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Abstract: In recent years, deep learning algorithms have been popular in
recognizing targets in synthetic aperture radar (SAR) images. However, due to
the problem of overfitting, the performance of these models tends to worsen
when just a small number of training data are available. In order to solve the
problems of overfitting and an unsatisfied performance of the network model
in the small sample remote sensing image target recognition, in this paper,
we uses a deep residual network to autonomously acquire image features and
proposes the Deep Feature Bayesian Classifier model (RBnet) for SAR image
target recognition. In the RBnet, a Bayesian classifier is used to improve the
effect of SAR image target recognition and improve the accuracy when the
training data is limited. The experimental results on MSTAR dataset show
that the RBnet can fully exploit effective information in limited samples and
recognize the target of the SAR images more accurately. Compared with other
state-of-the-art methods, our method offers significant recognition accuracy
improvements under limited training data. Noted that the RBnet is moderately
difficult to implement and has the value of popularization and application in
engineering application scenarios in the field of small-sample remote sensing
target recognition and recognition.

Keywords: Bayesian classifier; limited data; synthetic aperture radar (SAR);
target recognition

1 Introduction

With the advancement of remote sensing technology, obtaining high-quality remote sensing
photographs has become increasingly simple, allowing for more thorough observations of specific
information and changes on the earth’s surface. Data labeling is getting increasingly time-consuming
and labor-intensive as the volume of remote sensing data grows, and it frequently requires talent from
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the application area. It is challenging to provide rich training samples for traditional deep learning-
based models, leading to the overfitting issue in the model training process, and the performance of
target recognition is significantly reduced. As a result, even though learning with a limited amount of
samples is a typical problem, research efforts for SAR target recognition with a limited training set
are still needed.

Traditional machine learning algorithms have been widely used in remote sensing image automatic
processing and a lot of research achievements have been achieved, such as [1] used a monogenic signal
to acquire wide spectrum information and maximize SAR images spatial localization, and [2] proposed
projection features to realize SAR target recognition. The convolutional neural networks (CNNs) is
used by [3] which automatically learn the hierarchies of features from a substantial amount of training
data. However, To get good recognition performance, deep learning-based methods require a large
amount of training data. It is challenging for the model to obtain strong recognition performance
when the labeled data used to train it is insufficient. In order to alleviate the contradiction between
“the demand of massive training samples” and “the reality of limited annotation samples”, researchers
at home and abroad have proposed a small sample learning method, that is, to obtain more accurate
target recognition results on test datasets through a small amount of training data.

The previous work on SAR image target recognition with limited training samples can be
divided into model improvement, customized transfer learning and data augmentation techniques.
Zhang et al. [4] offer an updated CNN model to overcome the limited sample issue by feature
augmentation using optimally selected convolutional layers and ensemble learning techniques, which
is subsequently utilized to replace the original softmax layer with an ensemble learning-based classifier.
In [5], a multiple feature-based lightweight CNNs (MFCNNs) model for SAR target recognition with
variable training data ratios is described without the use of a separate preprocessing method or posture
information. In [6,7], the idea is also based on CNNs and model improvement. As depicted in [8], rather
than upgrading the model, another approach is to apply tailored transfer learning, which use an auto-
encoder to gain knowledge from a sufficient number of unlabeled SAR images and transfer it to a
labeled SAR data set. Data augmentation is the most straightforward method when data is insufficient.
Zhang et al. [9] used a pre-trained significance graph network to extract foreground and background
information of samples. Then, independent encoders are reconstructed in feature space through a
fusion network to generate samples containing more new concepts. Chen et al. [10] mentioned a
meta-learner containing an image deformation subnetwork. Image distortion can lead to reduced
image features, but the distorted image can still provide critical semantic information. Although
the above-improved algorithms achieved some recognition effects, there are still some limitations.
Simultaneously, when the number of accessible training data per category is less than 20 samples,
the effectiveness of all of these approaches suffers dramatically.

To further improve discriminative performance for target recognition and address the issue that
obtaining SAR images and doing human labeling on a wide scale is typically time-consuming and
arduous, we propose new methods based on a limited sample. At present, research on limited sample
learning mainly focuses on classification tasks, especially image classification tasks. At the same time,
there are few types of research on the limited sample in a target recognition, for the important reason
that it is a relatively difficult task to transfer. In order to solve the problem of sample limitation,
Bayesian learning is proposed in this paper. Although Bayesian learning has been applied to small
sample deep learning algorithms due to its unique probability inference ability, applying image
information to Bayesian learning is still a critical problem. To overcome the challenges differently,
In this article, the Bayesian is combined with the residual network (ResNet) to design a deep network,
namely RBNet, to improve SAR target recognition accuracy.
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The main contribution of this article can be summarized as follows:

• In the proposed RBNet, transfer learning is employed to transmit the effective information
of the image to the Bayesian classifier for small sample learning tasks. Transfer learning
is an efficient method for training an extensive network with sparse training data without
overfitting. The suggested solution, as compared to existing methods, eliminates the complexity
and inefficiencies of data tagging. The superiority of our solution may be proven by comparing
the performance of the old scheme with the proposed strategy.

