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ABSTRACT

The effect of soil nutrient content on fruit yield and fruit quality is very important. To explore the effect of soil
nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County, Jiangsu Province.
Soil mineral elements and fruit quality were measured. The effect of soil nutrient content on fruit quality was
analyzed by artificial neural network (ANN) model. The results showed that the prediction accuracy was highest
(R2 = 0.851, 0.847, 0.885, 0.678 and 0.746) in mass per fruit (MPF), hardness (HB), soluble solids concentrations
(SSC), titratable acid concentration (TA) and solid-acid ratio (SSC/TA), respectively. The sensitivity analysis of
the prediction model showed that soil available P, K, Ca and Mg contents had the greatest impact on the quality
of apple fruit. Response surface method (RSM) was performed to determine the optimum range of the available
P, K, Ca, and Mg contents in orchards In Feng County, which were 10∼20 mg⋅kg−1, 170∼200 mg⋅kg−1,
1000∼1500 mg⋅kg−1, and 80∼200 mg⋅kg−1, respectively. The research also concluded that improving the content of
available P and available Ca in orchard soil was crucial to improve apple fruit quality in Feng County, Jiangsu Province.
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1 Introduction

Apple (Malus domestica) is a deciduous tree of the genus apple in the Rosaceae, native to Eastern and
Southeastern Europe. Due to its strong climatic adaptability, high nutritional value, and storage and
transportation resistance apple has become one of the world’s largest fruits in demand [1]. China is the
world’s largest apple producer and consumer; cultivation area and yield are ranked first in the world [2].

Soil is the basis for the survival of fruit trees, and the nutrients required for the growth and development
of fruit trees are mainly obtained from the soil by roots. Therefore, the nutrient content in the soil and the
proportional relationship between various elements will directly affect the yield and fruit quality of fruit
trees. At domestic and international predecessors have done a lot of researches on the relationship
between soil nutrient content and fruit quality in orchard. Potassium content in orchard soil was
positively correlated with soluble solids concentrations (SSC) in ‘Valencia’ orange fruit [3]. Correlation
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analysis between soil nutrients and fruit quality in kiwifruit orchard showed that the hardness (HB) of
kiwifruit was mainly affected by available potassium and exchangeable calcium; soluble solids were
affected by available potassium, and titratable acid (TA) was mainly affected by organic matter [4]. The
TA content in apple orchard was significantly correlated with soil P/K content, and SSC was significantly
correlated with soil Ca/K content [5]. At present, the research on fruit quality and soil minerals mainly
adopts multiple linear regression, but the regression theory is often faced with the problem of
recollinearity when dealing with practical problems [6]. Improper treatment will lead to the instability of
the regression coefficient, and the values and symbols of the regression coefficient will be greatly
different from the actual problems. In order to solve this problem, in recent years, agricultural scientists
have introduced artificial intelligence (AI) model into agricultural production.

Artificial neural networks (ANN) are also called connection models, which are similar to human brain
synaptic connection structures and information processing [7]. Its main components are input layer, hidden
layer and output layer [8]. The essence of ANN is to convert input into output and form a mathematical
mapping relationship, which is determined by the structure of the network, and the network structure is
designed and trained according to specific problems [9]. The key advantage of ANN model is that it does
not need to specify appropriate fitting functions and has complete computational ability to estimate
almost all types of nonlinear functions [10]. ANN has been proved to be a reliable and accurate
prediction tool and has been widely used in the prediction of economic crops [11].

In the present study, we evaluated the correlation between different input variables obtained by different
ANNmodels and Fuji apple fruit quality, explored the effect of soil nutrient factors on Fuji apple fruit quality,
and quantified the soil nutrient factors that significantly affected fruit quality, providing a theoretical basis for
accurate fertilization in orchards.

