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ABSTRACT

Cells adapt to their environment and stimuli of different origin. During confined migration through sub-cellular
and sub-nuclear pores, they can undergo large strains and the nucleus, the most voluminous and the stiffest orga-
nelle, plays a critical role. Recently, patterned microfluidic devices have been employed to analyze the cell
mechanical behavior and the nucleus self-deformations. In this paper, we present an in silico model to simulate
the interactions between the cell and the underneath microstructured substrate under the effect of the sole gravity.
The model lays on mechanical features only and it has the potential to assess the contribution of the nuclear
mechanics on the cell global behavior. The cell is constituted by the membrane, the cytosol, the lamina, and
the nucleoplasm. Each organelle is described through a constitutive law defined by specific mechanical para-
meters, and it is composed of a fluid and a solid phase leading to a viscoelastic behavior. Our main objective
is to evaluate the influence of such mechanical components on the nucleus behavior. We have quantified the stress
and strain distributions in the nucleus, which could be responsible of specific phenomena such as the lamina rup-
ture or the expression of stretch-sensitive proteins.
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1 Introduction

Cells continuously adapt themselves to their environment and stimuli they received (i.e., chemical,
electrical, mechanical, …) [1–3]. More specifically, they are able to undergo large strains during confined
migration through sub-cellular or sub-nuclear pores. During such a process, the nucleus, the most
voluminous and the stiffest cellular organelle, plays a critical role [4,5]. Some cells such as cancerous
cells can even undergo the rupture of the nuclear lamina to be able to migrate across healthy tissues [6,7].
Therefore, quantifying nucleus strains and stresses can be crucial to diagnose cancer and other
pathologies in patients.

To do so, patterned microfluidic devices have been employed during the last few years in order to
characterize the cell mechanical behaviour [8,9] and the nucleus self-deformations [10–13] and shape
changes [14,15] induced by mechanical forces, which are due to the interaction between the cell and the
topological surface. Assays on micropillared substrates involve successive steps: (i) contact between the
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cell and the pillars, (ii) adhesion of the cell on the pillars surface, (iii) cell spreading, (iv) cell polarization and
(v) cell crawling.

A series of analytical and numerical models exist in the literature focusing on the interactions between
the cell and a flat substrate. The former provides information on the spreading process with no excessive
computational cost [16–19]. The latter, which may be discrete [20–22] or continuum [15,23–25], allows
to investigate the intra-cellular rearrangement or to obtain quantitative results at the global or the local
scale. In our previous paper [26], we have proposed an in silico two-dimensional (2D) model which
simulates the first three steps (i.e., contact, adhesion and spreading) of the interaction between the cell
and the micropillared substrate and provides insights on the mechanisms inducing nuclear deformation.
We have been able to determine the role of the gravity and of the actin fibers above and beneath the
nucleus responsible for a pushing and a pulling force, respectively.

In the present paper, we have adapted the model presented in [26] and we have focused on step one only
(i.e., contact between the cell and the pillars). The cell and nucleus behaviours are described using specific
mechanical tools (i.e., constitutive laws, mechanical properties, fluid and solid phase balance). By
performing a sensibility study, our objective has been to determine the influence of these parameters on
the interaction between the cell and underneath micropillared substrate. Then, the model provides the
nucleus stress and strain fields over time and gives insights on the global cellular behavior that can be
further explored experimentally.

In Section 2, we describe the mathematical framework of the model including the geometry (Section
2.1), the constitutive laws governing the behaviour of the cell and of its components (Section 2.2), the
external forces applied to the cell (Sections 2.3 and 2.4) and the numerical implementation (Section 2.5).
The results of the different simulations are presented in Section 3 and some conclusions and perspectives
are drawn in Section 4.

