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ABSTRACT

Breast cancer is one of malignant severe diseases that cause cancer death in women. Although research about the
pathogenesis and studies about treatment mechanisms in breast cancer have become clear focuses, we have no
clear conclusion yet. Therefore, this research is based on a modular approach to explore key factors and molecular
mechanisms that affect breast cancer metastasis. First of all, it is necessary to download breast cancer-related data
on the GEO database, and we analyzed the difference between primary tumors and metastatic lesions to obtain
differential gene expression profiles. On this basis, a series of bioinformatics analyses were performed to compre-
hensively, and they were presented to identify critical regulators in breast cancer metastasis. We have obtained a
total of five co-expression modules, among which HECW1, FBN1, and other genes have effective regulation in
dysfunction modules, and thus they would be recognized as driving genes for breast cancer metastasis. Module
genes were significantly enriched in biological function, for instance, leukocyte-cell adhesion and negative regula-
tion in the immune system process. At the same time, it substantially regulates signaling pathways, for example,
fatty acid degradation, synthesis, and degradation of ketone bodies, and amino acid metabolism. Finally, we iden-
tified ncRNA pivots (including FENDRR, miR-19a-3p, and miR-26b-5p) and TF pivot (including NFKB1 and
SP1) to regulate dysfunction modules significantly. Our study identified the coexpression network of genes
involved in breast cancer metastasis. These results may be helpful to reveal the gene modules and regulatory fac-
tors of breast cancer. Importantly, we identified a long non-coding FENDRR that inhibits breast cancer metastasis
through a fatty acid degradation signaling pathway, providing new directions and targets for subsequent studies.
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1 Introduction

Breast cancer (BC) is one of the most common female malignancies in the world [1]. In the past few
years, significant progress has been made in the treatment of breast cancer, but metastatic breast cancer
(MBC) remains incurable, and as a result, mortality in breast cancer patients remains high [2,3]. Insomnia
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in the context of breast cancer is both an independent symptom and includes other symptom groups such as
depression, anxiety, fatigue and pain [4]. Similarly, breast cancer patients have physical discomfort and pain
that further affect disease progression, quality of life and prognosis survival [5]. After the diagnosis of breast
cancer, the occurrence of complications of the nervous system is widespread, and neuropathic pain (NP) has
always affected the quality of life of patients [6]. Also, in patients undergoing breast surgery, metastatic
patients are more likely to experience infectious, respiratory, thromboembolic, cardiac, and hemorrhagic
complications than non-metastatic patients [7]. Studies have shown that family history and therapeutic
chest radiography are high-risk factors for breast cancer development [8]. In genetics, more than
70 single nucleotide polymorphisms (SNPs) are correlated with the development and progression of
breast cancer [9]. Among them, the genetic polymorphisms of osteoprotegerin (OPG) and RANK-ligand
(RANKL) are correlated with free survival of bone metastasis (BM) and BC risk, respectively [10]. At
the same time, PI3KR1-gene polymorphism is associated with metastasis in breast cancer patients, and
polymorphism can also be used for overall predictive scoring to detect early CNS (Central Nervous
System) metastasis [11]. At present, many studies have explored the mechanism of breast cancer
metastasis and made some progress.

IL-19 can directly promote proliferation and migration, which can provide a microenvironment for
tumor development, and believe that IL-19 is a prognostic marker of breast cancer, and it may become a
potential therapeutic target [12]. Also, adenovirus infection with CXCL12 (Protein Chemokines SDF)
vector up-regulated CXCL12 expression significantly inhibited cell growth and reduced breast cancer cell
migration, which is a potential prognostic marker for breast cancer patients [13]. Up-regulation of miR-
96/miR-182 can reduce the level of Paladin protein, thereby inhibiting the migration and invasion of
breast cancer cells [14]. On the other hand, at low concentrations, ROS can promote cancer cell survival
by activating growth factors and MAP kinase (MAPK). At high frequencies, ROS produce oxidative
stress that stimulates cell apoptosis [15]. In the treatment of breast cancer, Stages I and II breast cancers
are usually treated with breast-conserving surgery and radiation therapy. Stage III breast cancer often
requires induction of rejuvenation. The prognosis of patients with metastatic (Stage IV) breast cancer is
reduced, so the treatment plan must balance the length of life and reduce the treatment of pain to set [16].