2 Materials and Methods

2.1 Experimental Materials
200 apple orchard plots were selected in Feng County of Jiangsu Province, China (Fig. 1). The apple

material was ‘Red Fuji’, with a rootstock of M9T337, age of 7∼8 years, and a row spacing of 4 m × 5 m.
Orchard fertilization is mainly organic fertilizer in autumn, about 1.5∼2.0 tons per mu (666.67 m2). At
sprouting stage, about 140 kg quick-acting nitrogen fertilizer was applied per mu (666.67 m2), and about
40 kg⋅mu−1 potassium fertilizer and 30 kg⋅mu−1 phosphorus fertilizer were applied at fruit enlargement
stage. In each sample plot, 5 trees were randomly selected, and the sampling points were located near the
vertical drip line of tree crowns in the east, south, west and north directions of each tree, respectively.
Soil samples in the 0∼20 cm soil layer were collected, and the soil samples of each tree were mixed
evenly. At the same time, apple fruits were collected when they were commercially mature in late
October of 2020 and 2021. Four fruits were taken from the four directions of the soil sampling tree, and
20 fresh fruits were taken from each orchard as experimental materials.

2.2 Experimental Method
The soil samples were placed in a cool and ventilated place for natural drying. The soil after natural

drying was passed through a 60-mesh sieve and stored for the determination of soil physicochemical
properties. Determination of fruit quality and soil nutrients as shown in Table 1.

2.3 Statistical Analysis
To generate more accurate results, the SPSS 20.0 software was used for statistical analysis of orchard

soil nutrients and fruit quality data, and used R. 4.03 software was used for simple Pearson correlation
coefficient analysis.
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2.4 Construction of ANN Model
In the establishment of the ANN model, we used the multi-layer perceptron (MLP) structure (Fig. 2).

The values of the soil pH and nutrient element content were used as the input layer, and the fruit quality
indexes of the apple as output layer, respectively, for establishing and testing ANN. The ratios of training
set data, validation set data and test set data were 70%, 15% and 15%, respectively. In order to improve

Figure 1: Sampling place and distribution of sampling points. A: the map of China; B: the map of Jiangsu
Province
Note: According to the different orchard planting area in different locations, select the appropriate number of sampling points.

Table 1: Determination methods of fruit quality and soil nutrients

Sample Measuring method

Mass per fruit Determined by 1/1000 electronic balance (TD5002A)

Hardness Determined by GY-4 handheld hardness tester (TOP Instrument)

Soluble solid
concentration

Determined by PAY-1 handheld sugar tester (ATAGO)

Titratable acid Determined by sodium hydroxide titration [12]

Solidity acid ratio Soluble solid content/titratable acid content

Soil organic matter Heated K2Cr2O7 oxidation and FeSO4 titration [12]

Soil pH A suspension of soil in distilled water (1:2.5) by a glass electrode [13]

Soil total N Determination of H2SO4-HCLO4 by AA3 flow continuous analyzer (SEAL Auto
Analyzer 3, Germany) [13]

Soil available P NaHCO3 extraction–molybdenum antimony anti-colorimetric method [13]

Soil available K NH4OAC extraction-flame photometric method (AA800, PerkinElmer, USA) [12]

Soil available Ca and
Mg

EDTA + CH3COOHNH4 extraction method

Soil available Fe and
Zn

Diethylenetriamine pentaacetic acid–triethanolamine (DTPA-TEA) by atomic
spectrophotometer (AAnalyst 100, PerkinElmer, USA) [12]
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the speed and accuracy of the training model, the input data and output data are normalized in the range of
0∼1. The formula is as follows [14]:

Qn¼
Q� Qmin

Qmax � Qmin
(1)

where Q is the original measurement data, Qn is the normalized value of the original measurement data, and
Qmax and Qmin are the maximum and minimum values of variables.

