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ABSTRACT

Bamboo is a renewable and environmentally friendly material often used for construction. This study investigates
the flexural behavior of bamboo beams through theoretical and finite element (FE) analyses. Considering the
material’s nonlinearity, a method of calculating load-deflection curves is proposed and validated via FE analysis.
The interfacial slippage dominated by the shear stiffness of the interface between two bamboo poles significantly
influences the flexural behavior of double-pole bamboo beams. Thus, the load-deflection curves for different shear
stiffnesses can be obtained via theoretical and FE analyses. Subsequently, a novel configuration using diagonal
steel bands to avoid slippage is presented. An inclination angle of 45° is suggested to adequately develop the stiff-
ness and bearing capacity of the steel band.
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1 Introduction

Bamboo is a sustainable material used in the construction of buildings [1,2]. It is renewable and
environmentally friendly. Its growth speed and strength are greater than those of timber. Bamboo is a
typical anisotropic material. García et al. [3] and Akinbade et al. [4] studied the transverse properties of
bamboo, testing the elastic constants and tensile capacity in the transverse direction. The longitudinal
properties of bamboo were also investigated. Liu et al. [5] measured the longitudinal tensile strength and
elastic modulus. Qiu et al. [6] constructed a longitudinal constitutive model using the Ramberg–Osgood
relation. These studies indicated that the tensile strength of bamboo in the longitudinal direction was
close to the strength of steel while the elastic modulus of bamboo was approximately one-twentieth of
that of steel. Hence, bamboo is considered suitable for use as a centrally stressed member [7–12]. As one
of the most important members of a structure, understanding the flexural behavior of bamboo beams is
extremely important to increase their application in construction [2,13]. Currently, two types of bamboo
beams have been widely studied: Original and engineered bamboo beams.
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For original bamboo beams, the natural shape of the bamboo is maintained; this advantage can be
exploited in structures. García-Aladín et al. [14,15] conducted bending tests on single and double bamboo
poles to calculate their shear moduli and stiffnesses. Trujillo et al. [16] implemented more than
200 bending tests on bamboo poles, which were used for bamboo strength grading. Nurmadina et al. [17]
adopted three-point bending tests to obtain the bending stiffness of a single bamboo pole. Lorenzo et al.
[18] proposed an analytical bimodulus model to determine the strain and stress distribution of a single
bamboo beam. These studies indicated that owing to the deflection limit, it was difficult to achieve large
spans using a single bamboo pole as a beam [19,20]. Considering the superiority of original bamboo, a
bionic bamboo beam, including tubes and diaphragms, was invented [21,22]. Its bending model was
deduced using Euler-Bernoulli beam theory.

To increase the applicability of original bamboo beams, Tian et al. [23] presented a composite mortar-
sprayed bamboo beam. The results demonstrated that interfacial slippage between two bamboo poles was
difficult to avoid and the composite effect could not be fully exploited. Therefore, bolted connections are
commonly applied to avoid interfacial slip [24–28]. Conversely, the engineered bamboo beam is a new
bamboo product, the section of which can be varied and the bending stiffness can be determined
according to the design requirement [29,30]. Huang et al. [31] and Li et al. [32] analyzed the flexural
behavior of engineered bamboo beams and their ultimate bearing capacity and deformation were deduced.
Furthermore, engineered bamboo can be effectively combined with other materials (i.e., steel, concrete,
and timber) to form new composite bamboo beams. Wei et al. [33] and Wang et al. [34] proposed a fiber-
reinforced engineered bamboo beam and a bamboo-concrete composite beam, respectively. Zhong et al.
[35] and Wei et al. [36] adopted steel bars to enhance the engineered bamboo beam. Li et al. [37]
presented an I-section bamboo-steel composite beam. However, producing engineered bamboo is energy
consuming and the process is not environmentally friendly.

To completely exploit the excellent performance of original bamboo beams, this study investigated the
flexural behavior of single-pole and double-pole bamboo beams via theoretical analysis. Simultaneously, the
influence of interfacial slippage was analyzed. Then, an effective configuration to avoid slippage without
destroying the original bamboo was proposed and validated.

2 Flexural Behavior Analysis

2.1 Constitutive Model Along the Grain
The flexural behavior of bamboo beams is directly related to the constitutive model of bamboo along the

grain, as shown in Fig. 1 and Eq. (1). Et and Ec represent the elastic moduli in the tensile and compressive
states, respectively; rtu and rcu denote the ultimate stresses; etu and ecu define the ultimate strains. ecp denotes
the strain at the compressive yield point. The constitutive model includes two aspects: Tension and
compression [6,31,32]. Based on previous tests [3–6], bamboo exhibits a linear elastic strain-stress
relationship in the tensile state and fractures occur corresponding to the ultimate stress. There is almost
no plastic deformation stage. Bamboo approximates an ideal elastoplastic material under a compressive
load. Moreover, the elastic modulus in the tensile state is always greater than that under compression.

rðeÞ ¼
�rcu �ecu � e � �ecp
Ece �ecp � e � 0
Ete 0 � e � etu

8<
: (1)

2.2 Curvature of a Single-Pole Bamboo Beam
2.2.1 Elastic Stage

Fig. 2 presents the stress and strain distributions in the elastic stage for a single-pole bamboo beam,
conforming to the plane-section assumption. Owing to the greater elastic modulus in the tensile zone, the
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neutral axis is below the midline of the beam. The cross-section of bamboo is assumed to be an ideal annulus
with invariable thickness. A polar coordinate system is established such that the origin of the coordinate
system is located at the center of the section and the lower part of the vertical symmetry axis is used as
the polar axis.