• The residual network we used in RBNet can fit the classification function better than the simple
multi-layer network, that is, find the parameter value of the desired function.

• The suggested technique outperforms the state-of-the-art CNN-based method in SAR target
recognition with a limited sample, which is a bottleneck barrier in SAR target recognition.

2 Related Work

This section provides a brief overview of prior SAR target identification experiments utilizing
CNNs, followed by a brief introduction to Few-shot recognition, transfer learning, and open-set
classification.

2.1 SAR Target Recognition with CNNS
With the continuous development of deep learning technology, its application in SAR image target

recognition has a good prospect. Chen et al. [11] introduced Tiny Yolo-Lite, a lightweight ship detector
achieved by self-designed backbone network topology and network pruning, and which employs
knowledge extraction approach to compensate for network performance deterioration induced by
pruning. Liang et al. [12] presented an adaptive hierarchical ship recognition approach based on the
coarse-to-fine mechanism and built an enhanced visual attention mechanism that included image and
frequency domains. To properly recognize the target, non-parametric BKDE (Block Kernel Density
Estimation) is utilized. Wang et al. [13] utilized SSD and FPN to increase the recognition accuracy of
SAR image ships considerably. Wang et al. [14] investigated the impact of coherent speckle in SAR
images on the use of CNN in SAR target recognition. On this premise, they suggested a bipolar
coupled CNN structure. The denoising subnetwork was utilized initially for denoising, and then the
classification subnetwork was used to learn residual speckle properties and target information. This
topology can increase the network’s noise resilience. In [15], researchers conducted experiments on
various CNNs with classification accuracy as the evaluation criterion. The experiment results showed
that ResNet has the highest classification accuracy.

2.2 Few-shot Recognition
Few-shot classification aims to use limited training data to achieve better learning results. For

deep learning algorithms to grasp and generalize certain abstract ideas and, eventually, to get a better
classification result, a large quantity of data is typically required for training. Because of this, its
performance is directly related to the quantity of data it can handle. Humans, on the other hand, are
capable of copying, learning, and achieving excellent results even when there aren’t enough instances to
learn from. Bayesian learning is a kind of thinking that falls within this category. In order to acquire the
posterior distribution, it makes use of previous knowledge and information from small samples, which
results in obtaining the overall distribution. Bayesian learning is a method of learning and inference
that makes use of probability to represent the associated uncertainty and to realize the process of
learning and inference. Due to its greater resemblance to the human learning mindset, Bayesian
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learning is considered to be more appropriate for small sample learning. In reality, Bayesian learning
has gradually been applied in small sample learning. For example, Hierarchical Bayesian Program
Learning (HBPL) is proposed to explain the structure of characters and complete the classification and
recognition of characters [16]. The HBPL introduced the concepts of combination and causality, which
proved to be very effective in tackling small sample learning issues. Following that, a unique Bayesian
learning framework is developed to mimic human learning processes and distinguish fundamental
components from existing characteristics [17]. The framework may then generate new characters
based on these components, rather than just classifying and recognizing existing characters. Some
scholars advocate using the Bayesian meta-learning technique to learn the posterior distribution of the
prototype vectors of relations. When a graph neural network is applied to the global relation graph, it
is possible to parameterize the initial prior of prototype vectors [18]. The method combines Bayesian
learning and meta-learning to improve performance.

