(Continued)
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Table 6: Continued
S. No Accuracy

before
feature
selection

Threshold Fuzzy
optimized
features
count

Optimizer Features
selected

Accuracy
after
feature
selection

%
change
in
accuracy

%
decrease
in
features

2 0.42 44 MVO 13 98.61% −0.3100% 87%
MFO 14 98.62% −0.3000% 86%
WOA 13 98.64% −0.2800% 87%

3 0.43 28 MVO 10 98.61% −0.3100% 90%
MFO 7 98.50% −0.4200% 93%
WOA 8 98.60% −0.3200% 92%

4 0.44 15 MVO 5 98.49% −0.4300% 95%
MFO 6 98.58% −0.3400% 94%
WOA 5 98.55% −0.3700% 95%

5 0.45 8 MVO 3 97.73% −1.1900% 97%
MFO 3 97.73% −1.1900% 97%
WOA 1 97.53% −1.3900% 99%
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Figure 2: Performance comparison of MVO, MFO & WOA wrapped with KNN
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Figure 3: Performance comparison of MVO, MFO & WOA wrapped with NC
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Figure 4: Performance comparison of MVO, MFO & WOA wrapped with DT
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Figure 5: Performance comparison of MVO, MFO & WOA wrapped with NB
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Figure 6: Performance comparison of MVO, MFO & WOA wrapped with RF

The experimental results indicate that the KNN classifier when wrapped with WOA resulted in
an accuracy of 98.34% with 95% reduction of feature set. The NC classifier when wrapped with MVO
obtained an accuracy of 76.44% having 94% reduced feature set. The DT classifier when wrapped with
MVO achieved an accuracy of 98.02% while maintaining 96% reduction in feature set dimensionality.
NB classifier when wrapped with WOA obtained an accuracy of 97.43% with 92% reduction in
dimensionality of feature set. Similarly, the RF classifier when wrapped with MFO resulted in an
accuracy of 98.58% with 94% reduction in dimensionality of feature set.

The 5 features selected by Wrapper-Based Whale Optimized Feature Selection using KNN
classifier are listed in Table 7. For the WWOFS algorithm wrapped with KNN, DT, NB, NC & RF
classifiers, the Area Under Curve Receiver Operator Characteristic (AUC_ROC) graphs are generated,
as this algorithm outperformed the comparative algorithms. The WWOFS embedded with KNN has
a lesser area under the AUC_ROC curve when used with a smaller feature set compared to the area
under the full feature set. The AUC_ROC graphs for each of the tested ML classifiers are shown in
Figs. 7–11. The accuracy comparison of related work the proposed method is presented in Table 8.
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Table 7: APIs selected by WMVOFS using DT

S. No API No API description

1 5 LdrGetProcedureAddress
2 12 LdrLoadDll
3 27 RegQueryValueExW
4 89 LdrGetDllHandle
5 93 NtClose

Figure 7: AUC_ROC curve of WWOFS + NC

Figure 8: AUC_ROC curve of WWOFS + NB
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Figure 9: AUC_ROC curve of WWOFS + KNN

Figure 10: AUC_ROC curve of WWOFS + DT

Figure 11: AUC_ROC curve of WWOFS + RF
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Table 8: Accuracy comparison of related work

Paper, Year Classifier Feature selection Accuracy

[30], 2019 Deep Graph
Convolutional Neural
Networks (DGCNN)

- 92.44%

[31], 2022 Neural Oblivious
Decision Ensembles
(NODE)

- 90%

This paper KNN WWOFS 98.53%

6 Conclusion and Future Work

This paper examines a hybrid feature minimization approach for attribute space using a fuzzy
logic and swarm optimization. Initially, complete feature set is optimized using fuzzy logic. To identify
the most influential feature space, the obtained features are fed into wrapper-based feature selection
process. The narrowed feature set is then used to train the machine learning model to differentiate
between benign and malware Android applications. The wrapper-based feature selection techniques
such as WMVOFS, WMFOFS & WWOFS reduced the dimensionality of the feature space to a greater
extent when incorporated with fuzzy optimized feature set.

Out of MVO, MFO & WO, the WO when wrapped with ML algorithms outperformed other
competing algorithms in terms of minimizing the dimensionality of feature space. The WWOFS
algorithm when wrapped with KNN classifier achieved better results in reducing the feature space
to 95% while maintaining an accuracy of 98.53%.

Future work will involve the development and application of hybrid architectures with advanced
deep learning techniques for better efficiency in the detection and classification of Android malware. It
will also involve investigating other optimization algorithms for systematized feature reduction using
high-dimensional feature space.
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