Figure 2: Multi-layer perceptron model structure

The learning rate of the model lr = 0.01, the learning accuracy goal = 0.0001, the momentum = 0.9, the
maximum training epochs = 1000, and the number of hidden layers = 1 [15]. The number of neurons in the
hidden layer adopted the trial-and-error method, and the number of hidden layers was set to 1∼15, with
100 repetitions. Tagsig transfer function was used between the input layer and the hidden layer, and the
logsig transfer function was used between the hidden layer and the output layer. Essentially, the most
important and highly correlated input variables may bring better prediction results [16]. We established
the prediction model of fruit quality by soil nutrient factors through MATLAB software (2017 edition).
Pearson coefficient of determination (R2), root mean square error (RMSE) and mean absolute error
(MAE) were used to evaluate the performance of the prediction model [17,18].

Log-sigmoid function

Fa ¼ 1

1þ ea
(2)

Tangent-sigmoid function:

Fa ¼ 2

1þ e�2a
� 1 (3)

R2 ¼
Pn

i¼1ðWi� �WÞðMi� �MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðWi� �WÞ2 Pn

i¼1 ðMi� �MÞ2
q (4)

196 Phyton, 2023, vol.92, no.1



RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðWi�MiÞ2
s

(5)

MAE ¼ 1

n

Xn
i¼1

jWi�Mij (6)

�W ¼
Pn

i¼1 Wi

n
(7)

�M ¼
Pn

i¼1
�W

n
(8)

where n is the number of input or output data, a is a constant, and e is a natural logarithm. Wi is the original
measurement value, Mi is the predicted value of the established model, and the bar chart is the average value
of the relevant variables.

3 Results and Analysis

3.1 Basic Overview of Orchard Soil pH, Nutrients and Fruit Quality
Apple fruit quality indicators and soil pH and nutrient contents are shown in Tables 2 and 3, respectively.

The average of apple MPF was 305.50 g, average of HB was 7.21 kg⋅cm−2, and the average content of SSC,
TA, SSC/TAwere 12.21%, 0.34%, 37.07, respectively. The maximum values were 416.95 g, 8.96 kg⋅cm−2,
17.13%, 0.54%, and 60.17, respectively; the minimum values were 187.23 g, 5.18 kg⋅cm−2, 8.10%, 0.18%
and 21.21, respectively (Table 2). The mean soil organic matter content and soil total N in orchards were
12.82 and 1.85 g⋅kg−1; the mean values of soil available P, available K, available Ca, available Mg,
available Fe and available Zn were 17.06, 159.26, 996.06, 136.28, 13.30 and 3.77 mg⋅kg−1, respectively
(Table 3), and the mean values of soil pH was 8.2.

Table 2: Survey data of fruit qualities in apple orchards

Item Mass per
fruit (g)

Hardness
(kg⋅cm−2)

Soluble solids
concentrations (%)

Titratable acid
concentration (%)

Solidity acid
ratio

Minimum 187.23 5.18 8.10 0.18 21.21

Maximum 416.95 8.96 17.13 0.54 60.17

Mean 305.50 7.21 12.21 0.34 37.07

STD 49.43 0.83 1.63 0.07 7.99

CV% 16.18 11.51 13.35 20.59 21.55

Table 3: Survey data of pH and soil nutrients in apple orchards

Item Mineral elements

pH O.M
g⋅kg−1

Total N
g⋅kg−1

Avail P
mg⋅kg−1

Avail K
mg⋅kg−1

Avail Ca
mg⋅kg−1

Avail Mg
mg⋅kg−1

Avail Fe
mg⋅kg−1

Avail Zn
mg⋅kg−1

Minimum 7.05 5.59 1.01 4.13 61.03 499.12 49.46 2.59 0.51

Maximum 8.96 21.81 4.94 39.44 249.99 1992.70 382.80 29.03 15.99

Mean 8.20 12.82 1.85 17.06 159.26 996.06 136.28 13.30 3.77

STD 0.48 3.52 0.98 8.70 50.69 261.86 72.10 6.14 2.45

CV % 5.85 27.46 52.97 60.00 31.83 16.25 52.91 46.17 64.99
Note: O.M represents organic matter content.
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Figure 3: Pearson correlation coefficient of soil factors and fruit quality factors in ANN model
Note: The distribution of each variable in the figure is shown in the diagonal; the bivariate scatter diagram with regression line is
displayed in the left lower part of the diagonal. The shadow section in the diagram is a confidence interval. Display the correlation
coefficient in the upper right corner of the diagonal plus the star sign display the aboriginal level, each saliency level is associated
with a sign: P value (“***”: 0.001, “**”: 0.01, “*”: 0.05). MPF: Mass per fruit; HB: Hardness; SSC: Soluble solids concentrations;
TA: Titratable acid concentration; SSC/TA: Solidity acid ratio.

