Phyton-

Q?ﬁ International Journal of (Tébh Science Press

Experimental Botany

DOI: 10.32604/phyton.2022.022094

ARTICLE

Exploration of Genetic Pattern of Phenological Traits in Wheat (Triticum
aestivum L.) under Drought Stress

Igra Ishaaq', Muhammad Umer Farooq'-***’, Syeda Anjum Tahira”, Rizwana Magbool’,

Celaleddin Barutcgular’, Muhammad Yasir®, Saira Bano?, Zaid Ulhassan®, Ghassan Zahid’,
Muhammad Ahsan Asghar®, Sajad Hussain’, Kocsy Gabor®, Ulkar Ibrahimova'®'', Jianqing Zhu* and
Anshu Rastogi'*>"

"Department of Plant Breeding and Genetics, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, 38040,
Pakistan

*Department of Botany, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan

*Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, 01330, Turkey

“Department of Crop Genetics and Breeding, Rice Research Institute, Sichuan Agricultural University, Chengdu Campus,
611130, China

*Key Laboratory of Agriculture Products Improvement, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China

®Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University,
Hangzhou, 310058, China

7Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, Adana, 01330, Turkey

8 Agricultural Institute, ELKH Centre for Agricultural Research, Martonvasér, 2462, Hungary

°College of Agronomy, Sichuan Agricultural University, Ya’an, 611130, China

Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, Baku, AZ 1073, Azerbaijan
"Research Institute of Crop Husbandry, Ministry of Agriculture of the Azerbaijan Republic, Baku, AZ 1098, Azerbaijan

"?Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Poznan,
60-649, Poland

"Corresponding Authors: Muhammad Umer Farooq. Email: umerpbguaf@gmail.com; Anshu Rastogi.
Email: anshu.rastogi@up.poznan.pl

Received: 21 February 2022 Accepted: 27 April 2022

ABSTRACT

Drought is the major detrimental environmental factor for wheat (Triticum aestivum L.) production. The explora-
tion of genetic patterns underlying drought tolerance is of great significance. Here we report the gene actions con-
trolling the phenological traits using the line x tester model studying 27 crosses and 12 parents under normal
irrigation and drought conditions. The results interpreted via multiple analysis (mean performance, correlations,
principal component, genetic analysis, heterotic and heterobeltiotic potential) disclosed highly significant differ-
ences among germplasm. The phenological waxiness traits (glume, boom, and sheath) were strongly interlinked.
Flag leaf area exhibits a positive association with peduncle and spike length under drought. The growing degree
days (heat-units) greatly influence spikelets and grains per spike, however, the grain yield/plant was significantly
reduced (17.44 g to 13.25 g) under drought. The principal components based on eigenvalue indicated significant
PCs (first-seven) accounted for 79.9% and 73.9% of total variability under normal irrigation and drought, respec-
tively. The investigated yield traits showed complex genetic behaviour. The genetic advance confronted a mod-
erate to high heritability for spikelets/spike and grain yield/plant. The traits conditioned by dominant genetic
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effects in normal irrigation were inversely controlled by additive genetic effects under drought and vice versa. The
magnitude of dominance effects for phenological and yield traits, i.e., leaf twist, auricle hairiness, grain yield/plant,
spikelets, and grains/spike suggests that selection by the pedigree method is appropriate for improving these traits
under normal irrigation conditions and could serve as an indirect selection index for improving yield-oriented
traits in wheat populations for drought tolerance. However, the phenotypic selection could be more than effective
for traits conditioned by additive genetic effects under drought. We suggest five significant cross combinations
based on heterotic and heterobeltiotic potential of wheat genotypes for improved yield and enhanced biological
production of wheat in advanced generations under drought.
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Abbreviations

GDD Growing Degree Days to Maturity (Heat Units)
GW Glume Wax (Zodiac Scale)
BW Boom Wax (Zodiac Scale)
SW Sheath Wax (Zodiac Scale)
LA Leaf Attitude (Zodiac Scale)
LT Leaf Twist (Zodiac Scale)

AC Auricle Color (Zodiac Scale)
AH Auricle Hairiness (Zodiac Scale)
NOL Number of Leaves

NON Number of Nodes

FLA Flag Leaf Area (cm?)