The strain and stress on the central line of the annulus are adopted to represent the strain and stress at the
same polar angle. Thus, the area integral can be simplified as the arc integral in the following deduction.
Eq. (2) expresses the stress distribution along the central line of the annulus, where the stress is a
function of the polar angle.

rðhÞ ¼
cos h� cos a

1� cos a
rt 0 � h � a

cos h� cos a

bð1� cos aÞ rt a � h � p

8><
>: ð b ¼ Et=Ec b � 1 Þ (2)

where rt is the tensile stress at the bottom surface and h is the polar angle. The polar angle a corresponds to
the location of the neutral axis. b is the ratio of Et to Ec. The polar angle a can be calculated by the
longitudinal force equilibrium, as follows:Z p

0
rðhÞRtdh ¼ 0 (3)

σ

ε−εcu −εcp

E t

E c
0 εtu

σtu

−σcu

Figure 1: The constitutive model of bamboo along the grain
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Figure 2: Stress and strain distributions during the elastic stage
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Z a

0

cos h� cos a

1� cos a
rtRtdhþ

Z p

a

cos h� cos a

bð1� cos aÞrtRtdh ¼ 0 (4)

sin a� a cos a

1� cos a
þ�p cos a� sin a þ a cos a

bð1� cos aÞ ¼ 0 (5)

tan a� a ¼ p
b� 1

(6)

where R is the radius of the central line of the annulus and t is the thickness of the annulus. In Eq. (6), the
polar angle a is only relevant to b, illustrating that the neutral axis does not change during the elastic stage.
The bending moment in this section is expressed as follows:Z p

0
rðhÞðcos h� cos aÞR2tdh ¼ M=2 (7)

Z a

0

ðcos h� cos aÞ2
1� cos a

rtR
2tdhþ

Z p

a

ðcos h� cos aÞ2
bð1� cos aÞ rtR

2tdh ¼ M=2 (8)

�0:75 sin 2aþ 0:5aþ acos2a

1� cos a
þ 0:5p þ pcos2a þ 0:75 sin 2a � 0:5a � acos2a

bð1� cos aÞ ¼ M

2rtR2t
(9)

� ¼ �0:75 sin 2aþ 0:5aþ acos2a

1� cos a
þ 0:5p þ pcos2a þ 0:75 sin 2a � 0:5a � acos2a

bð1� cos aÞ (10)

M ¼ 2�rtR
2t (11)

When the polar angle a is solved using Eq. (6), the constant coefficient � can be obtained using Eq. (10).
Then, the bending moment can be obtained using Eq. (11). The bending moment is proportional to rt. The
relationship between strain and the neutral axis displayed in Fig. 2 leads to:

et
ec

¼ rtEc

rcEt
¼ ae

b
¼ 1� cos a

1þ cos a
ðae ¼ rt=rc rc � rcuÞ (12)

where et represents the tensile strain at the bottom surface and ec signifies the compressive strain at the top
surface. Substituting rt ¼ aercu into Eq. (11) yields:

Mp ¼ 2�aercuR
2t ¼ 2�b

1� cos a

1þ cos a
rcuR

2t (13)

where Mp is the maximum bending moment of the elastic stage. When the bending moment is smaller than
Mp, the curvature can be calculated as follows:

ke ¼ rt
Etð1� cos aÞR ¼ M

2�ð1� cos aÞEtR3t
M � Mp (14)

2.2.2 Elastic-Plastic Stage
Fig. 3 shows the stress and strain distributions during the elastic-plastic stage. The cross-section of

bamboo comprises three areas: Elastic tension, elastic compression, and plastic compression. Two
dividing lines, corresponding to angles a and b, divide the three areas.
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Eq. (15) expresses the stress distribution during the elastic-plastic stage, which comprises
three parts.

rðhÞ ¼

cos h� cos a

1� cos a
rt 0 � h � a

cos h� cos a

bð1� cos aÞ rt a � h � aþ b

�rcu ðaþ bÞ � h � p

8>>><
>>>:

(15)

Considering the deformation relationship over the section yields:

et
ecp

¼ rtEc

rcuEt
¼ ap

b
¼ 1� cos a

cos a� cosðaþ bÞ ðap ¼ rt=rcu aercu � rt � rtmÞ (16)

b ¼ arccos½cos a� b
ap

ð1� cos aÞ� � a (17)

where rtm is the maximum value of rt. The force equilibrium along the longitudinal direction yields.Z p

0
rðhÞRtdh ¼ 0 (18)

Z a

0

cos h� cos a

1� cos a
rtRtdhþ

Z aþb

a

cos h� cos a

bð1� cos aÞrtRtdhþ
Z p

aþb
�rcuRtdh ¼ 0 (19)

sin a� a cos a

1� cos a
þ sinðaþ bÞ � sin a� b cos a

bð1� cos aÞ � p � a � b

ap
¼ 0 (20)