3.2 Correlation Analysis of Soil pH, Nutrient and Fruit Quality in Orchard
Soil is the basis for the survival of fruit trees. The correlation analysis between fruit quality and soil factors is

shown in Fig. 3. In terms of soil nutrients, soil pH was negatively correlated with all soil factors, and was
significantly negatively correlated with soil organic matter, available P, available Ca, available Fe and
available Zn. On the contrary, soil organic matter had a positive correlation with most soil factors, among
which there was a very significant positive correlation with soil total N and available P, and a significant
positive correlation with available Ca and K; soil available Ca was significantly positively correlated with
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available P andMg contents. The correlation analysis between soil factors and fruit quality demonstrated that soil
organic matter was positively correlated with MPF, SSC and SSC/TA. Soil pH was significantly negatively
correlated with HB, SSC and SSC/TA, and significantly positively correlated with TA. Soil available Ca was
significantly positively correlated with HB, SSC and TA; soil total N was significantly negatively correlated
with HB. The correlation analysis between soil factors and fruit quality demonstrated that soil organic matter
was positively correlated with MPF, SSC and SSC/TA. Soil pH was significantly negatively correlated with
HB, SSC and SSC/TA, and significantly positively correlated with TA. Soil available Ca was significantly
positively correlated with HB, SSC and TA; soil total N was significantly negatively correlated with HB.

3.3 Establishment of an Artificial Neural Network Model
In order to obtain an effective model for predicting fruit quality, we tested the performance of ANN in

predicting apple fruit quality under different input layers (Table 4). The results showed that when the input
layer was 9, the performance of ANN in predicting apple fruit quality was the best. Subsequently, we used
different training functions to evaluate the performance of the established ANNmodel. The results are shown
in Table 5. When LM was used as the training function, the prediction accuracy of single fruit weight
(R2= 0.851), hardness (R2= 0.847), SSC (R2= 0.885), TA (R2= 0.678) and SSC/TA (R2= 0.746) reached
the highest (Table 5). In order to better detect the ability of the established ANN model to predict apple
fruit quality, we compared the distribution models of predicted and observed values of single fruit weight
(Fig. 4A), hardness (Fig. 4B), SSC (Fig. 4C), TA (Fig. 4D) and SSC/TA (Fig. 4E), respectively. The
results showed that their predicted and observed values had similar distribution patterns, indicating that
the established ANN model could accurately predict apple fruit quality.

Table 4: The performance of the ANN model with different input layers to predict fruit quality

No. input
layers

MPF HB SSC TA SSC/TA

R2 RMSE RAE R2 RMSE RAE R2 RMSE RAE R2 RMSE RAE R2 RMSE RAE

1 0.135 0.212 0.142 0.157 0.221 0.158 0.245 0.224 0.226 0.195 0.246 0.231 0.164 0.232 0.241

2 0.357 0.152 0.132 0.335 0.159 0.139 0.376 0.154 0.533 0.157 0.246 0.214 0.273 0.241 0.213

3 0.120 0.205 0.153 0.118 0.215 0.164 0.203 0.253 0.238 0.190 0.267 0.251 0.153 0.224 0.232

4 0.438 0.205 0.187 0.547 0.256 0.261 0.494 0.221 0.152 0.265 0.168 0.154 0.387 0.253 0.216

5 0.657 0.241 0.216 0.634 0.234 0.210 0.618 0.217 0.235 0.456 0.223 0.207 0.526 0.241 0.235

6 0.213 0.255 0.236 0.180 0.246 0.232 0.226 0.242 0.216 0.157 0.235 0.241 0.259 0.184 0.176