PH Plant Height (cm)

PL Peduncle Length (cm)

PT Productive Tillers

Spsp Number of Spikelets per Spike
SL Spike Length (cm)

Gsp Grains per Spike

Gypl™ Grain Yield per Plant (g)

EMS Error Mean Square

R Replications

MPH Mid Parent Heterosis

BPH Better Parent Heterosis

1 Introduction

Owing to potential high yield and nutritional qualities, wheat (7riticum aestivum L.) is the main
cultivated cereal crop around the globe. It is the major source of carbohydrates and proteins for a large
proportion of the world population. The wheat has been cultivated in a widespread area with a
productivity of approximately 766 million tons annually [1]. Various abiotic and biotic limiting factors
such as drought, temperature, and insects are responsible for lower wheat production from one season to
another [2]. Globally, the wheat-growing areas are exposed to water scarcity by 20%25% [3].
Furthermore, water stress reduced the wheat yields by 50%—-90% depending on the plant growth stage
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and its severity, which varies from 1 to 60 mha in developing countries [4]. The world’s population is
expected to increase up to 8.2 billion in 2025 and 11.2 billion in 2050, while 65% of them are estimated
to live in drought-affected areas [5]. In this way the declining trends of water resources and the
increasing percentage of the global population, water scarcity will become the most imperative limiting
factor to food supply [6,7]. It can negatively affect plant growth, development, pre-anthesis, terminal
phase, and agronomical characteristics, including wheat yield [8]. The deficit irrigation at the earlier
anthesis stage could severely affect seed setting [9], whereas terminal water stress can lead to a reduction
in total grain weight (TGW) [7]. Most probably, the water deficiency at post-anthesis of wheat is a reason
for leaf senescence and has a significant effect on the development and filling rates of grains [10].
Modern wheat cultivars follow an opposite metabolic law to primitive ones in relation to leaf
biomass/reproductive growth and possess a proposed yield advantage [11]. Gui and colleagues observed
that the number of spikelets/spike and grains per spike were the main factors affecting the crop yield
[12]. However, these intermittent drought occurrences are the main challenges limiting wheat productivity
in the arid and semiarid regions [13]. Water scarcity is a major issue due to the restricted water release
and construction of the dams on the river’s flow. Heat and seasonal environmental changes demand the
development of drought-tolerant germplasm [14]. Due to the significant reduction in both quality and
grain yield, the development of greater drought-tolerant and high-yielding wheat varieties/germplasm is a
major concern.

Understanding the types of gene action and genetic behavior [15] controlling major morphological,
physiological, and agronomic-targeted characters is a major principle for designing a suitable breeding
program for the genetic improvement of crops [16]. In this regard, the importance of phenological traits
cannot be denied. It can serve as an indirect criterion to access diversity for germplasm improvement.
Many studies have reported the direct or indirect involvement of the mentioned traits in germplasm
improvement, i.e., millet [17], wheat [18], barley [19], and common beans [20]. The inheritance of
quantitative characters is defined as a moving goal because these traits were affected by the actions of
multiple genes, the interaction between genes and genotype X environment [21] with individual minor
effects. The biometrical genetic models were developed to explore the inheritance of such characters [22].
On the other hand, the principal component and biplot analysis are advantageous techniques to estimate
the genetic effects of prevailing traits, variance components, and heritability [22]. In addition, the mean
generation model is a simple and useful technique to estimate main gene effects (additive and
dominance). This method would be helpful in selecting the best relative breeding strategies [23].
Furthermore, only a few previous studies focused on the inheritance pattern of phenological traits and
genetic component studies of these selected traits under drought conditions. Drought gradually impaired
leaf water potential and membrane stability [24]. Knowing the inheritance of quantitative characters, the
information about gene action is necessary to increase the efficiency of a breeding strategy. These
techniques could assist in identifying the performance of selected crop parents and the potential of
inducing the population employed for each pedigree selection or heterosis exploitation [25].

Therefore, the present study aimed to identify the high-yielding drought-tolerant wheat genotypes and
the indirect impact of secondary phenological traits under normal and drought conditions. In this regard, the
mean performances, relative contributions, heterosis, genetic variability, gene action type, heritability,
correlation, and principal components of variability are determined following the line x tester mating
design in the bread wheat accessions under two water regimes. The results regarding association studies
and component analysis between phenological characters and yield-related metric traits could provide
significant information about the involvement of secondary traits in abiotic stress tolerance.
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2 Materials and Methods