The bending moment of the section is expressed asZ p

0
rðhÞðcos h� cos aÞR2tdh ¼ M=2 (21)

Z a

0

ðcosh� cosaÞ2
1� cosa

rtR
2tdhþ

Z aþb

a

ðcosh� cosaÞ2
bð1� cosaÞ rtR

2tdhþ
Z p

aþb
�rcuðcosh� cosaÞR2tdh ¼M=2 (22)
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Figure 3: Stress and strain distributions during the elastic-plastic stage
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�0:75 sin 2aþ 0:5aþ acos2a

1� cos a
þ 0:25 sin 2ðaþ bÞ � 2 sinða þ bÞ cos a þ 0:75 sin 2a þ 0:5b þ bcos2a

bð1� cos aÞ
þ p cos a þ sinða þ bÞ � ða þ bÞ cos a

ap
¼ M

2rtR2t

(23)

c ¼ �0:75 sin 2aþ 0:5aþ acos2a

1� cos a
þ 0:25 sin 2ðaþ bÞ � 2 sinða þ bÞ cos a þ 0:75 sin 2a þ 0:5bþbcos2a

bð1� cos aÞ
þ p cos a þ sinða þ bÞ � ða þ bÞ cos a

ap

(24)

M ¼ 2crtR
2t (25)

where the constant coefficient c in Eq. (24) is related to a, b, and ap. When the bending moment M
is given, the unknown variables a, b; and ap can be solved using Eqs. (17), (20), and (23). Two
types of failures are considered in the ultimate state: Tensile and compressive failures. If the compressive

failure occurs at the top surface of the section, et ¼ 1� cos a

1þ cos a
ecu will not exceed etu. Substituting

ap ¼ rtm=rcu ¼ Et minð1� cos a

1þ cos a
ecu; etuÞ=rcu into Eqs. (17), (20), and (23) yields:

Mu ¼ 2crtmR
2t ¼ minð1� cos a

1þ cos a
ecu; etuÞ2cEtR

2t (26)

where Mu is the ultimate bending moment. When the bending moment is greater than Mp and smaller than
Mu, the curvature can be calculated as follows:

kp ¼ rt
Etð1� cos aÞR ¼ M

2cð1� cos aÞEtR3t
Mp � M � Mu (27)

2.3 Curvature of a Double-Pole Bamboo Beam
There are also two curvature stages for a double-pole bamboo beam. Owing to the cross-section

containing two annuli, the elastic stage can be considered for two cases and the elastic-plastic stage for
four. Two polar coordinate systems are separately established for the top and bottom bamboo poles. a and
b determine the location of the neutral axis and the boundary of the elastic and plastic areas, as displayed
below in six different diagrams (Figs. 4–9) illustrating the stress and strain distributions. The curvature
analysis of a single-pole bamboo beam can be referenced for a double-pole bamboo beam. Therefore, the
description of the curvature analysis process is not repeated but the main equations and results are
presented as follows.

2.3.1 Elastic Stage
The location of the neutral axis differentiates the two cases. The neutral axis is located between the

centerlines of the two annuli in Case 1; the neutral axis in Case 2 intersects the centerline of the bottom
bamboo pole.

(1) Case 1:

Fig. 4 shows the stress and strain distributions in Case 1.
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Eqs. (28)–(32) express the curvature analysis of a double-pole bamboo beam in Case 1.

a ¼ Rð1� bÞ þ t

1þ b
0 � a � 0:5t (28)

εt

2R + t − a

4R + t

θ1

a
Neutral axis

Elastic compression

Elastic Tension 2R + a

θ2

σc

σt

εc

Figure 4: Stress and strain distributions in Case 1
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Figure 5: Stress and strain distributions in Case 2
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� ¼ 0:5pR2 þ pðR þ aÞ2
2R2 þ aR

þ 0:5pR2 þ pðR þ t � aÞ2
bð2R2 þ aRÞ (29)

et
ec

¼ rtEc

rcEt
¼ ae

b
¼ 2Rþ a

2Rþ t � a
(30)

R(1 − cosb) + t − a

4R + ta
Neutral axis

Elastic compression

Elastic tension 2R + a

b

Plastic compression
R(1 + cosb)

θ2

θ1

σcu

σt

εcεcp

εt

Figure 6: Stress and strain distributions in Case 3
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Figure 7: Stress and strain distributions in Case 4
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Mp ¼ 2�aercuR
2t ¼ 2�b

2Rþ a

2Rþ t � a
rcuR

2t (31)

ke ¼ rt
Etð2Rþ aÞ ¼

M

2�ð2Rþ aÞEtR2t
M � Mp (32)
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Figure 8: Stress and strain distributions in Case 5
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Figure 9: Stress and strain distributions in Case 6
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(2) Case 2

Fig. 5 shows the stress and strain distributions in Case 2.

Eqs. (33)–(37) express the curvature analysis of a double-pole bamboo beam in Case 2.