To explore the mechanism of breast cancer cell metastasis, we conducted a systematic modular analysis
to determine the dysfunction modules and core molecules between them to exploit the most critical genes for
breast cancer metastasis further. Collectively, our work details the long non-coding FENDRR inhibition of
breast cancer metastasis through fatty acid degradation signaling pathways and identifies potential
therapeutic targets and related biological processes. This provided a rich resource for future treatment and
indicated a new direction for subsequent research.

2 Materials and Methods

2.1 Data Resource
We first collected a set of gene interpretation profiles for primary breast cancer and metastatic breast

cancer from Gene Expression Omnibus (GEO) database [17], numbered GSE33116. The data set
included 149 primary breast cancers and 23 metastatic breast cancers. We then screened the ncRNA
mRNA regulatory pairs by setting the score ≥ 0.5 using the RAID v2.0 database [18]. In parallel, we
obtained transcriptional regulators from the general database of transcriptional studies (TRUST
v2 database) [19].

2.2 Differentially Expressed Gene
The background correction and normalization for GSE33116 were performed using lumi R package.

Then the difference of metastatic breast cancers and primary breast cancers was analyzed using limma R
package [20–22]. We obtained differentially expressed genes (DEGs) by setting p-value < 0.05.
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2.3 Co-Expression Analysis
The weighted gene co-expression network analysis (WGCNA) [23] was used to explore the synergistic

expression behavior of DEGs. Based on the magnitude of the regulatory power of the gene in each
dysfunctional module, we explored the essential genes that lead to dysfunctional modules, which are
thought to be critical genes responsible for breast cancer cell proliferation and metastasis.

2.4 Enrichment Analysis
The functions and signal transduction involved in module genes were performed using enrichment

analysis. Therefore, we performed a GO function and a KEGG pathway for the breast cancer metastasis-
related module genes through the Clusterprofiler R package [24]. Besides, the BinGO and ClueGO
functions of Cytoscape were used to analyze the integrated module network.

2.5 Transcription Factors and ncRNAs that Regulate Dysfunctional Modules
We have predicted regulatory roles for non-coding genes (ncRNA) and transcription factors (TF) in a

dysfunctional module. Pivot regulator is calculated based on hypergeometric test and defined as a
regulator with a significant regulatory function in the module with p-value < 0.01.

2.6 Quantitative Real-Time PCR
Total RNA of whole blood was extracted using Trizol. The RNA was then reverse transcribed into

cDNA by using a reverse transcription kit. The PCR reaction was performed through SYBR qPCR Kit
(Invitrogen, Carlsbad, CA, USA). The internal reference genes were beta-actin and U6.

3 Result

3.1 Identifying Metastasis-Related Disorders in Breast Cancer
To observe molecular changes during breast cancer metastasis, we performed differential analysis for

GSE33116. The DEGs between primary breast cancer and metastatic breast cancer was identified, leading
to critical factors that may lead to breast cancer metastasis. The results showed that we had a total of
5,620 differential genes (Tab. S1), and we thought that these differential genes were correlated with
breast cancer metastasis.

3.2 A Functional Module for Identifying Breast Cancer Metastasis
Initially, we constructed an expression profile matrix based on 5,620 DEGs for breast cancer in patient

samples. Then, according to WGCNA, genes which exhibited significant group coexpression were observed
in disease samples. We identified five coexpression modules with functional disorder (Figs. 1A and 1B).
Based on the functional disorder module to identify the critical genes of each module, we obtained core
genes based on HECW1, FBN1 (Tab. 1). Further correlating the module with phenotypic data, ME
turquoise can be seen, while ME brown is associated with primary breast cancer, while ME blue is
associated with metastatic breast cancer (Fig. 1C).

3.3 Module Genes Involved in Functions and Pathways
By performing GO function and KEGG pathway enrichment analysis on five modules, we obtained

28,448 biological processes, 3,454 cells, 5,961 molecular functions, and 45 KEGG pathways (Tab. S2,
Figs. 2A and 2B). At the same time, we found that the purpose is mainly focused on the regulation of
immune system processes, tumor necrosis factor response and bone marrow cell differentiation. Equally
important, the enrichment results of the KEGG pathway reflect that breast cancer differential genes are
mainly involved in fatty acid degradation, ketone body synthesis and degradation, and amino acid
metabolism. For the functions and pathways that regulate the most genes in the dysfunctional module, it
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can be considered to play the most critical role in modules. We integrated the five modular networks and
analyzed the biological functions and signaling pathways using Cytoscape software (Figs. 3A and 3B).