2.1 Experimental Conditions

To test the identified key questions for heterosis and the effect of drought on phenological traits, nine
lines viz., 9730, 9731, 9733, 9859, 9860, 9861, AARI-11, PB-11, and AAS-11, and three testers (E-108,
E-113, E-114) were crossed using line x tester mating design. The experiment was carried out at
coordinates 31.4310° N and 73.0695° E, University of Agriculture Faisalabad. The pedigree record and
cross combination parentage used are the same as in our previous report [26]. Four irrigations to normal
block (following the delta water requirement) and 1 irrigation to drought block was given (Roani
irrigation excluded). The drought stress was administered after the onset of the tillering stage. Polythene
sheets were used to cover the drought block to avoid any forecasted precipitation. The testers were
imported from CIMMYT and characterized with waxiness on their spike and stem’s outer surface. The
seeds were sown in triplicates for data reliability. Plant x plant and row X row distance was maintained at
15 cm and 30 cm, respectively.

2.2 Agronomic Practices and Data Collection

The phenological and yield-related metric traits, viz., Growing Degree Days to maturity (GDD), Glume
Wax (GW), Boom Wax (BW), Sheath Wax (SW), Leaf Attitude (LA), Leaf Twist (LT), Auricle Color (AC),
Auricle Hairiness (AH), Number of Leaves (NOL) and Number of Nodes (NON), Flag Leaf Area (FLA),
Plant Height (PH), Peduncle Length (PL), Productive Tillers (PT), Spikelets/spike (Spsp™), Spike Length
(SL), Grains/spike (Gsp) and Grain yield/plant (Gypl™) were estimated to figure out the impact of
drought on them.

Zodiac coding scale (0-5) was used to calculate phenological traits (glume wax, boom wax, sheath wax,
leaf attitude, leaf twist, auricle color, auricle hairiness). Zero (0) represents a negligible effect, while a value
near 5 represents the maximum effect for the measurement of each phenological trait. However, the values (1,
2, 3, 4) were computed as in-between blending expressions from low to strong. For leaf attitude (erectness,
droopiness) and leaf twist, zero represents straight leaves, while 5 is for maximum leaf curliness (as drought
conditions greatly affect the leaf structure, so they were estimated). For auricle color, zero represents white
color, while 5 is for yellow color, the reading in-between represents a mixed shade from white-light-yellow to
dark yellow. The auricle hairiness was estimated as none (0) to highly dense hairs (5) around the auricle. The
number of leaves and number of nodes was estimated by counting them from the base to the rachis of the
plant (to see how drought can affect the nodes and leaf number as well).

Growing Degree Days to maturity (GDD) (measured in terms of heat units from sowing to complete
maturity of the crop) [27]. However, yield-related metric traits (plant height, peduncle length, productive
tillers, spike length, spikelets/spike, grains/spike, grain yield/plant) were computed similarly as reported
earlier [27]. flag leaf area (cm?) was computed as defined by [28] with little modifications [26] using the
formula (Flag leaf area = flag leaf width x flag leaf length x 0.74). The flag leaf width was taken at
3 points in a leaf and averaged to get the mean value for the calculation of the flag leaf area. The overall
value obtained was multiplied with a correction factor of 0.74.

For heterosis (Mid parent heterosis; MPH) and Heterobeltosis (Better parent heterosis; BPH), the
performance of F; and their parents were compared under normal and drought conditions. Mid parent
heterosis was computed using the formula [29] with few modifications.

F1x — Mid Parent

MPH = 1 1
Mid Parent *100 @




Phyton, 2022, vol.91, no.12 2737

While heterobeltosis was computed using formula:

BPH — [F 1x — Better Parent

100 2

Better Parent ] i @
To evaluate the level of significance among MPH and BPH, a 7-test was implemented. T calculated

values for MP and BP were estimated and compared at a 5% level of probability to evaluate significance.

F1% — Mid Parent
T Cal MPH —= X 2d Taren 3)

SORT 3% Error Me.an t?quare
5 % Replication

F1x — Better P t
T Cal BPH — X etter Paren @)

SORT 3 x Error Méj'an Square
5% Replication

2.3 Statistical Analysis

The data were subjected to analysis of variance (ANOVA) to compare the mean differences [30]. Genetic
variability (gene action, degree of dominance, genetic variance, genetic gain, and proportional contribution)
was computed [31]. The heterotic and heterobeltiotic potential of wheat genotypes was computed using the
formula [32]. A T-test (P <0.05) was used to test the significance. Correlation analyses were estimated using
the R language software Package 3.1.2. Principal component analysis and biplot analysis were computed
using GenStat (10th statistical package). Graphs were drawn using R language 3.1.2, SigmPlot 12.5,
Origin 8.0, and Microsoft Excel 2016 [33].

