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ABSTRACT

Present study deals with the biodegradable behavior of individual components and their preforms of nonwoven
biocomposites developed from waste wool fibers including coring wool (CW), dorper wool (DW) and recycled
polyester fibers (RPET). A respirometric technique was employed to estimate the production of CO2 during
the biodegradation experiments under soil and aqueous media conditions. Functional groups of test samples
before and after biodegradation were analyzed using Fourier transform infrared spectroscopy (FTIR). Leaching
chemicals such as formaldehyde (hydrolyzed) and Chromium VI (Cr VI) was also measured. The CO2 emission
in wool fibers CW and DW indicated 90% and 60% biodegradation in soil burial and aqueous media conditions
respectively, for 100 days incubation. RPET fibers, 20% and 10% biodegradation in soil burial and aqueous media
conditions was measured respectively while the preforms of waste wool and RPET reflected 30% and 25% biode-
gradation in soil burial and aqueous media conditions, respectively. The degradation of end functional groups
such as carbonyl (keto and ester), aldehyde and hydroxyl were also confirmed by FTIR. The DW and CW wool
fibers showed higher Cr(VI) concentration as compared to the RPET. The released formaldehyde results showed
higher concentration for RPET preforms as compared to waste wool preforms. These results suggest that waste
wool preforms are extremely environment friendly as compared to RPET preforms. Thus, waste wool preforms it
can be potentially utilized for preparing biocomposite materials and associated biobased products.
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1 Introduction

Biobased materials and its composite products made from natural fibers and polymers have attracted
considerable attention because of their ability to reduce environmental pollution by allowing degradation
of materials in soil and compost conditions. The plant based natural fibers are easily biodegradable, have
minimum effect on the environment and they have been explored as new sources of raw materials to
produce composite materials [1–4]. The main advantages of these materials are low cost, abundantly
available, renewable, environmental friendly and low carbon footprint. However, the hydrophilic
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characteristics of these natural fibers make low adhesion between hydrophobic polymer matrix, which cause
rapid deterioration, and loss of strength of the composite material [5,6]. Natural fibers from animal sources
like waste wool obtained from sheep consisting of short fibers which are not suitable to make apparel fabrics.
Waste wool is considered to have a lower environmental impact than other natural fibers as it requires less
energy to process and dispose [7]. In nature, microorganisms like dermatophytic fungi, Bacillus and
Streptomyces bacteria degrade wool slowly and the degradation mainly depends on abiotic (pH,
temperature, sunlight) and biotic (soil, compost and aqueous) environmental conditions. About 70% wool
fibers are degraded in 100 days under controlled composting conditions [7]. The wool rate of
biodegradation is influenced by the soil composition, pH, oxygen and temperature. During degradation,
wool nutrients become available to the plants. Waste wool can be mixed with other building materials to
make affordable composite building materials such as mats. Wool geotextiles are used to cover soil to
minimize moisture evaporation and provide thermal protection for plants [8]. Waste wool can also be
used as a filtration material as it is able to react with volatile organic compounds and formaldehyde. It
can also be used as a fertilizer when it degrades [9].

In recent years, many research papers have been published dedicated on the biodegradation studies of
polymeric materials derived from natural and synthetic origin. In literature, one of the most commonly used
technique is weight loss of the polymeric samples, however, the weight loss measurement of the samples are
not directly related with true biodegradation, i.e., measuring polymeric carbon conversion into CO2. Weight
loss of polymeric materials is a primary degradation step breaking the long chain molecular into
smaller oligomers and monomers influenced by various environmental abiotic (heat, UV, humidity) or
biotic factors (enzymatic), and both. Monitoring CO2 release from polymeric materials action by
microorganisms is direct evidence of ultimate biodegradation (mineralization) in contrast to just
deterioration or disintegration and weight loss [10]. This CO2 biodegradation test method is globally
accepted by established standards such as ISO, ASTM and European normative for claiming
environmental friendly polymeric materials. Therefore, the present study CO2 biodegradation techniques
was followed for studying biodegradation of wool fibers in soil and aqueous media conditions.

Synthetic polymers containing structural units of typical terephthalic polyesters (PET) are being widely
used in man-made fibers for apparel, technical textiles and composite materials [11]. The biodegradability of
natural and synthetic polymers depends on various physical and chemical configuration including internal
structure, hydrophilic characteristics, thickness and also environmental factors where these are disposed
such as land fill, compost, soil and aqueous media conditions [12]. The biodegradability of materials and
products cannot be predicted based on the raw materials whether it is bio-derived or synthetic origin.
To claim biodegradable materials and products, it requires CO2 measurement to validate the complete
biodegradation that leaves no toxic residues in a defined period as per the relevant standard test methods
[13–15]. For this reason, every new product is necessary to be verified in their biodegradability in natural
environmental conditions [13–15].