2 Material and Methods

2.1 Cell Geometry
Given the symmetry conditions, we consider here the cell �c in its initial configuration as a semicircle of

radius rc (Fig. 1). It is constituted by the membrane �m (external radius rm ¼ rc and thickness tm), the cytosol
�cs (external radius rcs), the lamina �l (external radius rl and thickness tl) and the nucleoplasm �np (external
radius rnp) (Fig. 1). The membrane and the cytosol form the cytoplasm �cp, whereas the lamina and the
nucleoplasm form the nucleus �n. Each component of the cell �i is described via a spatial characteristic
function gi, which is the composition of a regularized Heaviside function H (equal to 0 and 1 for
negative and positive argument, respectively), and a level set function li. Then, the characteristic
functions describing the cell and its components are the following:

gc ¼ H � lc ¼ H � kp� c2c;pk � r2c

� �
(1)

gnp ¼ H � lnp ¼ H � kp� c2c;pk � r2np

� �
(2)

gl ¼ H � ll � gnp ¼ H � kp� c2c;pk � r2l

� �
� gnp (3)

gcs ¼ H � lcs � gl � gnp ¼ H � kp� c2c;pk � r2cs

� �
� gl � gnp (4)

gm ¼ H � lm � gl � gnp � gcs ¼ H � kp� c2c;pk � r2m

� �
� gl � gnp � gcs (5)
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with k � k the euclidean norm of a vector, p the initial position of any point of the system and cc;p the center of
the cell of coordinates cx; cy

� �
.

2.2 Constitutive Laws
Each cell component is composed of a solid and a fluid phase. To simplify the approach, we assume that

both phases deform in parallel like in a Kelvin–Voigt model. Consequently, the overall stress S and the
deformation F can be expressed as

S ¼ csSs;i þ cf Sf (6)

F ¼ Fs ¼ Ff (7)

where the subscripts s and f indicate the solid and the fluid phases, respectively, while the subscript i
indicates a specific constitutive law for the solid phase, as described in the followings (Section 2.2.1), and
cs and cf the respective concentrations are given by

cs ¼ cs;mgm þ cs;csgcs þ cs;lgl þ cs;npgnp (8)

cf ¼ cf ;mgm þ cf ;csgcs þ cf ;lgl þ cf ;npgnp (9)

cs;m ¼ 1� cf ;m (10)

cs;cs ¼ 1� cf ;cs (11)

cs;l ¼ 1� cf ;l (12)

cs;np ¼ 1� cf ;np (13)

Figure 1: Cell and substrate geometry at t = 0 s. The cell has an external radius rc and it is constituted by the
nucleus (nucleoplasm in blue and lamina in orange), external radius rn ¼ rl, and the cytoplasm (cytosol in
green and membrane in red), external radius rm. The substrate is constituted by a micropillar of height
hmp and width wmp and a flat region placed at y-coordinate yflat
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2.2.1 The Solid Phase
When describing the solid phase of an isotropic elastic material, for stability reasons, its strain energy

must be poly-convex with respect to the three invariants I1, I2 and I3 [27,28], which are expressed as
follows:

I1 ¼ Tr Cð Þ (14)

I2 ¼ det Cð ÞTr C�1
� �

(15)

I3 ¼ det Cð Þ (16)

where C ¼ FTF is the dilatation tensor.

From a physical point of view, I1 describes the length variations of the system in the three directions, I2
gives both the shear and length deformations and I3 describes the volume variations of the system [29,30].
Then, given the multistructural organization of the cell, it is important that all the invariants are considered.
Nonetheless, in the present model, four different materials have been tested to point out their specific
features. Specifically, we have implemented:

1. A standard Saint-Venant material, which only depends on the first and second invariants I1 and I2
[31,32] and it is able to capture the deformations along the lines (i.e., the fibers deformations);

2. A Neo-Hookean compressible material, which depends on the first I1 and third I3 invariants [33,34]
and allows to take into account the deformations along the lines and inside the volumes (i.e., both
fibers and cytosol plus nucleoplasm deformations);

3. The Mooney-Rivlin and Yeoh compressible materials which depend on the three invariants [25,35]
and describe the deformations along lines, volumes and surfaces (i.e., the membrane and the lamina).
Furthermore, the Yeoh material takes into account the successive softening and stiffening behavior of
an elastic material made of fibers.