3 Results and Discussion

The beginning of the 21* century was marked by the global scarcity of water resources, environmental
pollution, and increased salinization of soil and water [5]. Water scarcity is the most devastating abiotic stress
and has a great global threat [34]. An increasing human population and a reduction in land available for
cultivation are two threats to agricultural sustainability [35]. The environment has a great influence on
morphologically and economically important traits. The differences in development, altered biochemical
pathways, and osmolyte differentiation were observed in plants experiencing deficit irrigation [36]. In this
regard, the physiological and morphological indicators are useful tools to identify behavioral change.
However, the secondary phenological traits, viz. (glume wax, boom wax, sheath wax, leaf attitude, leaf
twist, auricle color, auricle hairiness, number of leaves, number of nodes, and flag leaf area) might be an
important aspect for the yield traits inheritance and performance in abiotic stress conditions, which is not
well documented.

3.1 Identification of Mean Differences for Studied Traits

For plant breeders, genetic diversity is a well-recognized value and the first step in a plant breeding
program [37,38]. The variance analysis (ANOVA) indicated the traits growing degree days to maturity,
glume wax, boom wax, sheath wax, leaf attitude, flag leaf area, plant height, peduncle length, spike
length, Spikelets/spike, Grains/spike, Grain yield/plant exhibit significant variation under different water
regimes (Table 1). Under normal conditions, the contribution of treatment factors (parents, crosses, lines,
and testers) was high toward total variability. However, testers contribute significantly toward total
variability during the onset of drought. High treatment variance in different water regimes was also
observed by wheat scientists [39]. The phenological traits, i.e., leaf twist, auricle color, auricle hairiness
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and the number of nodes were not significantly different. The mean of all traits decreased significantly by
drought except for leaf attitude, the number of leaves, and flag leaf area which were increased in-
significantly as disclosed by the mean and standard deviation (Table S1). The grains number increased in
drought, but the grain yield was significantly reduced, this happened due to hollow or empty grain
formation. Similar results of severe reduction by drought stress in various traits were investigated by
various scientists [40,41]. The contribution of testers was significant for waxiness traits, glume wax,
boom wax, and sheath wax under drought. However, the higher mean performance of flag leaf area but
with reduced Grain yield/plant under drought was observed. The higher mean performance of the flag
leaf area is attributed to varietal different responses under different epigenetic environmental factors [42].
In the present study, the higher proportional contribution of (L x T interaction) might attribute to a higher
flag leaf area under drought (Table S2). Moreover, flag leaf senescence has started immediately after
anthesis in grain filling duration [43]. Guendouz identified that water stress reduced the specific leaf
weight by 41.86% [42], which might be the reason for the higher flag leaf area mean but with lower
Grain yield/plant during drought.

3.2 The Association Studies between Yield and Phenological Traits

The changes in various morphological and physiological traits serve as a drought-responsive indicator in
wheat genotypes. The consequences of the deleterious effects of drought on important metabolic processes
reduced the ultimate grain yield. The association studies indicated a strong positive correlation between the
waxiness-related phenological traits glume wax, boom wax, and sheath wax (r = 0.62, 0.75, 0.67) under
normal irrigation and drought (Fig. 1). The association of auricle color and Grain yield/plant was minimal
under drought with other phenological traits. Leaf properties (leaf attitude, leaf twist, and flag leaf area)
were significantly and directly influencing other indirectly-yield associated traits (peduncle length, spike
length, plant height) under drought. Farooq et al. [44] stated that water stress affects wheat physiology by
reducing the stomatal conductance and metabolic functions with increasing leaf senescence as well as
causing tissue dehydration. The correlation between yield-related metric traits (plant height with peduncle
length, r = 0.58, plant height with number of leaves and number of nodes, r = 0.67, number of nodes
with number of leaves, r = 1.00, and Spikelets/spike with Grains/spike, r = 0.65) was strongly evident
(Table S3). The interaction of traits growing degree days to maturity with Spikelets per spike and
Grains/spike was positive under both experimental conditions, especially under drought. The initiation of
drought signals the crop to complete its physiological maturity earlier than the normal conditions during
the wheat growth phase as also evident by mean performances (Table S1). With changed maturity
behavior in wheat traits under drought, other interlinked correlated traits affecting yield were also
observed (flag leaf area with peduncle length and spike length). However, the association of other
phenological traits was found negative with yield traits. This divergent behavior in wheat maturity days
under water stress might control the inferiority of nutrients in the parts of a plant, which reduces
chlorophyll content in plant leaves due to the deficiency of nitrogen elements needed for assimilation
[38]. The loss of the chloroplast integrity in the leaf causes early senescence under the drought that
ultimately leads the plant to mature early [45]. Erkul also documented a weak association between TGW,
and GY, medium for SPS, and high for NGS [46].
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Figure 1: Correlation analysis for phenoogical and yield traits under Normal Irrgation (Left) and Drought
(Right) conditions