The aim of this study was to investigate the potential biodegradation behaviors of raw materials (fibers)
and preforms developed from these fibers (waste wool and recycled polyester (RPET) by measuring the CO2

evolution from these test samples under soil and aqueous media conditions. Fourier transform infrared
spectroscopy (FTIR) functional groups characterization of test samples before and after biodegradation
were analyzed for identifying the degradation mechanisms. Also, formaldehyde (free and hydrolyzed)
and Chromium VI content were analyzed to determine any carcinogenic compounds leached from the
test samples.
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2 Material and Methods

2.1 Materials
In this study, two different sheep breed waste wool fibres coring wool (CW) and dorper wool (DW) were

obtained from Eastern Cape Province, South Africa. Recycled polyethylene terephthalate (RPET) was
obtained from PETCO, South Africa. The chemicals 1, 5-diphenylcarbazide, chromium hexavalent
(CrVI), potassium hydroxide (KOH), hydrochloric acid (HCl), barium chloride (BaCl2), phenolphthalein
and other synthetic media used in this work were analytical grade obtained from Sigma-Aldrich,
South Africa.

2.2 Nonwoven Mat Preparation
Various preforms in the form of nonwoven mats were prepared from waste wool and RPET fibers. For

preparing the nonwoven mat, each individual fibres was prepared using needle punching equipment (Tab. 1).
The following specification of fibres were used in this study: CW-diameter 20.7 μm, staple length 22 mm;
DW-diameter 28.6 μm, staple length 38 mm; and RPET-a linear density of 6.7 denier per filament, staple
length 32 mm. Nonwoven mat of 100% pure CW and DW were prepared without any RPET. Similarly,
100% pure RPET fibre non-woven mat was also prepared. In another set, nonwoven mats of CW/RPET
(50/50%) and DW/RPET (50/50%) were also prepared. All these mats are nominal area weight of
1000 g/m2 and having thickness ranges from between 15–17 mm (Tab. 1). All the test samples were
conditioned for 24 h prior to testing in a standard testing atmosphere maintained at 65 ± 5% humidity and
20 ± 2°C temperature.

2.3 Biodegradation Testing
The biodegradation of nonwoven test samples CW, DW, RPET and DWP and CWP was performed in

soil and aqueous media conditions. The test samples microbial assimilation conversion to carbon dioxide
(CO2) were evaluated by respirometric technique.

2.3.1 Soil Burial Testing
For soil burial biodegradation test, a fresh agricultural field surface soil was collected at CSIR

Port Elizabeth campus, South Africa. Tab. 2 illustrates the physical-chemical analysis of the soil used in
this study.

The fresh soil collected was sieved into ≤ 1 mm. Further, it was mixed with finely powdered perlite in
1:1 dry weight ratio to maintain the humidity and to keep the biometer flask in aerobic conditions, as well as

Table 1: Nonwoven sample compositions and its thickness. Adapted with permission from Ref 7, copyright
2021, Elsivier

Sample code Sample composition Number of layers Thickness (mm)

Coring wool (CW) 100% Single 15

Dorper wool (DW) 100% Single 17

Recycled polyester (RPET) 100% Single 16

Coring wool product (CWP) 50% (CW)
50% (RPET)

Double 16

Dorper wool product (DWP) 50% (DW)
50% (RPET)

Double 17
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to eliminate noise variations. Fig. 1 shows the schematic diagram of soil biodegradation set up and 1 L
capacity biometer flask with air tight seal setup used in this study.

In this biodegradation set up, 15 g perlite wetted with 15 ml distilled water was placed in the bottom
layer, followed by 100 gram of soil/perlite in the middle layer. Approximately 16 mg of test sample to
1 gram dry soil ratio was buried in the middle layer. Thereafter, another 15 gram of perlite wetted with
15 ml of distilled water was placed on the upper layer. A glass beaker filled with 40 ml 0.1 M KOH was
placed on the top of upper layer of reactor to trap the CO2 evolved from test samples. Three replicates for
each test sample including blank (soil without test sample) and a known biodegradable material
microcrystalline cellulose was also tested as positive reference. These biometer flasks were kept in room
temperature at 23–25°C in dark condition, which simulates the conditions of real soil environment. At
every 1–3 day interval, the KOH solution was removed from reactor with adding 1 mL of 1 N
BaCl2 solution to covert soluble K2CO3 into insoluble BaCO3. The solution was back titrated with 0.1 N
HCl by adding a drop of phenolphthalein as an indicator. After titrations, each beaker washed and refilled
with fresh standard 0.1 N KOH solution.