2pRð1þ cos aÞþpt
Rðsin a� a cos aÞ ¼ b� 1 (33)

� ¼ �0:75 sin 2aþ 0:5aþ acos2a

1� cos a
þ 0:5p þ pcos2a þ 0:75 sin 2a � 0:5a � acos2a

bð1� cos aÞ

þ 0:5pR2 þ pðR cos a þ 2R þ tÞ2
bR2ð1� cos aÞ

(34)

et
ec

¼ rtEc

rcEt
¼ ae

b
¼ Rð1� cos aÞ

Rð3þ cos aÞ þ t
(35)

Mp ¼ 2�aercuR
2t ¼ 2�b

Rð1� cos aÞ
Rð3þ cos aÞ þ t

rcuR
2t (36)

ke ¼ rt
Etð1� cos aÞR ¼ M

2�ð1� cos aÞEtR3t
M � Mp (37)

2.3.2 Elastic-Plastic Stage
The neutral axis and boundary of the elastic and plastic areas differentiate the four cases.

(1) Case 3

Fig. 6 shows the stress and strain distributions in Case 3.

Eqs. (38)–(43) express the curvature analysis of a double-pole bamboo beam in Case 3.

et
ecp

¼ rtEc

rcuEt
¼ ap

b
¼ 2Rþ a

Rð1� cos bÞ þ t � a
(38)

b ¼ arccos½1þ t � a

R
� b
ap

ð2þ a

R
Þ� (39)

pðR þ aÞ
2Rþ a

þ R sin b� bðRþ t � aÞ
bð2Rþ aÞ � p � b

ap
¼ 0 (40)

c ¼ 0:5pR2 þ pðR þ aÞ2
2R2 þ aR

þ 0:25R2 sin 2bþ 0:5bR2 � 2ðRþ t � aÞR sin bþ bðRþ t � aÞ2
bð2R2 þ aRÞ

þ ðRþ t � aÞðp�bÞ þ R sin b

Rap

(41)

Mu ¼ 2crtmR
2t ¼ minð2Rþ t � a

2Rþ a
ecu; etuÞ2cEtR

2t (42)

kp ¼ rt
Etð2Rþ aÞ ¼

M

2cð2Rþ aÞEtR2t
(43)

(2) Case 4

Fig. 7 displays the stress and strain distributions in Case 4.
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Eqs. (44)–(49) express the curvature analysis of a double-pole bamboo beam in Case 4.

et
ecp

¼ rtEc

rcuEt
¼ ap

b
¼ Rð1� cos aÞ

Rð2þ cos a� cos bÞ þ t
(44)

b ¼ arccos½2þ cos aþ t

R
� b
ap

ð1� cos aÞ� (45)

sin a� a cos a

1� cos a
þ� p cos a � sin a þ a cos a

bð1� cos aÞ þ R sin b� bðR cos aþ 2Rþ tÞ
bRð1� cos aÞ � p�b

ap
¼ 0 (46)

c ¼ �0:75 sin 2aþ 0:5aþ acos2a

1� cos a
þ 0:5p þ pcos2a þ 0:75 sin 2a � 0:5a � acos2a

bð1� cos aÞ

þ R2ð0:25 sin 2bþ 0:5bÞ � 2RðR cos aþ 2Rþ tÞ sin bþ bðR cos aþ 2Rþ tÞ2
bR2ð1� cos aÞ

þ ðR cos aþ 2Rþ tÞðp�bÞ þ R sin b

Rap

(47)

Mu ¼ 2crtmR
2t ¼ minð Rð1� cos aÞ

Rð3þ cos aÞ þ t
ecu; etuÞ2cEtR

2t (48)

kp ¼ rt
Etð1� cos aÞR ¼ M

2cð1� cos aÞEtR3t
(49)

(3) Case 5

Fig. 8 illustrates the stress and strain distributions in Case 5.

Eqs. (50)–(55) express the curvature analysis of a double-pole bamboo beam in Case 5.

et
ecp

¼ rtEc

rcuEt
¼ ap

b
¼ Rð1� cos aÞ

Rð1þ cos aÞ þ b
(50)

b ¼ b
ap

Rð1� cos aÞ � Rð1þ cos aÞ (51)

sin a� a cos a

1� cos a
þ�p cos a � sin a þ a cos a

bð1� cos aÞ � p
ap

¼ 0 (52)

c¼�0:75sin2aþ0:5aþacos2a

1� cosa
þ0:5pþ pcos2aþ 0:75sin2a� 0:5a� acos2a

bð1� cosaÞ þpðRcosaþ 2Rþ tÞ
Rap

(53)

Mu ¼ 2crtmR
2t ¼ minð Rð1� cos aÞ

Rð3þ cos aÞ þ t
ecu; etuÞ2cEtR

2t (54)

kp ¼ rt
Etð1� cos aÞR ¼ M

2cð1� cos aÞEtR3t
(55)

(4) Case 6

Fig. 9 shows the stress and strain distributions in Case 6.
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Eqs. (56)–(61) express the curvature analysis of a double-pole bamboo beam in Case 6.

et
ecp

¼ rtEc

rcuEt
¼ ap

b
¼ 1� cos a

cos a� cosðaþ bÞ (56)

b ¼ arccos½cos a� b
ap

ð1� cos aÞ� � a (57)

sin a� a cos a

1� cos a
þ sinðaþ bÞ � sin a� b cos a

bð1� cos aÞ � 2p � a � b

ap
¼ 0 (58)

c ¼ �0:75 sin 2aþ 0:5aþ acos2a

1� cosa
þ 0:25 sin 2ða þ bÞ � 2 sinða þ bÞ cosa þ 0:75 sin 2a þ 0:5b þ bcos2a

bð1� cosaÞ
þ p cosa þ sinða þ bÞ � ða þ bÞ cos a

ap
þ pðR cosa þ 2R þ tÞ

Rap

(59)