3.3 Principal Component Studies for Phenological and Yield Traits

The principal component and biplot analysis are integral parts of any data management to dissect the
random component variability [47]. The synchronous biplot study between traits and genotypes depicted
that most of the genotypes were consistent and close to the proximity of phenological and yield-related
metric traits under normal irrigation. However, the responses of genotypes in drought conditions varied
(Fig. 2). Scree plot analysis disclosed the significant PCs (first-seven) accounted for 79.9% and 73.9% of
total variability under normal conditions and drought, respectively. The cumulative variability and
eigenvalue decreased in drought (Supplementary Fig. 1). Among different fractions of PCA analysis, the
curvatures indicated the traits glume wax, sheath wax, boom wax, growing degree days to maturity, were in
positive 1** Quadrant and Grains/spike, number of nodes, spike length, plant height, and leaf attitude were
in 2"! Quadrant under both studied conditions. It was found that the drought inversely impacts the
inheritance pattern of leaf attributes leaf twist, auricle hairiness, flag leaf area, number of leaves, peduncle
length, productive tillers, Spikelets per spike, and Grain yield/plant (Supplementary Fig. 2). Inverse
behavior of sheath wax with auricle color was observed in variable water regimes. Overall, the variable
axes were 38.19% and 31.99% in normal irrigation and drought conditions, respectively. The projection of
traits on PC1 and PC2 revealed a difference of 3.65% in F1 and 2.55% in F2. The metric traits (plant
height with peduncle length and spike length) were strongly linked and inversely affected by growing
degree days to maturity in drought conditions. It could result in early maturity, stunted growth, and reduced
yield in wheat genotypes under drought. Moreover, the mean performance was decreased (17.44 to 13.25)
for Grain yield/plant with a clear reduction under both water regimes respectively (Table S1). When wheat
plants were exposed to moisture stress at stem elongation and pollen stage, the plant experienced stress, and
grain yield and dry matter were found reduced, compared to the full-irrigated condition as disclosed by
Dong and colleagues [48]. Biplot analysis indicated the different varietal performances (Supplementary
Fig. 3). Among testers, the response was different in drought. However, among lines, the behavior of 9730,
AARI-11 (lies in 1% Quadrant) and 9731, 9859, 9860 (lies in 2" Quadrant), and PB-11 (lies in 4™
Quadrant) was consistent in drought as well. However, the cross combination PB-11 x E-13 performance
was better in drought. The genotypes projection based on PC1 and PC2 help in developing meaningful
plant breeding strategies [49] and selecting efficient parents by PCA [50].
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Normal Irrigaiton-Biplot (axes F1 and F2: 38.19 %) Drought-Biplot (axes F1 and F2: 31.99 %)
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Figure 2: Principal component and Biplot analysis for parameters and varietal comparison under normal
irrigation (Left) and drought (Right)