Figure 1: Coexpression analysis of differentially expressed genes. A. Module clustering tree of
differentially expressed genes. Five colors represented five co-expression modules. B. Clustering Heat
Map of Five Modules. C. Modular association of breast cancer phenotypes. The corresponding
correlation coefficient maps the color of each cell. Number from −1 to 1, color from blue to white, and
then to red

Table 1: Hub genes in modules

Colour HubGenes Module

Blue HECW1 m2

Brown FBN1 m3

Green C10orf10 m5

Turquoise HRSP12 m1

Yellow HLA-DMA m4
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Figure 2: Enrichment analysis of GO and KEGG pathway for modular genes (excerpts). A. GO results of
enrichment analysis. The larger the circle, the greater the number of genes. B. KEGG pathway results of
enrichment analysis. The larger the circle, the greater the number of genes
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3.4 TF and ncRNA that Drive Breast Cancer Progression
Based on the regulatory relationship between TF, ncRNA and module genes, a pivot analysis for module

genes was performed to explore key regulators in breast cancer metastasis. The predicted results (Tabs.
S3 and S4) showed that there were 962 ncRNAs involved 1261 ncRNA-module regulatory pairs,
92 transcription factors affected 102 TF and target genes pairs. Cytoscape software was used to
demonstrate these interaction relationship networks (Figs. 4A and 4B). According to the statistical
analysis, FENDER, miR-19a-3p, miR-26b-5p (ncRNA) and NFKB1, SP1 (TF) were identified as key
regulators. They may regulate breast cancer cell proliferation and migration by mediating dysregulated
expression of module genes. In addition, through qPCR method, we found the expression of key genes
was consistent with the analysis results (Fig. 5).
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4 Discussion

Breast cancer, in women, it is commonly seen. Moreover, metastasis is the underlying cause of death in
most breast cancer patients [25,26]. Despite significant advances in cancer research, breast cancer remains a
significant health problem and a top priority for biomedical research [27]. More importantly, metastatic breast
cancer is incurable regardless of age. Current treatments can only reduce symptoms and provide patients with
the best quality of life for as long as possible [28]. In this study, we collected primary breast cancer and genes
for metastasis to breast cancer based on the NCBI Gene Expression Omnibus database.

Differential gene expression profile data further analyzed the molecular mechanism of fine metastasis of
breast cancer. Module genes were significantly involved in biological processes, for example, leukocyte-cell
adhesion, regulation of cell-cell adhesion, negative regulation of the immune system process, response to
tumor necrosis factor, and differentiation of bone marrow cells. At the same time, the module genes were
also enriched in the signaling pathway, for example, fatty acid degradation, synthesis, and degradation of
ketone bodies, and metabolism of alanine, aspartic acid, and glutamic acid. Studies have shown that fatty
acid synthesis and oxidized proteins have significant functions in the proliferation, migration, and
invasion of breast cancer cells. Thus, the imbalance of fatty acid metabolism is considered to be a
component of the malignant transformation of breast cancer [29]. More importantly, most cancer cell
types require fatty acids (FA), which are strictly related to the critical signaling molecules that stimulate
BC cell proliferation [30]. Besides, studies have shown that ketone body formation and ketone inhibitors
can be designed as novel therapies that are effective in treating tumor recurrence and metastatic disease in
patients with advanced cancer [31].

On the other hand, critical metabolic pathways, for instance, like taurine, hypotaurine metabolism,
alanine, aspartate, and glutamate pathways, are used for early diagnosis of breast cancer [32]. Besides, the
module’s genes are also involved in the signal transduction. For example, it is transforming growth factor
beta, apoptosis, cell cycle, NF-κB, Wnt, Hippo. The signal transductions are involved in the proliferation

Figure 3: Function and KEGG pathway analysis of modular network. A. Network diagram of module
participation function. The larger and darker the nodes, the more modules involved in the biological
function. B. Network diagram of module participation signal transduction. The larger and darker the
nodes, the more modules involved in the signal transduction signal pathway
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Figure 4: Modulatory effects of regulatory factors on the module. A. Modular regulation by ncRNA. Yellow
nodes represent modules, and blue nodes represent ncRNA. The larger the nodes, the more modules they
control. B. Modular regulation by TF. Blue nodes represent modules, and green nodes represent TF. The
larger the nodes, the more modules they represent
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and migration of breast cancer cells. Among them, miR-153 inhibits the migration, invasion and epithelial-
mesenchymal transition of breast cancer by regulating the transforming growth factor beta (TGF-β) signal
transduction [33]. Overexpression of miR-99a-5p and decreased expression of CDC25A can inhibit
proliferation and invasion of breast cancer cells, promote apoptosis, and significantly activate cell cycle
progression [34]. Also, through NF-κB and Wnt/β-catenin signal transduction, Antrodia camphorata
reverses EMT and inhibits invasion and metastasis of triple-negative breast cancer cells [35]. Down-
regulation of long non-coding RNA inhibits invasion and migration of breast cancer cells via FAT4-
dependent Hippo signal transduction [36].