The second Piola Kirchhoff stress Ss;i, where the subscript i indicates the material, is expressed
as follows:

– for the standard Saint-Venant material Ss;SV reads

Ss;SV ¼ ksTr Eð ÞIþ 2lsE (17)

with ks ¼ Eitc 1þ tcð Þ
1� 2tcð Þ 1þ tcð Þ and ls ¼

Ei

2 1þ tcð Þ (Ei and tc are the Young moduli of each cell component and

the Poisson ratio, respectively), Tr the trace of a tensor, E the Green Lagrange tensor and I the identity matrix;

– for the compressible neo-Hookean material Ss;NH is given by

Ss;NH ¼ ls I� C�1
� �þ ksln Jð ÞC�1 (18)

with J ¼ det F;

– for the Mooney-Rivlin material Ss;MR can be written as

Ss;MR ¼ 2 aMR þ bMR TrCð Þ½ �I� 2bMRCþ kMRln Jð Þ � 2aMRJ
2=3 � 4bMRJ

4=3
h i

C�1 (19)

with aMR ¼ ls
2
� bMR, bMR ¼ ls

0:4
and kMR ¼ ks þ 2

3
ls [26];
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– finally, for the Yeoh material Ss;Y reads

Ss;Y ¼ 2 aMR þ bMR TrCð Þ þ aY1 TrCð Þ þ aY2 TrCð Þ2
h i

I� 2bMRC

þ kMRln Jð Þ � 2aMRJ
2=3 � 4bMRJ

4=3
h i

C�1
(20)

where aY1 ¼ �0:5aMR and aY2 ¼ 0:1aMR are two constants [26].

2.2.2 The Fluid Phase
For the fluid phase of the cell, a Newtonian viscous fluid is considered but it must be defined in the

Lagrangian configuration in order to ensure the compatibility with the solid phase. Thus, the Cauchy
stress rf is classically given by

rf ¼ kf Tr Df

� �
Iþ 2lfDf (21)

where kf and lf are the isotropic and deviatoric viscosities, respectively and Df must be expressed as a
function of the rate of the dilatation tensor Cf as follows:

Df ¼ F�T
f

dCf

dt
F�1
f (22)

with the superscript T indicating the transpose of a matrix.

Since Cf ¼ C and Ff ¼ F (Eq. (7)), substituting rf in Eq. (21), we obtain the expression of the second
Piola-Kirchhoff

Sf ¼ Jkf
2

Tr C�1 dC
dt

� �
C�1 � Jlf

dC�1

dt
(23)

2.3 The Gravity Force
The cell is submitted to the gravity force fg

fg ¼ �qctggiy (24)

where qc is the initial cell density, g the gravitational acceleration and iy the vertical unit vector. tg is
employed here to smoothly apply the gravity force to ensure the computation fast convergence. It is the
composition of a regularized Heaviside function H and a level set function lg and it reads

tg ¼ H � lg ¼ H � �t þ Tg
� �

(25)

with t the time and Tg a constant.

2.4 The Cell Environment
As the gravity is applied, the cell settles down and starts interacting with the underneath micropillared

substrate, which is constituted by a micropillar and a flat region and it is defined by a characteristic function
gs as follows:

gs ¼ gmp þ gflat ¼ H � lmp þ lflat
� � ¼ H � � x � xmp

wmp

� �4

� y� ymp
hmp

� �4

þ 1

" #
þ H � �y þ yflat

� 	
(26)

where lmp and lflat are two level set functions, x and y are the actual coordinates of any point in the system, xmp
and ymp define the position of the micropillars, wmp and hmp define the width and the height of the micropillar,
respectively and yflat is the position of the flat region with respect to the y-axis.
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Once the cell approaches the substrate, the contact force fct applies over a very thin layer corresponding
to the intersection between the cell and the substrate. We have shown that fct can be approximated by a
volume force [26] and it can be computed via a penalization technique as follows:

fct ¼ lctgflatcof Fð Þnflat þ lctgmpcof Fð Þnmp (27)

where lct is the penalization coefficient. cof Fð Þ is the cofactor matrix defined as JcF�T and it is employed
here to bring back to the initial configuration the outward normal vectors to the micropillar (nmp) and to
the flat substrate (nflat), which are obtained as follows:

nmp ¼ rxlmp
krxlmpk (28)

nflat ¼ rxlflat
krxlflatk (29)

2.5 Finite Element Model
The global equilibrium of the system in the initial configuration can be expressed as

Divp FSð Þ þ f g ¼ qca (30)

with Div the first order divergence operator in the initial configuration, and a the acceleration.