3.4 Genetic Dissection (Additive, Dominance, and Degree of Dominance)

The genetic analysis via half-sib and full-sib approaches identifies that SCA variance was dominant over
GCA variance for all the characters under study except for auricle color, and the number of leaves under
normal irrigation (Table 2). The preponderance of additive genetic effects in the normal irrigation group
was positive and significant as escorted by additive and dominant genetic variances and confirmed by the
degree of dominance for traits growing degree days to maturity, glume wax, boom wax, sheath wax, leaf
attitude, auricle color, number of leaves, number of nodes, flag leaf area, plant height, peduncle length,
and spike length [40]. Therefore, the phenotypic selection was more than effective in improving these
traits. The magnitude of dominance effects for traits of leaf twist, auricle hairiness, productive tillers,
Spikelets/spike, Grains/spike, and Grain yield/plant suggests that selection by the pedigree method is
appropriate for improving these traits in wheat populations [51] under full irrigation conditions. The
phenological and yield-related traits conditioned by dominant genetic effects in the normal irrigation
group (leaf twist, auricle hairiness, Grains/spike, and Grain yield/plant) [52] were inversely controlled by
additive genetic effects under drought [53]. While, the traits controlled by additive genetic effect in the
normal irrigation group (growing degree days to maturity, glume wax, auricle color, number of nodes,
and flag leaf area) were inversely controlled by dominant genetic effects under drought (Table 2) [54].
The genetic behavior of other traits (boom wax, sheath wax, leaf attitude, number of leaves, plant height,
peduncle length, and spike length) was consistent and insensitive to drought treatment. The result was
strengthened by the variance ratio of GCA to SCA as it was found to be less than unity for those traits
[55]. It is associated with homozygosity and suggests the effectiveness of selection for improving these
characters [56].
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3.5 Evaluation of the Heterotic and Heterobeltiotic Potential of Wheat Genotypes

The expression of heterosis and efficiency of selection also largely depend upon the magnitude of
genetic variability present in the plant populations. In wheat, the magnitude and nature of heterosis are
used to help plant breeders identify superior wheat cross combinations that could produce desirable
transgressive segregants in advanced generations for additional enrichment of grain yield and yield
components. The comparison for significant highest heterotic (Mid Parent Heterosis (MPH); Table 3) and
heterobeltotic (Better Parent Heterosis (BPH); Table 4) potential was made for traits in 27 cross
combination’s under normal irrigation and drought. The highest MPH performances (Table 3) of cross
combinations for phenological and yield traits under normal irrigation conditions were identified as: 9861
x E-114 for growing degree days to maturity (6.4%), 9733 x E-113 for GLUME WAX (5.9%), AARI-11
x E-113 and 9730 x E-113 for boom wax (15.8%), 9860 x E-113 for sheath wax (23.8%), 9859 x E-114
and 9860 x E-114 for leaf attitude (42.9%), 9733 x E-114 for leaf twist (20%), 9860 x E-108 for auricle
color (16.7%), 9731 x E-108 for auricle hairiness (60%), 9859 x E-108 for number of leaves (9.3%),
9731 x E-113 for number of nodes (11.4%), 9730 x E-108 for flag leaf area (15.8%), 9859 x E-108 for
plant height (8.9%), 9859 x E-113 for peduncle length (12.4 %), PB-11 x E-114 for productive tillers
(23.5%), 9860 x E-108 for spike length (9.3%), 9861 x E-114 for Spikelets/spike (12.8%), AARI-11 x
E-114 for Grains/spike (24.5%) and Grain yield/plant (54.9%), respectively. Ahmad and colleagues also
identified heterotic potential of 28 F1 crosses for yield traits [57]. The better MPH performances of cross
combinations for different phenological and yield traits under drought were: 9859 x E-108 for growing
degree days to maturity (5%), 9733 x E-108 for glume wax (33.3%), 9733 x E-108 and 9860 x E-108
for boom wax (62.5%), 9733 x E-108 for sheath wax (64.7 %), AARI-11 x E-113 for leaf attitude
(46.7%), AARI-11 x E-114 for leaf twist (40%), AAS-11 x E-114 for auricle color (16.7%), PB-11 x
E-108 for auricle hairiness (33.3%), AARI-11 x E-114 for number of leaves (12.3%), 9730 x E-114 for
number of nodes (9.6%), 9731 x E-108 for flag leaf area (35.1%), plant height (13.1%), and peduncle
length (16.6%), 9859 x E-114 for productive tillers (33.9%), 9731 x E-113 for spike length (9.6%),
PB-11 x E-113 for Spikelets per spike (5.3%), 9861 x E-113 for Grains/spike (48.2%) and 9859 x E-114
for Grain yield/plant (21.8%). The heterosis for grain yield per spike followed by tillers per plant and
1000-grain weight was independently associated with heterosis for grain yield in different water regimes
and also depends on early and normal planting [58].