Mu ¼ 2crtmR
2t ¼ minð Rð1� cos aÞ

Rð3þ cos aÞ þ t
ecu; etuÞ2cEtR

2t (60)

kp ¼ rt
Etð1� cos aÞR ¼ M

2cð1� cos aÞEtR3t
(61)

2.4 Load-Deflection Curves
For a simply supported beam, the bending moment is easily plotted. Fig. 10a shows the bending moment

diagram under an external loadMðP; xÞ and Fig. 10b shows the bending moment diagram under the unit load
MðxÞ. According to the relationship between the curvature and bending moment, the load-deflection curve
DðPÞ at the unit load point can be calculated using the virtual work principle, as defined in Eq. (62).

DðPÞ ¼
Z L

0
MðxÞk½MðP; xÞ�dx (62)

where k½MðP; xÞ� refers to the relationship between the curvature and bending moment. The curvature k is a
function of bending moment M .

Fig. 11 shows the calculation process of the load-deflection curves. There are three steps in the
calculation. For a single-pole bamboo beam, 1) The maximum bending moment of the elastic stage Mp

and the ultimate bending moment Mu should be solved. Two bending moments are adopted to
differentiate the elastic stage, elastic-plastic stage, and failure stage. 2) When a bending moment M is

(a) (b)

P

y
x

M(P, x)

1

L1L2 / (L1 + L2)

L1 L2

Figure 10: Bending moment diagram of external loads and unit load. (a) External load and (b) Unit load
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given, the stage can be determined. Then, the curvature k is calculated for the corresponding stage. Based on
the previous analysis, a function for calculating curvature k has been established, where the bending moment
M is an independent variable. 3) Finally, the moment diagramMðP; xÞ, induced by external load P, is plotted.
The load-deflection curve DðPÞ can be calculated using Eq. (62).

(a)

(b)

Plot moment diagram M(P, x)
for different P

M ≤ Mp

kp

Eqs. (17), (20), (23), (27)
ke

Eqs. (6), (10), (14)

Given variables
Et, σtu, Ec, σcu, εcu, R, t

Mp

Eqs. (6), (10), (13)

k(M)

Calculating deformation Δ(P)
By Eq. (62)

Mp ≤ M ≤ Mu

Mu

Eqs. (17), (20), (23), (26)

Calculating curvature k for different M
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Figure 11: Calculation process of load-deflection curves. (a) Single-pole bamboo beam and (b) Double-pole
bamboo beam
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The elastic stage of a double-pole bamboo beam can be considered for two cases and the elastic-plastic
stage for four. For this reason, the first two steps for a double-pole bamboo beam are more complicated.
However, the load-deflection curve calculations are the same as for a single-pole bamboo beam. The
critical bending moment Mi is the maximum bending moment of case i in the elastic-plastic stage. It is
utilized to differentiate four cases in the elastic-plastic stage. The solution for Mp contains two types of
conditions that correspond to two cases of the elastic stage. Failure in the elastic-plastic stage may occur
in one of four cases; thus, the solution of Mu includes four types of conditions.

2.5 Influence of Interfacial Slippage
The interfacial slippage between two bamboo poles is difficult to avoid; this has not been previously

considered in double-pole bamboo beam analyses. The influence of interfacial slippage is analyzed based
on the following assumptions: 1) The bamboo materials are linearly elastic. 2) The shear force at the
interface is proportional to the slippage. 3) The curvatures and deflections of the two bamboo poles are
consistent. 4) The shear deformation is not considered when the plane-section assumption is satisfied.

Fig. 12 shows an interfacial slippage diagram. The equilibrium differential equation, based on a tiny
segment, is presented in Eq. (63). When the boundary conditions are imported, the interfacial slippage u
can be solved. For simply supported and free ends, u0 ¼ 0; for a fixed end and symmetric section, u ¼ 0.
Then, the extra curvature ks caused by the interfacial slippage can be calculated using Eq. (66). The extra
curvature ks is a function of the vertical shear force V . Ultimately, Eq. (67) provides the method for
solving the extra deflection DsðPÞ caused by interfacial slippage.

u00 � a2u ¼ VD=EI0 (63)

a2 ¼ KD2

EI0ð1� EI0=EI1Þ D ¼ 2Rþ t (64)

EI1 ¼ EI0 þ EAD2 EI0 ¼ E1I1 þ E2I2 1=EA ¼ 1=E1A1 þ 1=E2A2 (65)

ks ¼ ð1� EI0=EI1Þu0=D (66)

DsðPÞ ¼
Z L

0
Mks½V ðP; xÞ�dx (67)

where D represents the distance of the horizontal symmetry axes in the two bamboo poles. K is the shear
stiffness of the interface per unit length. For simplification, the difference in the elastic modulus is not
considered in the tensile and compressive states. The influence of not considering the difference can be
ignored, which will be demonstrated in the following analysis. E1 and E2 are the elastic moduli of the top
and bottom bamboo poles, respectively, i.e., the mean value of Et and Ec. I1 and I2 represent the moments
of inertia and A1 and A2 represent the sectional areas.

dx
y

x

u

D

Figure 12: Interfacial slippage diagram
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3 FE Analysis of Bamboo Beams

3.1 Single-Pole Bamboo Beam
FE analysis was adopted to validate the above analysis. Fig. 13a manifests the two-point loading pattern

that is recommended for bending tests on bamboo [1]. This two-point loading pattern was adopted to conduct
a case study of bamboo beams. The bending moment diagram of two-point loading is similar to that of a
uniform load. To calculate the midspan deflection, Fig. 13(b) displays the bending moment diagram of
the midspan unit load.