In order to employ a classical finite element approach, we multiply each term of Eq. (30) by the
kinematically admissible displacement test function w and we integrate over the cellular domain �c.
Then, by using some algebraic operations and by applying the Stokes theorem, we obtain

�
Z
�c

Tr FS Dpw
� �Th i

dVp þ
Z
@�c

w; FS ncð Þð ÞdSp þ
Z
�c

qpg� qpa;w
� �

dVp ¼ 0 (31)

where nc is the outward normal to the cell and the first and the third term indicate the internal cellular stress
and the volume forces, respectively. The second term describes the surface forces applied to the cell and
specifically the contact force f ct between the cell and underneath micropillared substrate. As mentioned
above (Section 2.4), fct is applied through a very thin layer. Thus, the surface integral in Eq. (31) can be
written as a volume integral over the penalization thickness hp. Therefore, Eq. (31) becomes

�
Z
�c

Tr FS Dpw
� �Th i

dVp þ
Z
�c

qcgþ hpfct � qca;w
� �

dVp ¼ 0 (32)

Eq. (26) has been manually implemented using the weak form tool in COMSOL Multiphysics. The
spatial discretization is obtained via quadratic polynomials for each isoparametric element of the mesh
(mesh size between 0.3 µm and 1 µm). The time discretization is achieved via a second-order backward
differentiation formula (BDF). The solution is computed using a nonlinear Newton scheme with a relative
tolerance of 1% on the displacement error estimation.

3 Results and Discussion

The radii of the cell (rc) and the nucleus (rn) have been set equal to 10 µm and 5 µm, respectively. The
membrane and the lamina have a thickness tm and tl of 0.5 µm and 0.1 µm [36], respectively (Fig. 1). The cell
density qc and the Poisson ratio tc have been set to 1000 kg/m

3 and 0.45, respectively. The isotropic (kf ) and
deviatoric (lf ) viscosities are equal to 1000 Pa·s and 5 × 10−3 Pa·s, respectively. The Young’s moduli have
been set to Em = 100 Pa [31], Ecs = 10 Pa [37], El = 1000 Pa [31,38] and Enp = 10 Pa [39]. The gravity force is
gently applied on the cell and reaches its maximum at 2Tg ¼ 10000 s. Through the gravity, the cell comes in
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contact with the micropillar which has a width (wmp) and a height (hmp) of 20 µm and 9.5 µm, respectively
(Fig. 1). All the simulations last for Tend = 18000 s. All the parameters of the model are listed in Table 1. For
each series of simulations that we are going to present, the nucleus stress has been evaluated in terms of
Mises Cauchy stress rMises, whereas the strains have been quantified through three variables: (i) J1 =I1=
Tr Cð Þ to detect the fibers elongation, (ii) J2 = Tr C2

� �
to evaluate the shear and length deformations and

(iii) J3= I3 = det Cð Þ to assess the surface variations.