On the other hand, we had extracted five hub genes in five modules, for instance, HECW1, and FBN1.
Among them, HECW1 can regulate the expression of ErbB4 protein in T47D, and ErbB4 has a necessary
effect on breast cancer metastasis by regulating the proliferation, survival, and differentiation of
mammary epithelial cells [37]. At the same time, recent studies have shown that FBN1 is correlated with
breast cancer or other tissue types of cancer [38]. Also, the expression level of C10orf10 is decreased in
breast cancer tissues, and the low expression of C10orf10 may be an important prognostic factor for poor
survival time of breast cancer patients [39]. Also, studies have found that some cytosines in the promoter
region may have a particular significance for the expression of the p14.5 gene during cell proliferation
and cancer development [40]. On the other hand, tumor cell expression of HLA-DM is correlated with

Figure 5: Expression levels of key genes. A. Relative expression level of FBN1. B. Relative expression
level of FENDRR. C. Relative expression level of HECW1
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Th1 profiles and predicts survival in breast cancer patients [41]. These genes, as critical genes in the
dysfunction module, have a driving role in affecting breast cancer metastasis.

Also, we predicted that 962 ncRNAs participate in breast cancer metastasis mechanisms by regulating
module genes. According to statistical analysis, we identified FENDRR, miR-19a-3p, and miR-26b-5p had
significant effect on the dysfunctional modules and that they were the genes of the most regulated modules.
Among them, FENDRR has been shown to inhibit breast cancer cell proliferation, promote apoptosis,
and correlate with good prognosis of breast cancer [42]. By down-regulating the expression of the Fra-1
proto-oncogene, MicroRNA-19a-3p induces macrophage polarization to inhibit breast cancer progression
and metastasis [43]. Meanwhile, miR-19a-3p (miR-19a) was identified as a mediator of cell proliferation
inhibition by CAP in MCF-7 breast cancer cells [44]. Progesterone receptor A promotes invasion and
metastasis of luminal breast cancer by inhibiting estrogen regulation of key microRNAs (miR-26b-5p,
miR-92a-3p) [45]. Down-regulation of the TRPS1 protein of the miR-26b-5p transcriptional target is
correlated with radiation exposure. After TRPS1 knockdown, the dysregulated genes are associated with
DNA repair, mitosis, angiogenesis, and EMT pathways [46]. At the same time, other ncRNAs we
identified may regulate breast cancer module genes, may also be involved in the primary process of
breast cancer metastasis, which need to be verified by further molecular experiments.

Finally, we analyzed important transcription factors regulated module genes. Of these, NFKB1,
SP1 significantly regulated three modules; however, these regulators are essential in metastatic breast
cancer. In metastatic breast cancer, it was demonstrated that targeting NFATc2 and NFKB1/RELA
interactions can appropriately regulate Ets1 gene interpretation. This is since Ets1-mediated metastatic
breast cancer is a potential therapeutic target [47]. At the same time, NF-κB contributes to the definition
of MMP1 in breast cancer spheres, leading to activation and disintegration of paracrine PAR1 in the
lymphatic endothelial barrier in vitro [48]. Also, they provide a theoretical basis for the effective
treatment of metastatic breast cancer in regulating the migration and invasion of breast cancer cell lines [49].

On the other hand, miR-3178 is a target in Sp1 in a variety of cancer cell models, and overexpression of
miR-3178 can inhibit migration and invasion of cells in highly metastatic prostate cancer, lung cancer and
breast cancer [50]. More importantly, oncogenic HBXIP accelerates the growth of breast cancer by co-
activating Sp1 to control the transcriptional regulation of ZEB1 [51]. At the same time, for the provision
of metastatic breast cancer dysfunction module, transcription factors may be involved in the primary
process of asthma, but this needs to be confirmed by experiments. Finally, through the integrated
landscape of the breast cancer staging mechanism, we obtained FENDRR that modulates the most
dysfunctional module, which significantly regulates the highest signal transduction and degrades fatty
acids. Furthermore, by modulating the fatty acid degradation pathway, we can conclude that FENDRR
inhibits the proliferation and migration of breast cancer cells.
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