2.3 Transfer Learning
However, despite the fact that classical machine learning technology has achieved significant

success and has been effectively implemented in a wide range of practical applications, it still has certain
limits. In many instances, it is often difficult, costly, and time-consuming to acquire adequate training
data. In certain cases, it is almost impossible. To address the aforementioned issue, as mentioned in
[19], the concept of “transfer learning” has been put forward, which focuses on knowledge transfer
across domains. Aim of transfer learning is to transfer information from a large dataset known as the
source domain to a smaller dataset known as the target domain in order to overcome the challenge
of gathering sufficient training data to construct models [20]. An existing model may be used as the
basis for a new model on another problem in the Transfer learning approach. When used in the
feature extraction step, it may lower the cost of training the final job by training the first task first.
Transfer learning with CNNs is a method that has been widely employed in a variety of fields. Three
types of transfer learning issues exist: transductive, inductive, and unsupervised transfer learning [21].
These three categories may be described in terms of labeling from a labeling perspective. Transductive
transfer learning, in its broadest sense, applies to circumstances in which the label information is
derived only from the domain of the source. Depending on whether or not the target domain instances
include label information, the situation may be classified as inductive transfer learning. It is referred
to as unsupervised transfer learning when there is no label information available for both the source
and the destination domains. Oquab et al. [22] demonstrated the effectiveness of a basic transfer
learning approach on smaller benchmark datasets. They also reused mid-level features collected from
ImageNet-trained CNNs. In order to improve transfer learning effect, some researchers also combined
the transfer learning and incremental learning [23]. Meanwhile, a novel transfer learning algorithm [16]
is proposed. It can directly predict the weight parameters of the classifier [24]. This method trains a
parameter predictor. The pre-trained network in a large dataset can map the model to a test set with
few samples by directly predicting parameters from activation values.

3 Methodology
3.1 RBNet Network Architecture

Inspired by Zhuang et al. [19] and Guan et al. [25], we present a novel network architecture for
SAR target recognition. In this article, the residual network (ResNet) is combined with the Bayes
classifier to improve the few-shot SAR target recognition accuracy. We use the Bayes classifier rather
than the normal Linear classifier to improve the classification accuracy on SAR target recognition.
Moreover, skip connections are added to enhance the network’s ability to utilize features of different
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scales in the final prediction, as shown in Fig. 1. Since the model has a smaller number of learnable
parameters, a network design like this may help to mitigate the overfitting issue.

Figure 1: Framework of the proposed RBNet

The network used in this paper mainly refers to the ResNet-34 [26]. In a similar vein, we selected
a 34-layer structure and made additional tweaks to make it more appropriate for our data. Each stage
in this model contains 8 residual blocks, and 64 convolution kernels of size 3 × 3 follow each Residual
block to reduce speckle noise and increase the number of channels. In our network, the size of all
convolution kernels is set to 3 × 3. The parameters setting of our network is shown in Tab. 1.

Table 1: The parameters setting of our network

Layer name Layer type Output size

Conv1 7 × 7 112 × 112

Stage1

(
3 × 3, 64
3 × 3, 64

)
× 3 56 × 56

Stage2

(
3 × 3, 128
3 × 3, 128

)
× 3 28 × 28

Stage3

(
3 × 3, 256
3 × 3, 256

)
× 3 14 × 14

Stage4

(
3 × 3, 512
3 × 3, 512

)
× 3 7 × 7

Average pool, Fc, softmax 1 × 1
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Resnet was first proposed by He et al. [27]. This article found that if a K layer of the network f
is the current optimal network, there must be a deeper network f ′ whose the last few layers are the
output of the Identity Mapping of K layer of the network f . Furthermore, the result of f ′ is consistent
with f . So K is not the so-called “optimal number of layers”, and compared with shallow networks,
deeper networks should not perform worse.

However, if the network is deepened directly, there will be gradient explosion or gradient dis-
appearance problems, which will cause the network performance to decline. For this type of problem,
normalization can be used to ensure that the stochastic gradient descent is used in the backpropagation
to achieve the convergence effect. However, the normalization operation is only applicable to dozens of
layers of networks. When the network is deepened, the problem of model degradation will still occur.
Moreover, ResNet introduces a jump link line, which can directly skip one or more layers through an
identity shortcut key to complete the data transfer, as shown in Fig. 2. When the depth of the neural
network increases and the gradient disappears, identity mapping is performed on the original network
to ensure the integrity of the information, extract more detailed information, and avoid a rapid decline
in network performance.

Figure 2: Ordinary convolution block(L). Residual block(R)

The residual network contains two 3 ∗ 3 convolution layers. The residual function F(X) is
superimposed over the upper output in the second layer to guarantee that the output y has the same
vector dimension as the upper and lower module outputs, as seen in Fig. 2. By shifting the learning
objective from full output to residual, ResNet reduces the issue of information loss and kernel loss
inherent in classic convolutional networks and ensures the integrity of data by transferring the input
directly to the output. Additionally, simplifying learning objectives decreases the difficulty of learning.

F (X) = W 2σ (W1X) (1)

y = F (X , {Wi}) + WsX . (2)

Following the completion of the ResNet-34 network’s final full connection layer, we implement
the shared features. The activation function, as shown in Eq. (3), extends the noisy ReLU by include
the noise extension.