Table 1: Main geometrical and mechanical parameters of the model

Variable Definition Value Units Reference

rc Cell radius 10 μm

rm Membrane radius 10 μm

tm Membrane thickness 0.5 μm

rcs Cytosol radius 9.5 μm

rn Nucleus radius 5 μm

rl Lamina radius 5 μm

tl Lamina thickness 0.1 μm [36]

rcs Nucleoplasm radius 4.9 μm

cf ;m Fluid coefficient for the membrane 0.5

cf ;cs Fluid coefficient for the cytosol 0.5

cf ;l Fluid coefficient for the lamina 0.5

cf ;np Fluid coefficient for the nucleoplasm 0.5

qc Cell’s density 1000 Kg/m3 [36]

tc Cell’s Poisson ratio 0.45

Em Membrane Young’s modulus 100 Pa [31]

Ecs Cytosol Young’s modulus 10 Pa [37]

El Lamina Young’s modulus 1000 Pa [31,38]

Enp Nucleoplasm Young’s modulus 10 Pa [39]

�f Isotropic viscosity 1000 Pa·s

lf Deviatoric viscosity 5 × 10−3 Pa·s

g Gravitational acceleration 9.81 m/s2

Tg Time constant 5000 s

yflat Substrate vertical position −10 μm

xmp Micropillar x position 0 μm

ymp Micropillar y position −10 μm

wmp Micropillar width 10 μm

hmp Micropillar height 9.5 μm

lct Penalization coefficient 5 × 107 Pa·s

Tend End of the simulation 18000 s
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3.1 Cell Components Constitutive Law
For the first series of simulations, we have tested different constitutive laws for the cell components. All

the parameters defining each constitutive law are reported in Table 1. The fluid coefficients have been set
equal to cf ;m ¼ cf ;cs ¼ cf ;l ¼ cf ;np ¼ 0:5.

The Saint-Venant material model is the simplest and mostly used in the literature, but it is not robust
enough to describe very large deformations. The Neo-Hookean and the Mooney-Rivlin materials are
efficient in considering large strains, but they do not exhibit typical stiffness-softening followed by
hardening during deformation. Finally, the Yeoh model is theoretically the most consistent, but it is much
more complex than the others due to a higher number of parameters to define (Eq. (21)).

The evolution as a function of time of the Mises stress rMises and J1, J2 and J3 in the nucleus �n are
shown in Fig. 2. The highest value of the von Mises stress (1.042 Pa) is obtained for the Mooney-Rivlin
material (Fig. 2a). The Neo-Hookean and the Yeoh materials are very close with a maximum of 1.032 Pa
and 1.027 Pa, respectively. For the Saint-Venant material, the maximum is slightly lower (0.86 Pa).

For the strains, the Mooney Rivlin material provides the maximum values of J1 and J2 (2.68 and 5.44,
respectively) and J3 ¼ 1:20 (orange line in Figs. 2b, 2c and 2d). For the Saint-Venant material, J1 = 2.30,
J2 = 3.35 and J3 = 1.28 (red line in Figs. 2b, 2c and 2d). The Yeoh material shows low values for all the
three strains indicators, more specifically J1 = 2.31, J2 = 3.72 and J3 = 1.08 (blue line in Figs. 2b, 2c and
2d). The Neo-Hookean material provide J1 = 2.44, J2 = 4.27 and J3 = 1.15 (green line in Figs. 2b, 2c and 2d).

We can estimate the contribution of the nucleus to the total cell deformation. In terms of fibers elongation
(J1), we found that when implementing the Mooney Rivlin material the nucleus undergoes 56% of the global
deformation, whereas with the Saint-Venant material only 49%. Regarding the shear and length variations

Figure 2: von Mises Cauchy stress sMises (a) and J1 (b), J2 (c) and J3 (d) in the nucleus �n as a function of
time for different materials: Saint-Venant (red line), Neo-Hookean (green line), Mooney-Rivlin (orange line)
and Yeoh (blue line)
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(J2), the Mooney Rivlin ensures again the highest nucleus contribution (81%) vs. the Yeoh material for which
the nucleus supplies for only 61%. Finally, for the surface variations (J3), contributions between 18% (Saint-
Venant material) and 23% (Mooney Rivlin material) are found. In Fig. 3 we show the overall deformation of
the cell and the nucleus at t = 18000 s for the different material models.

Since the cell is composed by several organelles having different structures and geometries, there is a
need for a constitutive macroscopic law able to describe the stresses associated to such heterogeneous
strains. More specifically, taking into account these stresses implies low values of J1, J2 and J3. Thus,
according to our results, the Yeoh material model seems to be the most appropriate, which confirms the
theoretical remarks at the beginning of the section.