The significant highest heterobeltotic potential (BPH) of wheat genotypes under both water regimes was
different (Table 4). Under normal irrigation conditions, the cross combination 9861 x E-114 performed better
for growing degree days to maturity (BPH; 6.1%). Similarly, 9733 x E-113 for glume wax (0.05%), AARI-11
x E-113 and 9730 x E-113 has the highest value for boom wax, i.e., 10%, 9733 x E-108 for sheath wax
(16.7%), 9860 x E-114 for leaf attitude (42.9%), 9733 x E-114 for leaf twist (20%), 9860 x E-108 for
auricle color (16.7%), 9731 x E-108 for auricle hairiness (60%), 9730 x E-113 for number of leaves
(5.6%), 9731 x E-113 for number of nodes (8.3%), AARI-11 x E-114 for flag leaf area (29.3%), AAS-11
x E-113 for plant height (4.3%), 9859 x E-114 for peduncle length (6.2%), PB-11 x E-114 for productive
tillers (21.7%), 9860 x E-108 for spike length (7.3%), 9861 x E-114 for Spikelets/spike (12.5%), AARI-
11 x E-114 for Grains/spike (19.0%) and Grain yield/plant (46.1%), respectively.

However, the BPH performances of genotypes in drought conditions was as follows: 9859 x E-108 for
growing degree days to maturity (4.5%), 9860 x E-108 and 9861 x E-108 for glume wax (28.6%), 9733 x
E-108 and 9860 x E-108 for boom wax (62.5%), 9733 x E-108 for sheath wax (55.6%), aari-11 x E-113 and
9731 x E-113 for leaf attitude (37.5%), 9860 x E-114 for leaf twist (25%), AAS-11 x E-114 for auricle color
(16.7%), PB-11 x E-108 for auricle hairiness (33.3%) and number of nodes (5.7%), AARI-11 x E-114 for
number of leaves (10.8%), 9731 x E-108 for flag leaf area (31.3%), plant height (10.6%) and peduncle
length (14.5%), 9859 x E-114 for productive tillers (32.8%), 9731 x E-113 for spike length
(9.2%), PB-11 x E-113 for Spikelets per spike (3.5%) and Grains/spike (39.5%) and 9860 x E-114
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Grain yield/plant (13.4%). The positive mid parent and better parent heterosis for yield components,
Grains/spike and 1000 grain weight was reported previously by Wheat breeders [59,60] and also in other
crops [61].

3.6 The Proportional Contribution of Lines, Testers, and Cross Combinations in Total Variability

The relative contribution of genotypes indicated that line x tester interactive effects were the major
contributing partner under different water regimes. Lines performed better for traits (growing degree days
to maturity, auricle color, plant height, Grains/spike, and Grain yield/plant) under drought. The
contribution of testers was evident for plant height under normal irrigation (Table S2). The testers were
characterized by waxiness (glume wax, boom wax, and sheath wax), which appeared subsequently in the
F, crosses. Among parents, E-108, 9861 performed better in drought, while 9730, AARI-11 performed
better in both water regimes (Fig. 2). The hybrid combinations 9733 x E-113 and PB-11 X E-113 have
better MPH potential under normal irrigation. AAS-11 x E-114 has better MPH and BPH under normal
irrigation. The combinations 9731 x E-108, 9861 x E-108, and AARI-11 x E-108 have better MPH
(Table 3) under drought, while 9731 x E-113 and 9860 x E-108 have better MPH and BPH for most of
the studied traits under drought. The combinations 9730 x E-114 and AARI-11 x E-114 have effective
MPH and BPH under both water regimes (Table 4). Hence, parents E-108, 9730, AARI-11, 9861, and
cross combinations 9730 x E-114, and 9860 x E-108 could be recommended for improved yield and
enhanced biological production of wheat under drought.

3.7 Genetic Variability, Heritability, and Genetic Advance

The identification of gene action and environmental roles for the inheritance of phenological traits is an
important aspect. Interestingly, the magnitude of environmental variance (Ve) was dominated over genotypic
(Vg) for the expression of total phenotypic variability (Vp) for the majority of phenological traits except for
plant height, peduncle length, spike length, Spikelets/spike, and Grain yield/plant under normal irrigation
conditions (Table S4). Both dominant and additive types of gene action exist for inheritance. The
probabilities of the estimated trait being transferred into the next generation were below 50% for
the majority of traits except for plant height, peduncle length, spike length, Spikelets/spike, and
Grain yield/plant were moderate to high heritability was observed under normal irrigation conditions
(Fig. 3). The negative heterosis for wheat phenological traits (growing degree days to maturity) is a
generally desirable and useful parameter under drought [52]. The findings of Kumar were in concurrence
for days to heading [62]. while Yadav et al. identified different results [63]. The genetic advance (GA)
when computed, revealed that the values were relatively low (<1) for most of the phenological traits.
Meanwhile, they were moderate to high (>1) for yield-related metric traits (growing degree days to
maturity, flag leaf area, plant height, peduncle length, spike length, spikelets per spike, grains/spike, and
grain yield/plant) under normal irrigation [64]. Under drought, the low GA for leaf attitude, auricle
hairiness, spike length, and spikelets/spike was observed, while it was moderate to high for traits flag leaf
area, plant height, Grains/spike, and Grain yield/plant [65].