7 0.151 0.237 0.241 0.264 0.247 0.238 0.431 0.249 0.227 0.328 0.263 0.216 0.326 0.234 0.242

8 0.711 0.258 0.234 0.702 0.288 0.241 0.654 0.253 0.236 0.438 0.205 0.187 0.547 0.256 0.261

9 0.851 0.275 0.259 0.847 0.280 0.247 0.885 0.213 0.150 0.678 0.330 0.312 0.746 0.315 0.276

Table 5: Statistical characteristics of predicting fruit quality factor results of ANN using different training functions

Training function MPF HB SSC TA SSC/TA

BFG Best model 9:7:1 9:11:1 9:4:1 9:9:1 9:8:1

R2 0.810 0.703 0.855 0.587 0.642

RMSE 0.308 0.374 0.228 0.354 0.361

MAE 0.283 0.349 0.207 0.337 0.332

CGB Best model 9:10:1 9:12:1 9:3:1 9:13:1 9:12:1

R2 0.793 0.708 0.767 0.604 0.651

RMSE 0.326 0.370 0.282 0.355 0.358

MAE 0.287 0.350 0.250 0.323 0.323
(Continued)
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Table 5 (continued)

Training function MPF HB SSC TA SSC/TA

CGF Best model 9:12:1 9:10:1 9:8:1 9:12:1 9:11:1

R2 0.824 0.743 0.790 0.606 0.563

RMSE 0.296 0.350 0.269 0.350 0.392

MAE 0.280 0.330 0.239 0.323 0.351

LM Best model 9:12:1 9:4:1 9:9:1 9:7:1 9:11:1

R2 0.851 0.847 0.885 0.678 0.746

RMSE 0.275 0.280 0.213 0.330 0.315

MAE 0.259 0.247 0.150 0.312 0.276
Note: MPF: Mass per fruit; HB: Hardness; SSC: Soluble solids concentrations; TA: Titratable acid; SSC/TA: Solidity acid ratio, BFG: BFGS quasi-
Newton algorithm [19], CGB: Powell-Beale reset algorithm [20], CGF: Fletcher-Reeves correction algorithm [21], LM: Levenberg-Marquardt [22].

3.4 Sensitivity Analysis of Soil Factors to Fuji Apple Fruit Quality
Sensitivity analysis is an analysis method to reveal the importance of individual variables [23]. In order

to calculate the individual contribution of each soil factor input to the prediction of apple fruit quality, we
conducted a sensitivity test on the established model. In the sensitivity analysis, we can use the RMSE
value to express the influence of soil factors on apple fruit quality factors. The higher the RMSE value,
the higher the importance of soil factors to fruit quality factors [24]. The MPF of Fuji apple was mainly
affected by the contents of soil available K (RMSE = 0.641), available Ca (RMSE = 0.565) and available
Mg (RMSE = 0.483) (Fig. 5A). The fruit hardness was mainly affected by soil total N (RMSE = 0.710),
available Mg (RMSE = 0.737) and available Ca (RMSE = 0.694) (Fig. 7B). Soil organic matter
(RMSE = 0.4334), available P (RMSE = 0.449) and available Zn (RMSE = 0.439) had significant effects
on fruit SSC (Fig. 5C). TA was mainly affected by soil available P (RMSE=0.594), soil total N (RMSE=0.522)
and available Zn (RMSE=0.513) (Fig. 5D). The SSC/TA was mainly affected by soil available Zn (RMSE=
0.656), soil available Mg (RMSE=0.590) and soil available Ca (RMSE=0.586) (Fig. 5E).