3.2 Nucleus Fluid and Solid Phases
For the second series of simulations we have evaluated the influence of the fluid-solid phases of the

lamina and of the nucleoplasm on the nucleus behaviour. Specifically, we have let vary cf ;l and cf ;np from
0.1 to 0.9, testing all the combinations for a total of 24 simulations (one combination has not converged,
i.e., cf ;l ¼ cf ;np ¼ 0:9). The values of cf ;m and cf ;cs have been set to 0.5. The Young moduli of the cell
organelles are those defined at the beginning of Section 3.

In Fig. 4, values of rMises (Fig. 4a) and of J1; J2 and J3 (Figs. 4b, 4c and 4d) in the nucleus �n are
presented. rMises is maximal for cf ;l ¼ 0:1 and cf ;np ¼ 0:7 and it is equal to 1.32 Pa.

On the one side, the maximal strains are found for cf ;l ¼ 0:7 and cf ;np ¼ 0:9 and they are equal to
J1 ¼ 4:08 (71% of the total cell deformation), J2 ¼ 15:20 (163% of the total cell deformation) and
J3 ¼ 1:31 (20% of the total cell deformation). This combination corresponds to rMises ¼ 0:45 Pa. In
Fig. 5a, the total deformation of the cell organelles at t = 18000 s is shown and one can notice that the
nucleus is particularly stretched. Such a large strain could exacerbate the sensor functions of the nucleus
as it has been observed in previous experimental studies [40–42] and therefore induce cell motility via
the activation of specific stretch-sensitive proteins.

On the other side, the lowest values of J1 and J2 (4:08 and 15:20, respectively) are found for cf ;l ¼ 0:3
and cf ;np ¼ 0:1, with rMises ¼ 1:08 Pa, and they correspond to 51% and 58% of the total cell deformation.
Whereas the minimal value of J3 (1.31) has been obtained for cf ;l ¼ 0:9 and cf ;np ¼ 0:1, with rMises ¼ 0:85
Pa, and it corresponds to 23% of the total cell deformation.

Figure 3: Total cell deformation at t = 18000 s for the Saint-Venant (a), the Neo-Hookean (b), the Mooney-
Rivlin (c) and the Yeoh (d) material (blue = nucleoplasm, orange = lamina, green = cytosol, red = membrane)

MCB, 2022, vol.19, no.1 9



3.3 Nucleus Mechanical Properties
For the last series of simulations, we have let vary the Young’s moduli of the nucleoplasm (Enp) and of

the lamina (El). Specifically, we have set Enp = 10, 30, 50, 70, 90 Pa and El = 1000, 1500, 2000, 2500,
3000 Pa for a total of 25 simulations, which have all converged. For the fluid and solid phases of the
organelles, we have set here cf ;np ¼ cf ;l ¼ cf ;cs ¼ cf ;m ¼ 0:5.

Fig. 6, we show the results in terms of Mises Cauchy stress rMises (Fig. 6a) and of J1; J2 and J3 (Figs. 6b,
6c and 6d) in the nucleus �n. rMises is maximal for Enp = 10 Pa and El = 2000 Pa and it is equal to 1.47 Pa.
The maximal values of J1 and J2 are observed for Enp = 10 Pa and El = 1000 Pa (rMises ¼ 1:03 Pa) and they
are equal to 2.44 (53% of the total cell deformation) and 4.27 (69% of the total cell deformation),
respectively) (Fig. 5b). For J3, the maximal value is equal to 1.16 (22% of the total cell deformation) and

Figure 4: Maximal value of sMises (a) and J1 (b), J2 (c) and J3 (d) in the nucleus �n at t = 18000 s as a
function of El and Enp

Figure 5: Total cell deformation at t = 18000 s for cf ;np ¼ 0:9 and cf ;l ¼ 0:7 (a) and for El ¼ 1000 Pa and
Enp ¼ 10 Pa (b) (blue = nucleoplasm, orange = lamina, green = cytosol, red = membrane)
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it is found for Enp = 10 Pa and El = 3000 Pa, with rMises ¼ 1:47 Pa. As for the minimal values of J1 and J2,
they are equal to 2.11 (50% of the total cell deformation) and 2.26 (51% of the total cell deformation),
respectively. They are found for Enp = 90 Pa and El = 1500 Pa and provide rMises ¼ 0:55 Pa. The lowest
J3 has been found equal to 1.10 (24% of the total cell deformation) for Enp = 90 Pa and El = 1000 Pa
with rMises ¼ 0:46 Pa.