Fig. 14 presents the FE model of a single-pole bamboo beam, using the method presented in the
literature [38]. The span was 3 m and the section size was Φ100 × 8 mm. Coupling was used at two
loading points and two support points. The solid element C3D8R was employed. The overall mesh size
was 16 mm while the mesh size in the thickness direction was 4 mm. The properties of the bamboo are
listed in Tab. 1. The different elastic moduli in the tensile and compressive states could not be simulated
in the FE model. Therefore, the mean values of Et and Ec were applied. Based on the original model, two
additional FE models that consider the taper and bamboo joints were developed. The taper was 0.6% and
the thickness of the bamboo joints was 8 mm. The properties of the joints are consistent with those of
bamboo. The joints were tied to the internal surface at intervals of 300 mm. In addition, single-pole
bamboo beams with spans of 4.5 m and 6 m were simultaneously analyzed.

(a) (b)

P/2

y
x

M(P, x)

P/2
L/3 L/6 L/3L/6 1

L/4

L/2 L/2

Figure 13: Bending moment diagram of two-point loading and midspan unit load. (a) Two-point loading
and (b) Midspan unit load

Original model

Consid
er taper effect

Consid
er bamboo joints

Original model before meshing

P/2

P/2Coupling

Bamboo joint

Figure 14: FE model of a single-pole bamboo beam

Table 1: Properties of the bamboo [23]

Et/GPa Ec/GPa rtu/MPa rcu/MPa ecu
13 12 180 60 0.02
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Fig. 15 compares the theoretical and FE results for a single-pole bamboo beam. When the difference in
the elastic modulus is not considered, the load-deflection curves can be calculated from theoretical analysis
(the ‘Theory-Simplify’ curves in Fig. 15). These match well with the theoretical load-deflection curves when
the difference is considered. Consequently, the mean values of Et and Ec are utilized in the FE analysis.

During the initial stage, the FE results are consistent with the theoretical results. However, there are
some discrepancies in the large deformation stage. The load-deflection curves (referred to as FE-Linear
because the FE model is analyzed without considering geometric nonlinearities) almost coincide with the
theoretical results, indicating that the discrepancy is caused by geometric nonlinearity. The effect of
tapering and joints along the length of the bamboo beam is limited. Considering these two factors
improves the similarity between the load-deflection curves and original model.

Fig. 16 shows the ultimate state of single-pole bamboo beams with a span of 3 m. The neutral axis moves
downward due to the greater tensile strength. When the geometric nonlinearity is not considered, the
horizontal displacement of the support points is negligible. After considering the taper, the deformation is
asymmetric and the maximum stress occurs on the left side with a smaller section size. The stress and
deformation distributions when considering the bamboo joint are the same as those of the original model.

3.2 Double-Pole Bamboo Beam without Interfacial Slippage
Fig. 17 depicts the FE model of a double-pole bamboo beam. The modeling strategy was identical to that

of a single-pole bamboo beam. The axial connector was adopted to simulate the tangential interaction of the
top and bottom bamboo poles. The normal interaction was determined as a hard contact. Two bamboo poles
were evenly divided into thirty sections along the axis and thirty connectors were installed. For different
spans, each connector joined different beam lengths. When the spans were 3 m, 4.5 m, and 6 m, the
connected lengths l were 100 mm, 150 mm, and 200 mm, respectively. Coupling was used to link the
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Figure 15: Comparison of theoretical and FE results for single-pole bamboo beams. (a) L = 3 m, (b)
L = 4.5 m and (c) L = 6 m
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connector and corresponding parts. Two bamboo poles in the FE model were placed in opposite directions to
negate the poles’ taper. The bamboo joints in the top and bottom bamboo poles were evenly distributed along
the axis. To investigate the flexural behavior of a double-pole bamboo beam without slippage, the stiffness of
the axis connectors was set as infinite.

Fig. 18 compares the theoretical and FE results for a double-pole bamboo beam. The FE results match well
with the theoretical results Eqs. (63)–(67). The deformation capacity of single-pole bamboo beams is twice that
of double-pole bamboo beams. Therefore, the influence of geometric nonlinearity is not obvious in double-pole
bamboo beams. Owing to the reverse placement of two poles, the influence of the taper is reduced.

Fig. 19 displays the ultimate state of double-pole bamboo beams with a span of 3 m. Interfacial slippage
is not observed in the four FE models and the neutral axis moves downward. The horizontal displacement of
the support points is small and the influence of geometric nonlinearity is restricted. The stress and
deformation distributions also illustrate that the taper has little effect on the flexural behavior of double-
pole bamboo beams.