2.3.2 Aqueous Biodegradation Test
The aqueous biodegradation of test materials was conducted in a synthetic mineral salt aqueous medium

at pH 7.4 ± 0.2 using 250 mL bioreactor (Fig. 3). The mineral salt aqueous medium contains the following
composition in per litre distilled water: Na2HPO4 (334 mg), K2HPO4 (218 mg), CaCl2 (72 mg), KH2PO4

Table 2: Physical and Chemical analysis of the soil material

Analysis Soil

Total dry solids (%)a 80.9

Volatile solids (%)b 23

pH of compost solution 7.2

Total organic carbon amount (%) 3.4

Total nitrogen amount (%) 0.12
Note: a) The amount of solids obtained by taking a known volume of soil and drying at about 105�C for 10 h.

b) The amount of solids obtained by subtracting the residue of a known volume of soil after
incineration at about 550�C.

Figure 1: a) Schematic diagram of biodegradation set up and b) a real biometer flask respirometric system
used for studying the biodegradation of test samples in soil condition
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(35 mg), MgSO4 7H2O (23 mg), (NH4)2 SO4 (10 mg), NH4 NO3 (10 mg) and FeCl6 H2O (0.3 mg). For the
aqueous biodegradation test, microbial inoculum derived from activated sludge of wastewater treatment plant
was collected at Port Elizabeth, South Africa. 1 ml of microbial inoculum was filtered using whatman filter
paper and then inoculated into each 100 ml sterilized mineral salt medium bioreactor. After adding microbial
inoculum to the bioreactor, a plastic vial with series of holes containing 20 ml of 0.1 M KOHwas used to trap
the CO2 evolved from the biodegradation process as shown in Fig. 2a. Each test sample (mineral salt medium
+ microbial inoculum + test sample), blank control (mineral salt medium + microbial inoculum) and a known
biodegradable water soluble polymer aniline was also tested as positive reference. All test samples were
tested in three replicates and these bioreactor flasks were kept in room temperature at 23–25°C in the
dark condition, which simulates the conditions of real aqueous environment. At every 1–3 day intervals,
the KOH solution containing trapped CO2 was back titrated with 0.1 N HCl by adding 1 mL of 1 N

Figure 2: (a) Schematic diagram of biodegradation set up and (b) a real bioreactor respirometric system used
for studying the biodegradation of test samples in aqueous medium

Figure 3: CO2 biodegradation results of test samples (CW, DW, RPET, CWP and DWP) in soil burial
conditions
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BaCl2 solution to covert soluble K2CO3 into insoluble BaCO3 by adding a drop of phenolphthalein as an
indicator. After titrations, each beaker washed and refilled with fresh standard 0.1 N KOH solution.

2.3.3 Determination of CO2 and Evaluation of Percentage Biodegradation
The following chemical reactions and equations were followed to measure the percentage

biodegradation (Eqs. (1)–(5)).

CO2 þ 2KOH ! K2CO3 ðsoluble productÞ þ H2O (1)

K2CO3 þ BaCl2 ! BaCO3 þ 2KCl (2)

Tc is total of carbon (g) present in the test sample analysed by elemental analysis.

Tw is the weight (g) of test sample used for the biodegradation test.

ThCO2 is the theoretical CO2 that test sample contains.

Tc ðgÞ ¼ carbon � Tw ðgÞ (3)

ThCO2 ¼ Tc ðgÞ � 44g CO2 =12g C (4)

The percentage biodegradation was calculated based on the below Eq. (5):

Biodegradation ð%Þ ¼ ½ðCO2Þ sample� ðCO2Þ blank=ThCO2� � 100 (5)

2.4 Fourier Transform Infrared Spectroscopy (FTIR) Analysis
FTIR technique was utilized to collect IR spectra of the test samples before and after biodegradation.

The total reflectance of the fabric test samples was analyzed on a PerkinElmer IR spectrometer with
32 scans and IR information for the sample was collected and processed with OMNIC software. After
1 month soil biodegradation, a small amount of test samples were taken and carefully washed with
distilled water to remove soil and dried at 40°C for 8 h for measuring the spectra.