3.4 Comparison with Experimental Data
In the previous series of simulations, tend has been set equal to 18000 s. In this section we propose to go

further (tend = 24000 s) in order to explore more severe nucleus deformations and to be able to compare our
numerical results with experimental observations.

We have run three additional simulations (S1, S2, S3) for which a Saint-Venant material model has been
implemented. However, the mechanical properties of the nucleus (i.e., Enp and El) as well as the nucleus fluid
concentration (i.e., cf ;np and cf ;l) have been modified as reported in Table 2.

From a quantitative point of view, the results in terms of maximal stress (rMises) and strain (J1, J2, J3) in
the nucleus �n are reported in Table 3.

In Fig. 7, the total cell and nucleus deformation at t = 24000 s is shown. One can notice that for S1
(Fig. 7a), the final shape of the nucleus is not significantly different from the previous simulations.
However, as the fluid concentration of the nucleoplasm and the lamina is increased (S2), the nucleus
undergoes a higher deformation (Fig. 7b) leading to an important reduction of the distance between the
nuclear lamina and the micropillar boundary. Additionally, the nucleus starts acquiring a ‘peanut’ shape

Figure 6: Maximal value of sMises (a) and J1 (b), J2 (c) and J3 (d) in the nucleus �n at t = 18000 s as a
function of cf ;np and cf ;l

Table 2: Main parameters of simulations S1, S2, S3

Simulation
Parameter

Enp [Pa] El [Pa] cf ;np cf ;l
S1 10 1000 0.5 0.5

S2 10 1000 0.9 0.7

S3 10 10 0.9 0.7

MCB, 2022, vol.19, no.1 11



as it has been experimentally observed for different cellular phenotypes including mesenchymal stem cells,
osteosarcoma cells and bone marrow stroma cells [11–14]. Such an outcome becomes even more evident
when the nuclear lamina is ablated (S3) (Fig. 7c), which correspond to a decrease of the lamina Young’s
modulus in the numerical simulation. This confirms specific experimental observations according to
which tumor cells are able to soften their nucleus and adjust their mechanical properties in order to
facilitate extravasation [43].

In [12–14] a shape index (SI) parameter is used to quantify the nucleus self-deformation. SI is defined as
follows:

SI ¼ 4p
S

l2
(33)

where S and l are the nucleus surface and perimeter, respectively. SI is equal to 1 for a perfect circle (i.e., no
deformation), whereas it is equal to 0 for a straight line. In [12–14], SI is measured in the plan perpendicular
to the micropillars. This is not possible in our model since we are in 2D. Nonetheless, we believe that it is
even more interesting to measure SI in the sagittal plan to quantify the nucleus self-deformation, but also its
penetration. We found that SI is equal to 0.32, 0.26 and 0.21 for S1, S2 and S3, respectively indicating a
significant nucleus deformation in particular when the nuclear lamina is ablated (i.e., S3).

Table 3: Maximal values of sMises, J1, J2 and J3 in the nucleus �n at t = 24000 s for S1, S2, S3.

Variable

Simulation rMises [Pa] J1 J2 J3
S1 2.55 2.36 4.96 1.27

S2 0.58 2.89 6.64 1.11

S3 1.13 3.05 6.92 0.86

Figure 7: Total cell deformation at t = 24000 s for S1 (a), S2 (b) and S3 (c) (blue = nucleoplasm,
orange = lamina, green = cytosol, red = membrane)
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4 Conclusions

In this paper we have presented a 2D computational model to investigate the interactions between the
cell and the micropillared substrate. The cell is initially suspended and gently meets the pillar due to the
gravity force. Then, the contact force between the cell and the pillar is applied over a very thin layer.