Figure 16: Ultimate state of single-pole bamboo beams (L = 3 m). (a) Stress distribution (Unit: MPa) and (b)
Deformation distribution (Unit: mm)
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3.3 Double-Pole Bamboo Beam with Interfacial Slippage
The theoretical analysis of the interfacial slippage is only suitable for the elastic stage [39–41]. The FE

analysis can compensate for this. Four FE models, with different connector stiffnesses S, were established.
The individual stiffnesses were set as 6.4 kN/mm, 1.6 kN/mm, 0.4 kN/mm, and 0 kN/mm. Fig. 20 depicts the
load-deflection curves with interfacial slippage. The FE results agree well with the theoretical results in the
elastic stage. The connector stiffness S has a significant influence on the flexural behavior of double-pole
bamboo beams. When the stiffness is 6.4 kN/mm, the load-deflection curve is close to that when slippage
is not considered. The shear stiffness of the interface per unit length K is the ratio of the connector
stiffness S to the connected length l (Eq. (68)). Thus, the K requirement decreases with increasing span.

K ¼ S=l (68)
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Figure 17: FE model of a double-pole bamboo beam
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Fig. 21 compares the slippage distribution of double-pole bamboo beams in the elastic stage. The
theoretical analysis of interfacial slippage proves to be correct and reasonable. The slippage is

Figure 19: Ultimate state of double-pole bamboo beams (L = 3 m). (a) Stress distribution (Unit: MPa) and
(b) Deformation distribution (Unit: mm)

(a) (b) (c) 

0

10

20

30

40

50

0 30 60 90 120 150

Deflection/mm

Theory FE
Theory-6.4 FE-6.4
Theory-1.6 FE-1.6
Theory-0.4 FE-0.4
Theory-0 FE-0

Load-displacementcurves
0

5

10

15

20

25

30

0 50 100 150 200 250 300

Deflection/mm

Theory FE
Theory-6.4 FE-6.4
Theory-1.6 FE-1.6
Theory-0.4 FE-0.4
Theory-0 FE-0

Load-displacement curves
0

5

10

15

20

25

0 100 200 300 400 500 600

Theory FE
Theory-6.4 FE-6.4
Theory-1.6 FE-1.6
Theory-0.4 FE-0.4
Theory-0 FE-0

Load-displacement curves

Deflection/mm

L
oa

d 
/ k

N

L
oa

d 
/ k

N

L
oa

d 
/ k

N

Figure 20: Load-deflection curves with interfacial slippage. (a) L = 3 m, (b) L = 4.5 m and (c) L = 6 m
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concentrated at the beam ends. With increasing connector stiffness, the interfacial slippage gradually
decreases. Fig. 22 shows the interfacial shear force of the double-pole bamboo beams when the connector
stiffness is 6.4 kN/mm. The interfacial shear force is equal to the axial force on the connectors.
Considering symmetry, only the axial force of the fifteen connectors on the left side of the bamboo beam
are presented. The connectors are numbered from left to right. Connector 1 is near the left support point
and the axial force there is the greatest. Fig. 23 displays the ultimate states of the double-pole bamboo
beams when the connector stiffness is 0 kN/mm. Two neutral axes are observed in the top and bottom
bamboo poles. The stress distribution is similar to that of a single-pole bamboo beam. Significant
interfacial slippages are observed at both ends of the double-pole bamboo beams.
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Figure 21: Slippage distribution of the double-pole bamboo beams. (a) L = 3 m, (b) L = 4.5 m and (c)
L = 6 m
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Figure 22: Shear force analysis of the double-pole bamboo beams. (a) L = 3 m, (b) L = 4.5 m and (c) L = 6 m

3.4 Novel Configuration to Avoid Slippage
Fig. 24 proposes a novel configuration to avoid slippage. Two bamboo poles are bound together using

diagonal steel bands. The inclination of the steel band conforms to the direction of slippage. Owing to the
diagonal arrangement, the tension stiffness of the steel bands is converted to horizontal shear stiffness
between the two bamboo poles. The top and bottom areas of the steel band compressing the bamboo
poles should be firmly fixed to the poles. Structural adhesives and pneumatic nails are two recommended
methods. The methods should not damage the poles [24,25].

The diagonal steel bands should meet the two requirements of stiffness and strength. Fig. 25 shows the
stiffness of a single diagonal steel band S, which can be calculated using Eq. (69). The ultimate bearing
capacity of the steel band Fu is also deduced using Eq. (70). Moreover, the quantity of steel in the
diagonal area m is an important economic consideration, as shown in Eq. (71), since it contributes to the
cost of these measures.
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Figure 23: Ultimate state of double-pole bamboo beams with interfacial slippage. (a) Stress distribution
(Unit: MPa) and (b) Deformation distribution (Unit: mm)
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Figure 24: FE model of a double-pole bamboo beam with diagonal steel bands (L = 3 m)
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Figure 25: Mechanical diagram and FE model of a single diagonal steel band
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S ¼ F=d ¼ 2Ebwtbcos
2hb sin hb=D (69)

Fu ¼ 2fywtb cos hb (70)

m ¼ 2wtbD= sin hb (71)

where Eb and fy are the elastic modulus and yield stress of the steel band, respectively. w and tb represent the
width and thickness of the band, respectively. hb refers to the inclination angle.