3.5 Response Surface Methodology (RSM) Analysis
In order to further explore the soil nutrient content for high-quality fruit quality, we drew a RSM of soil

factors that significantly affected fruit quality screened out in the sensitivity analysis (Fig. 6). The effects of
available K, available Mg content and available K, available Ca content on MPF are shown in Figs. 6A and
6B. The MPF reached its maximum when the available Mg content in orchard soil was 120∼200 mg⋅kg−1,
the available Ca content was 1000∼1100 mg⋅kg−1, and the available K content was 170∼200 mg⋅kg−1. The
effects of soil available Mg, total N content and available Mg, available Ca content on HB are shown in
Figs. 6C and 6D. The HB reached its maximum when the available Mg content in orchard soil was
80∼200 mg⋅kg−1, the available Ca content was 1000∼1200 mg⋅kg−1, and the total N content was
1.5∼2.5 g⋅kg−1. The effects of available Zn, available P content, organic matter and available Zn content
on SSC are shown in Figs. 6E and 6F. The SSC of fruit reached the maximum when the available
P content in orchard soil was 10∼20 mg⋅kg−1, the available Zn content was 2.0∼4.0 mg⋅kg−1, and the
organic matter content was 15∼18 mg⋅kg−1. The effects of soil available P, total N content and available
P, available Zn content on TA are shown in Figs. 6G and 6H. A low TA content was obtained when
the soil total N content was between 2.0∼2.5 g⋅kg−1, the available P content was 10∼17 mg⋅kg−1, and the
available Zn content was 2.0∼4.0 mg⋅kg−1. The effects of available Zn, available Ca content
and available Zn, available Mg content on SSC/TA are shown in Figs. 6I and 6J. The SSC/TA content
was the highest. when the available Zn content was 2.5∼4.0 mg⋅kg−1, the available Mg content was
110∼130 mg⋅kg−1, and the available Ca content was 1300∼1500 mg⋅kg−1.
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Figure 4: The ANN model of fruit quality. A: Violin plot and scatter plot of predicted and measured mass
per fruit values. B: Violin plot and scatter plot of predicted and measured hardness values. C: Violin plot and
scatter plot of predicted and measured soluble solids concentrations values. D: Violin plot and scatter plot of
predicted and measured titratable acid values. E: Violin plot and scatter plot of predicted and measured
solidity acid ratio values
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Figure 5: Sensitivity analysis of mass per fruit (A), hardness (B), soluble solid content (C), titratable acid
content (D) and solid-acid ratio (E) of Fuji apple
Note: a: ANN without pH; b: ANN without O.M; c: ANN without N; d: ANN without K; e: ANN without P; f: ANN without Ca; g:
ANN without Mg; h: ANN without Fe; i: ANN without Zn.
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3.6 Analysis and Comparison of Soil Nutrient Content in Orchards
In order to better guide orchard soil management, the optimal range of soil nutrients obtained by

response surface analysis was compared with that with the soil nutrient content of the 40 investigated
orchards (Table 6). The study found that 80% of the orchard soil organic matter content was lower than
15 g⋅kg−1, 60% of the orchard soil total nitrogen content did not reach the nutrient optimization range,
57.5% of the orchard soil available potassium content was insufficient, and 70% of the orchard soil
available calcium content was insufficient, which may be related to the investigation of the orchard soil
pH. Therefore, improving soil organic matter, available potassium and available calcium contents and
reducing soil pH were the key points of orchard soil management in Feng County, Jiangsu Province.

Figure 6: (Continued)
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4 Discussion

4.1 Construction and Evaluation of Artificial Neural Network Model
ANN is an operational model to simulate the human brain from the perspective of information

processing [25]. ANN can learn complex relationships from a given input/output data mode and
summarize the results, which is an appropriate technology to solve nonlinear and complex system
modeling [10]. Based on the high accuracy of prediction data during training and testing, five reliable
prediction models were obtained, which can accurately predict apple fruit quality indicators. When the
topological structure of single fruit weight prediction model was 9:12:1, hardness topological structure
was 9:4:1, SSC topological structure was 9:9:1, TA topological structure was 9:7:1 and SSC/TA
topological structure was 9:11:1 (see LM Best Model: Table 6), and the prediction accuracy was the
highest (see LM training function: Table 6, R2 = 0.851, 0.847, 0.885, 0.678 and 0.746). Niazian et al. [6]
showed that the ANN model with a topological structure of 4:4:1 could more accurately predict the seed
yield of Ajowan. Belouz et al. [26] showed that the ANN model with 12:34:1 topological structure was the
best model for predicting tomato yield. We also found that the Levenberg-Marquardt training function
predicted fruit quality more accurately. This was because LM was more suitable for training small and
medium data sets [27].