The model is equipped with specific mechanical tools, namely the constitutive laws describing the cell
components, their mechanical properties, and the fluid and solid phase mixture for each component. Our
main objective has been establishing a correlation between such elements and the nucleus stress-strain
state. To do so, a thorough sensibility study has been performed. More specifically, three series of
simulations have been run: (i) the first one involves different materials models to describe the cell
behaviour, i.e., Saint-Venant, Neo-Hookean, Mooney-Rivlin and Yeoh materials, (ii) the second one
focuses on the balance between the fluid and solid phases of the lamina and nucleoplasm, (iii) the third
one takes into account the variation of the mechanical parameters (i.e., the Young modulus) of the lamina
and the nucleoplasm.

Through the large spectrum of combinations that we have provided, biologists may identify the one
corresponding to specific cellular phenotypes or behaviors. Additionally, our model could inspire further
experimental investigations to explore the interactions between the cell and the micropillared substrate.

We have been able to quantify the stress and the strain in the nucleus �n. For the former, the Mises
Cauchy stress rMises has been assessed. For the latter, we have computed J1, J2 and J3 which provide the
fibers elongation, the shear and length variations and the surface variations, respectively.

We have shown that the variation of the balance between the fluid and solid phase of the nucleus induces
the maximum strains of the nucleus. In fact, we have found that varying cf ;l and cf ;np provides the highest
values of J1; J2 and J3. More specifically, J1 and J2 are equal to 4.08 and 15.20 for cf ;l ¼ 0:7 and cf ;np ¼ 0:9
and such values are much higher than those found for different constitutive laws (2.68 and 5.244 for the
Mooney Rivlin material) and for different values of Enp and El (2.44 and 4.27 for Enp = 10 Pa and
El = 1000 Pa). For J3, the maximal values are closer although the highest value (1.31) is still found for
the sensibility study on the fluid and solid phases balancing. This outcome confirms the importance of the
phases balance and the need to correctly take them into account in the mechanical description of the
nucleus. Furthermore, the amount of strain found could have an impact on the nucleus response and more
particularly on the expression of strecth-sensitive proteins which could be responsible of cell motility in
confined environments [40–42].

In terms of stress, even though the maximal values of the Mises Cauchy stress rMises are very close for
the three series of simulations, the highest one (1.47 Pa) is found when varying the Young moduli of the
lamina and the nucleoplasm. More specifically, such a value is obtained when Enp = 10 Pa and
El = 2000 Pa. This configuration could potentially induce the lamina rupture due to its high stiffness
compared to the nucleoplasm. Such a phenomenon can change the lamina structure and therefore have
critical consequences in disease like cancer or in genome stability [44–46].

Through some additional simulations, we have been able to compare our numerical results to the
experimental observations on different cellular phenotypes. More specifically, we have shown that by
increasing the simulation time, the nucleus undergoes significant self deformation and it acquires a
‘peanut’ shape by embracing the micropillar as it has been reported in [11–14]. Such a phenomenon is
exacerbated when the nuclear lamina is ablated (i.e., reducing the Young modulus) and it confirms data
according to which tumor cells are able to adjust their mechanical properties in order to invade healthy
tissues [43].

To conclude, our model, which has been built only using mechanical tools, has drawn a large spectrum
of scenarios to analyze and quantify the nucleus stress-strain state. It can help identifying the mechanical
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features responsible for specific nucleus responses and their impact on the global cell behavior. Although the
interesting results, the present model could be improved in the different ways. First, a three-dimensional
description of the system would allow to better evaluate the interactions between the cell and its
surroundings and the nucleus role. Secondly, it could be interesting to quantify the pressure gradient in
the cell in order to assess the proteins traffic flow to and from the nucleus. Finally, a precise description
of the structure of the nuclear lamina could provide new information regarding its rupture and remodelling.
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