The steel band cannot be sufficiently broad for the shear deformation to cause uneven stretching. Thus, a
steel band width of 20 mm is suggested. The thickness of 2 mm is decided to facilitate fabrication. An ideal
elastic-plastic constitutive model is adopted for the following analysis and the yield stress of the steel band is
235 MPa. Fig. 26 shows the results of the theoretical analysis. The ratio of S to m and the ratio of Fu to m are
greatest when the inclination angle hb is 45°. Thus, it is cost-effective for hb to be 45°. At this moment, the
stiffness of a single diagonal steel band S is 58.3 kN/mm and the ultimate bearing capacity Fu is 13.3 kN.
Fig. 27 presents the FE results of a single diagonal steel band, which agree well with those of the
theoretical analysis.

The steel band combined with bamboo is also simulated. The FE model is illustrated in Fig. 25. The
length of the bamboo sample is 500 mm, which is sufficient to analyze the stiffness of the diagonal steel
band in working conditions. The steel band is attached to the top and bottom surfaces of the bamboo. A
shell element, S4R, with a mesh size of 4 mm, is implemented for the steel band. Fig. 27 presents the FE
results. The stiffness S decreases to 10.4 kN/mm due to the bamboo’s deformation. The ultimate bearing
capacity Fu is slightly affected and remains almost unchanged. These are the application parameters for
diagonal steel bands.
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Based on the model FE-0, a double-pole bamboo beam with diagonal steel bands is assembled, as shown
in Fig. 24. The spacing of the diagonal steel bands is equivalent to the connected length l, which is set to
200 mm in Fig. 24. The modeling strategy for the steel bands is identical to that in Fig. 25. Meanwhile, the
FE models with different spacings are simulated, presented in Tab. 2. The spacing enlarges as the span
increases. Fig. 28 compares the load-deflection curves. Note that the ultimate load and displacement are
smaller than those of the FE model without steel bands. Fig. 29 shows the ultimate state of the model with
steel bands, demonstrating that the steel band yielded completely and is not fastened to the bamboo poles.
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Figure 27: FE results of a single diagonal steel band

Table 2: Details of a double-pole bamboo beam with diagonal steel bands

L/m Case l/mm S/(kN/mm) K/(N/mm2) Fu/kN Fu=l/(N/mm)

3 FE 100 ∞ ∞ ∞ ∞

FE-6.4 100 6.4 64 ∞ ∞

Steel band-400 400

10.4

26

13.4

33.5

Steel band-200 200 52 67

Steel band-100 100 104 134

4.5 FE 150 ∞ ∞ ∞ ∞

FE-6.4 150 6.4 42.7 ∞ ∞

Steel band-600 600

10.4

17.3

13.4

22.3

Steel band-300 300 34.7 44.7

Steel band-150 150 69.3 89.3

6 FE 200 ∞ ∞ ∞ ∞

FE-6.4 200 6.4 32 ∞ ∞

Steel band-800 800

10.4

13

13.4

16.8

Steel band-400 400 26 33.5

Steel band-200 200 52 67
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Figure 28: Load-deflection curves with diagonal steel bands. (a) L = 3 m, (b) L = 4.5 m and (c) L = 6 m

Figure 29: Ultimate state of double-pole bamboo beams with diagonal steel bands (L = 3 m). (a) Stress
distribution (Unit: MPa) and (b) Deformation distribution (Unit: mm)
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When the span is 3 m and the spacing is 100 mm, the interfacial slippage can be restrained. Its load-
deflection curve is consistent with that of the FE model without slippage. The shear stiffness of the
interface per unit length K is 104 N/mm2, which is greater than that of FE-6.4. As shown in Fig. 22, it is
sufficient that the ultimate bearing capacity of the steel band Fu is 13.4 kN. To reduce costs, the spacing
should be increased to 200 mm. The initial slope of the load-deflection curve only reduces by 13.9%. A
spacing of 200 mm is recommended when the span is 3 m. In this case, K is 52 N/mm2, which is close to
that of FE-6.4.

4 Conclusions

In this study, the flexural behavior of single-pole and double-pole bamboo beams was investigated via
theoretical analysis. Simultaneously, the influence of interfacial slippage was analyzed. Then, an effective
configuration to avoid slippage was proposed and validated. The following conclusions can be drawn:

1. A method for calculating the load-deflection curve is proposed, considering the material’s
nonlinearity. FE analysis is conducted to validate the calculation method. The FE results match
well with the theoretical results. Moreover, the FE results indicate that the influences of the poles’
natural taper and bamboo joints are limited.

2. The interfacial slippage between the two bamboo poles is difficult to avoid in double-pole bamboo
beams. The shear stiffness of the interface per unit length has a significant influence on the flexural
behavior of double-pole bamboo beams. For different shear stiffnesses, the load-deflection curves are
obtained via theoretical and FE analyses.

3. A novel configuration using diagonal steel bands is presented to avoid slippage. Owing to the
diagonal arrangement, the tension stiffness of the steel band can be converted to horizontal shear
stiffness between the two bamboo poles. An inclination angle of 45° is suggested to adequately
develop the stiffness and bearing capacity of the band.
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