αReLU (t) = max (0, t + ϕ) , with ϕ ∼ N (0, σ (t)) (3)

3.2 Bayes Classifier
In few-shot classification, transfer learning is used to make the model obtain auxiliary knowledge

from related fields in advance and improve the classification accuracy on new classes. We first use the
base classes data to train the model to update its parameters, θ l where l = 1, 2, . . . , L is the index of
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convolutional layers, and determine the threshold parameter, ϕ, of the Bayes classifier. In our network,
L is empirically set to 18. When training the model on base classes, we fix ϕ and update θ l of the
convolutional layers. After updating the convolutional layer parameters, we fix the parameters of the
convolutional layers and adjust the threshold parameter so that the network model obtains the best
classification accuracy on base classes. At the beginning of the experiments, we empirically set the
initial value of the threshold parameter in the Bayes classifier to 0.1, then adjust the parameters within
the upper and lower ranges to make the network model achieve the best classification performance on
the base classes. In our experiments, the threshold parameter of the Bayes classifier is set in the 0.0500–
1.1182 range. After the parameter transfer, the threshold parameter does not need to be updated on
new classes. In the model, we use the cross-entropy as the loss function, and adopt Adam [28] as
the optimization algorithm. In summary, the Bayesian decision strategy perform Bayesian statistical
analysis so as to realize the identification of known and unknown classes.

After training the network model, it performs feature statistics on all samples in the training set.
Our model first classifies the input sample according to the Bernoulli naive Bayesian classification.
The class corresponding to the maximum posterior probability is seen as a prediction result for the
sample. The Bayesian formula applied in this network model is as follows:

P (yi|X) = P (X |yi) P (yi)∑
j P

(
X |yj

)
P

(
yj

) (4)

In the Eq. (4), P (yi|X) represents the probability that the yi when the feature is X, and
y1, y2, · · · , yn are exhaustive events, namely

n∪
i=1

yi = �, yiyj = φ, P (yi) > 0, P (yi) is a priori probability

that does not need to consider many factors related to X and represents the occurrence probability
of class yi. P (X) is called a normalized constant. X is the feature vector of an input sample and is
extracted by the network, and y refers to the corresponding label of the sample. After a sample is an
input into the model, the model will perform classification based on known classes, and we will obtain
its posterior probability P (yi|X). In this paper, we use P (Xyi) as an important reference for whether
the sample image belongs to unknown classes. Its means the probability when a sample has feature
vector X and belongs to the known class yi. In summary, the Bayesian decision strategy performs
Bayesian statistical analysis to realize the identification of known and unknown classes.

4 Experiments

In this section, we conduct a series of experiments to test and validate the proposed method.
Section 4.1 describes the dataset and environment utilized in the experiments. In Section 4.2, we
compare our findings to those obtained via the use of other well acknowledged methods. In the last
portion of Section 4.3, we conduct ablation experiments to verify our method.

4.1 Data Set and Experimental Setup
In the experiment, the data sets are part of the MSTAR data sets which is open. Each SAR slice

images in the MSTAR collection has a single vehicle target in the image’s center. Vehicle targets are
classified into ten categories: infantry fighting vehicles (BMP2), armored transport vehicles (BTR 70,
BTR 60), self-propelled howitzers (2S1), tanks (T72, T62), armored reconnaissance vehicles (BRDM
2), bulldozers (D7), cargo trucks (ZIL131), and self-propelled anti-aircraft gun (SPAA) (ZSU234).
Each kind of vehicle target in the MSTAR dataset has photos with azimuths ranging from 0° to 360°,
however in actuality, the azimuths of each target sample are around 1° to 5° apart in the published
portion of the dataset. According to the acquisition circumstances, the data in the MSTAR dataset
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may be classified into two categories: Standard Operating Condition (SOC) and Extended Operating
Condition (EOC). Under SOC circumstances, ten kinds of ground vehicle targets are covered. The
data for the training set were obtained at a 17° imaging pitch angle, whereas the data for the test set
were taken at a 15° imaging pitch angle. The optical views of many vehicle targets and their associated
SAR images under SOC circumstances are shown in Fig. 3. In our trials, we collect 10 distinct kinds
of data under SOC conditions, as stated in Tab. 2.

Figure 3: Optical images of some vehicle targets and their corresponding SAR images, the first row is
the optical image, the second row and the third row are the SAR images

In all the experiments, an aggressive but straightforward data augment strategy is applied to to
use each available sample fully. Our experimental platform configuration is shown in Tab. 3.