2.5 Determination of Leach Chemicals from Fibers
In this work, soluble chromium (Cr) (VI) and formaldehyde (hydrolyzed) were analyzed in the test

samples if any carcinogenic compounds leached from the test samples. Soluble Cr(VI) leached from the
test sample in aqueous solution at pH 5.5 was analyzed by solid phase extraction method as per the BS
EN ISO 17075 test method. Perkin Elmer Spectrometer (UV, visible and NIR) was used to measure the
Cr(VI) concentration in solution that oxidizes 1, 5-diphenylcarbazide to 1, 5-diphenylcarbazone to give a
red/violet complex with chromium which can be quantified spectrophotometer absorbance at 540 nm.
Similarly, the amount of formaldehyde was measured by extracting the fiber samples using a mild
detergent solution and a known aliquots solution was measured at absorbance 412 nm using
spectrometric techniques.

3 Results and Discussions

In this work, the biodegradation behaviors of raw materials (fibers) and preform of nonwoven
biocomposites made from waste wool fibers such as CW and DW and RPET fibers were tested under
aerobic soil burial and aqueous media conditions using respirometric CO2 evolution methods. Figs. 3 and
4 show the percent biodegradation of test samples in aerobic soil burial and aqueous media conditions
and conversion of carbon to evolved CO2 has been studied.

The obtained test results showed that waste wool fibers CW and DW undergo readily degraded by the
action of microorganisms present in the soil (Fig. 3). There was an accelerated biodegradation in the first
30 days reaching 40% biodegradation, thereafter a slow exponential phase degradation occurred reaching
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90% within 100 days incubation under soil medium conditions. The first acceleration phase could be due to
the soil microorganisms degrades the waste wool fibers low molecular weight compounds and
simultaneously secretes enzymes to breakdown the remaining hydrophilic fibers into low molecular
weight compounds for the second step microbial assimilation process. Also, it is important to mention
that the rate of waste wool degradation which was mainly influenced by its chemical compositions made
from keratin. The enzymatic degradation of proteins may occur readily for fatty acids and delay of
degradation which could be due to the cross linked structure of keratin, which has high concentration of
sulphur crosslinks [8]. In contrast, the man-made RPET fibers showed a lag phase in the first 8–9 days
incubation where there was no microbial activities but after that there was a slight increase in the CO2

production reaching 20% biodegradation in 100 days. It is well known that conventional polyester is not
readily biodegradable due to the physical and chemical properties such as high molecular weight,
hydrophobicity and crystallinity. These physical-chemical factors severely influence the rate of
biodegradation in the adopted soil and aqueous medium conditions. On the other hand, the preforms of
CWP and DWP showed a lag phase in the 5–7 days incubation where the soil microorganisms were
acclimatized to the conditions to degrade and assimilate to final products. A slight exponential phase
reached 30% biodegradation in 100 days. The obtained CWP and DWP results were mainly due to the
degradation of waste wool fibers and not from other man made RPET fibers (Fig. 3).

Fig. 4 shows the aqueous biodegradation results of test samples CW, DW, RPET, CWP and DWP. The
test samples of waste wool fibers CW and DW showed a lag phase in 11 days where there was no microbial
degradation in the adopted aqueous conditions. This could be due to the microorganism acclimatization stage
to the environment. After 11 days, there was a slight exponential phase reaching 40% in 60 days, followed by
a slow CO2 production where it reached 55% within 100 days incubation. The man-made RPET fibers
showed a lag phase in the first 30 days, thereafter a slow biodegradation reaching 10% for 60 days and
approached a stationary phase where no CO2 emissions. However, an exponential phase was observed for
the preforms CWP and DWP test samples approaching 20% biodegradation in 100 days incubation. The
obtained results suggested that soil conditions is more vulnerable for the biodegradation of waste wool
fiber based materials as compared to aqueous condition. Volova et al. [16] reported that the rate of
biodegradation in compost and soil is higher, which mainly due to abiotic conditions temperature is
influenced for degradative reactions as compared to costal tropical water. Moreover, the concentration and
diversity of microbial communities are higher in soil as compared to aqueous media. Therefore, the

Figure 4: CO2 biodegradation results of test samples (CW, DW, RPET, CWP and DWP) in aqueous media
conditions
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present study the slow rate of biodegradation under aqueous media could be mainly due to low concentration
and microbial species presence.