Shamuyarira reported low GA for DTM, Spikelets/spike, and TGW, the GA for Grain yield/plant
was 6.84% under drought and 17.12% under non-stressed conditions which were in concurrence with to
present study [38]. Alternatively, low GA for Grain yield/plant, medium for Spikelets/spike, and high for
Grains/spike were observed by Erkul and colleagues [46]. Implying environmental significant role in the
inheritance of studied traits. A wide range of adaptations and mitigation strategies are required to cope
with such impacts and meanwhile, adaptations to abiotic factors could serve as an important indirect
criterion for yield enhancement.
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Genetic Variability under normal and drought irrigation conditions
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Figure 3: Genetic advance, heritability, and variances (environmental, genotypic and phenotypic) under
different water regimes

4 Conclusions

This study focuses on secondary phenological and yield—related metric—traits measurement and their
indirect role in the behavioral response of germplasm under full-irrigation and drought conditions.
Genetic analysis showed that the means of all generations decreased by drought except for traits of leaf
attitude, leaf twist, flag—leaf area, auricle color, auricle hairiness, number of leaves, and nodes. The
association studies disclosed that the trait growing degree days (heat—units) greatly influence spikelets and
grains per spike, especially under drought. The projection of traits on PC1 and PC2 revealed significant
PCs (first-seven) accounted for 79.9% and 73.9% of total variability with a difference of 3.65% in
F1 and 2.55% in F2 under normal irrigation and drought, respectively. The Grain yield/plant was
decreased with a clear reduction from 17.44 g to 13.25 g under drought. The genetic dissection (additive,
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dominance, and degree of dominance) depicted that the phenological and yield—related traits conditioned
by dominant genetic effects under normal irrigation (leaf twist, auricle hairiness, Grains/spike, and
Grain yield/plant) were inversely controlled by additive genetic effects under drought [53,54]. While, the
traits conditioned by additive genetic—effect under normal irrigation (growing degree days to maturity,
glume wax, auricle color, number of nodes, and flag leaf area) were inversely controlled by dominant
genetic effects under drought. While, the genetic behavior of traits (boom wax, sheath wax, leaf attitude,
number of leaves, plant height, peduncle length, and spike length) was consistent and insensitive. The
investigated yield traits showed complex genetic behaviour. The magnitude of dominance effects for traits
of leaf twist, auricle hairiness, productive tillers, Spikelets per spike, Grains/spike, and Grain yield/plant
suggests that selection by the pedigree method is appropriate for improving these traits under normal
irrigation conditions and could serve as an indirect selection index for improving yield—oriented traits in
wheat populations for drought tolerance. however, the phenotypic selection could be more than effective
for traits conditioned by additive genetic effects under drought. The magnitude of environmental variance
(Ve) was seem dominated over genotypic (Vg) for the expression of total phenotypic variability (Vp) for
the majority of phenological traits except for plant height, peduncle length, spike length, Spikelets/spike,
and Grain yield/plant. The probabilities of the estimated trait being transferred into the next generation
were below 50% for the majority of traits except for plant height, peduncle length, spike length,
Spikelets/spike, and Grain yield/plant were moderate to high heritability confronted by moderate to
high genetic advance (>1). Based on heterotic and heterobeltiotic potential, five cross combinations
(9861 x E-113, 9859 x E-114, 9860 x E-114, PB-11 x E-113, and AARI-11 x E-114) are recommended
for efficient yield and phenological traits in a future wheat breeding program.
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Supplementary Figure 1: Scree plot analysis for Normal irrigation (left) and drought (right) experiment
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Supplementary Figure 2: PCA analysis for normal irrigation (left) and drought (right) experiment



2758

F2(16.43 %)

Normal irrigation-Observations (axes F1 and F2: 38.19 %)
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Drought-Observations (axes F1 and F2: 31.99 %)
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Supplementary Figure 3: Biplot analysis for normal irrigation (left) and drought (right) experiment
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