Table 2: Data statistics

Object classes 2S1 BRDM_2 BTR_60 D7 SN_132 SN_9563 SN_C71 T62 ZIL131 ZSU
_23_4

Training set
(Amplitude)

275 275 196 275 233 234 234 274 275 275

Validation set
(Amplitude)

300 299 257 300 196 195 196 300 300 300

4.2 Performance Comparison
Our model is evaluated in comparison to state-of-the-art approaches, including MFCNNs [6],

CNN-TL-bypass [8], and TMDC-CNNS [25]. The performance of our technique on the small sample
dataset is evaluated by randomly picking 100, 50, 20, and 10 samples from each category in the whole
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training dataset. The results are summarized in Tab. 4, and it is clear that our model beats other
strategies on an overall basis.

Table 3: Experimental platform configuration

Configuration Version

LINUX UBUNTU 18.04
CPU INTEL CORE I7–9700K 3.60 GHZ
GPU NVIDIA GEFORCE RTX 2080TI 11G
MEMORY 128G
PYTORCH PYTORCH 1.3.1
CUDA CUDA9.0

Table 4: Accuracy of different methods and different number of training samples

Model Number of samples in each class

10 20 50 100 all

MFCNNs 70.67 88.36 93.63 95.06 98.12
CNN-TL-bypass 78.43 88.59 95.59 97.19 98.96
TMDC-CNNS 79.89 89.15 97.23 97.89 99.02
RBNet 80.18 90.23 97.54 98.12 99.36

Table 5: Ablation studies with accuracy (%) of different network structures

Model Number of samples in each class

10 20 50 100 all

ResNet-18(baseline) 71.56 87.53 93.59 97.19 98.96
ResNet-34 73.93 88.89 94.63 97.69 98.98
ResNet-18+Bayes classifier 75.19 89.12 95.47 98.05 99.02
RBNet 80.18 90.23 97.54 98.12 99.36

When this method has only 10, 20, 50, and 100 training samples for the new target, the
average recognition accuracy is 80.18%, 90.23%, 97.54%, and 98.12%, respectively. Compared with
the MFCNNs network, the average recognition accuracy is increased by 9.51%, 1.87%, 3.91%, and
3.06%. Compared with the CNN-TL-bypass network, the average recognition accuracy is increased by
1.75%, 1.64%, 1.95%, and 0.93%. Compared with the TMDC-CNNS network, the average recognition
accuracy is increased by 0.29%, 1.08%, 0.31%, and 0.34%, respectively, all of which have achieved
higher advantages. Experimental results show that there are only a small number of image decorations
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in each category, and the RBNet can still get a good target recognition accuracy rate, indicating that
this method is effective for small sample target recognition tasks.

To further illustrate the improvement and effectiveness of our RBNet, confusion matrices of
RBNet are given in Figs. 4 and 5. The number of horizontal and vertical coordinates in confusion
matrices corresponds to the numeric label assigned to each target category. The confusion matrix
in Fig. 4 is for 15 training sets, with 15 pictures from each category randomly chosen for training
purposes. Fig. 5 depicts the confusion matrix for all training sets. What can be clearly seen in this
figures is the effectiveness for SAR target recognition with small training set. Following analysis, it
is expected that the RBNet approach may successfully mitigate the overfitting issue associated with
limited data.

4.3 Ablation Studies
As our RBNet are derived from the residual network and Bayes classifier, we also perform ablation

studies with the ResNet-34, Bayes classifier, and the most commonly used architecture: ResNet-18 [27],
to illustrate our efforts on the design of our proposed architecture even more precisely.

In order to show the performance of various models, different numbers of samples in each category
are employed, and the results are presented in the following Tab. 5. As can be observed, when compared
to the baseline ResNet-18 [27], the ResNet-34, the ResNet-18 with Bayes classifier, and our network
architecture RBNet all outperform the baseline for a limited number of training samples, with our
proposed RBNet model outperforming the baseline by the most significant margin. As shown in the
Tab. 3, the RBNet model we proposed in this article also achieves high recognition accuracy when the
number of training data is restricted.

Figure 4: Confusion matrices of RBNet in 10 training samples



JNM, 2022, vol.4, no.2 69

Figure 5: Confusion matrices of RBNet in all training samples

5 Citations

RBNet was used in this study to improve the performance of SAR target recognition when
just a limited number of training samples were available. To accomplish the intended outcomes, this
model employs a novel network architecture based on the Bayes classifier and the Resnet network.
Experiments on RBNet demonstrated that our suggested model outperformed a variety of state-of-
the-art approaches, despite the fact that we only had a small quantity of training data. These discoveries
may be beneficial to other researchers who are attempting to achieve effective outcomes in their own
investigations. Apart from these, there are several more exciting projects to work on, such as improving
the way of intelligent data augmentation techniques and how to enhance this framework and improve
its recognition and localization performance.
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