Fig. 5 shows the FTIR results of test samples before and after 30 days soil burial biodegradation
condition. The FTIR characterization of waste wool fibers CW and DW showed a prominent changes in
the spectra in the intensities range of 3000 cm−1–3600 cm−1 corresponding to amide and hydroxyl groups

Figure 5: FTIR results of before and after biodegradation–waste wool fibers a) CW, b) DW; man-made fiber
c) RPET; preforms d) CWP and e) DWP
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and 1000 cm−1 to 1650 cm−1 corresponding to carbonyl groups (Tab. 3). The FTIR of CWwool fibers before
biodegradation showed higher intensities in the regions of 3100–3500 cm−1 and 1600–1800 cm−1 which is
mainly due to amino acids present corresponding to amide hydrogen and hydroxyl groups. The FTIR of CW
fibers after biodegradation showed significant reduction of peaks intensities. These results represent that the
initial functional groups present in the waste wool were attacked by soil microorganisms through hydrolytic
enzymatic processes into water soluble compounds where it can be easily assimilated by the microorganisms
for converting them into new biomass (Fig. 5a). The FTIR of DW wool fibers after biodegradation showed
significant increase in the regions of 3100–3500 cm−1 and 1600–1800 cm−1 which could be mainly due to
primary degradation of longer chain molecules into smaller water soluble compounds by enzymatic
hydrolysis process (Fig. 5b). On the other hand, man-made RPET was not severely affected in the
functional groups, however, there was slight increases in the absorbance of 1650 cm−1 carbonyl keto and
ester groups formation. These increases in carbonyl functional groups represent the absorption of water
molecules, which may easily attacked by abiotic and biotic, factors (Fig. 5c). Moreover, the increased
absorbance also represent the crystalline structural molecules change into amorphous phase, which means

that test materials were degraded. The same phenomena was shown in preforms of CWP and DWP, major
degradation in the waste wool fibers CW and DW components, but no significant changes in the RPET
fibers (Figs. 5d and 5e).

Harmful chemical substances such as Cr(VI) and formaldehyde content in the textile and nonwoven
products are necessary to be evaluated in order to determine harmful substances. Tab. 4 shows leaching
chemicals Cr(VI) and hydrolyzed formaldehyde present in these test samples. The Cr(VI) is being used in
textile industry as pigments in dyes, as anticorrosive agents for surface coatings, protective coating and
other applications. The Cr oxidizing groups are toxic as well as carcinogenic and the use of hexavalent
chromium in textiles prohibited by the restriction of hazardous substances directive. With these aspects,
the test carried out on individual fiber components and preforms showed that, Cr(VI) component was
slightly higher for DW (3.56 mg/kg) as compared to CW and RPET fibers (Tab. 4). Similarly, released
formaldehyde from RPET showed highest (19.52 mg/kg), whereas for waste wool fibers (CW), it was
18.67 mg/kg. The released formaldehyde from waste wool preform was 17.56 mg/kg, which is lowest
among the samples. These results suggest that waste wool preforms are more environment friendly as

Table 3: FTIR results of functional groups present in wool fibers and synthetic fibers [17]

Wavelength (cm−1) Chemical bonds

998–1100 Vibrations of S–O, C–H bond

1210–1290 C=O region

1361–1470 C–N bond

1500–1572 N–H bond

1600–1700 C=O region

1720–1750 C–C(O)–O

2850–3000 C=H, C–H region

3100–3500 N–H and O–H region
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compared to the RPET preforms where it can be potentially used for design and preparation of non-woven
biocomposites materials and biobased products.

4 Conclusions

The biodegradation behaviors of RPETand waste wool preforms were reported in this paper. Wool fibers
(DW and CW), synthetic recycled polyester fibers and their preforms (DWP and CWP) were studied in soil
and aqueous conditions by measuring the CO2 evolution. The functional groups of these materials before and
after biodegradation were evaluated by FTIR spectroscopy. The leaching chemicals were evaluated in forms
of released formaldehyde (mg/kg) and Cr(VI) (mg/kg) as per standard test methods. The waste wool fibers
showed 90% biodegradation behaviors in soil and 60% biodegradation in aqueous media conditions for
100 days but no signification degradation in the RPET fibers. The slow rate of degradation of RPET
could be due to its physical-chemical composition as well as treatment involved during recycling of
fibers. The released formaldehyde content of RPET showed highest (19.52 mg/kg) as compared to waste
wool preforms (17.56 mg/kg). The results suggested that waste wool fibers based preforms (DWP and
CWP) are identical candidates to develop eco-friendly biocomposites materials and products.
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