Figure 6: Response surface diagram of fruit quality factors and soil factors. A: Soil available K, available Ca
content and MPF; B: Soil available K, available Mg content and MPF; C: Soil total N, available Mg content
and HB; D: Soil available Ca, available Mg content and HB; E: Soil available Zn, available P content and
SSC; F: Soil available Zn, organic matter content and SSC; G: Soil available P, Soil total N content and TA;
H: Soil available P, Soil available Zn, content and TA; I: Soil available Zn, available Ca content and SSC/TA;
J: Soil available Zn, available Mg content and SSC/TA
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4.2 Importance of Soil Mineral Nutrients to Fruit Quality
The relationship between soil nutrients and fruit quality is complex, and the effects of soil nutrients on

different fruit quality factors are different. In the present study, soil available K, Mg, and Ca were consistently
identified by ANN as the most important factors for MPF. Bennewitz et al. [28] showed that soil
exchangeable K, Mg, and Ca contents were the main factors affecting the yield of ‘Jonagold’ apple,
which was consistent with our results. K is considered a quality element and plays an active role in
improving the quality of agricultural products [29]. Mg is a component of chlorophyll, which affects crop
yield by affecting sink strength, sugar accumulation in source and sink organs, and phloem output of
sucrose [30]. Ca is an important component of plant cell wall, which can promote epidermal cell division,
thereby accelerating the growth of fruit epidermis and promoting fruit development [31]. In addition, soil
available calcium is also the main factor affecting fruit firmness. This is because Ca2+ can combine with
pectin in the cell wall to form calcium pectin, which increases the mechanical strength to maintain the
stability of the cell wall structure [32]. In our research, soil available P was the main influencing factor of
fruit SSC in apple. The result was similar with that of SSC in strawberry fruits which was positively
correlated with P content in the soil [33]. P is a major component of important compounds in plants,
which can promote the synthesis and accumulation of carbohydrates and improve fruit sugar content [34].
As for the relative contribution, available P, K, Ca and Mg contents in the soil greatly influenced fruit
quality indexes of apple.

4.3 Optimization of Soil Nutrient Content for Apple Production
Soil is the basis for the survival of fruit trees. In daily orchard production and management, high or low

soil nutrient content will directly affect the yield and fruit quality [35]. Therefore, scientific soil management
schemes can be formulated according to the growth and development characteristics of fruit trees to achieve
high quality and high yield on orchards. In this paper, ANN sensitivity analysis and RSM analysis were used
to optimize the nutrient composition of apple orchard soils. Due to the differences in soil texture and
management level of apple orchards in different regions, the optimization schemes of soil nutrients in
apple orchards in different regions are also different. In the optimization scheme of this study, the soil
organic matter content was 18 g⋅kg−1, and the soil total N content was 1.5∼2.5 g⋅kg−1, which were higher

Table 6: Comparative soil nutrient data in an optimum range with measured values

Soil factors Limit Proportion of
orchar (%)

Soil nutrient Limit Proportion
of orchard (%)

Avail Zn (mg.kg−1) <2.0 22.5 Avail K (mg⋅kg−1) <170 57.5

2.0∼4.0 37.5 170∼200 16.5

>4.0 40 >200 26

O.M (g⋅kg−1) <15 80 Avail Ca (mg.kg−1) <1000 70

15∼18 9.5 1000∼1500 22.5

>18 10.5 >1500 7.5

Total N (g⋅kg−1) <1.5 60 Avail Mg (mg.kg−1) <80 20

1.5∼2.5 19 80∼200 65

>2.5 21 >200 15

Avail P (mg⋅kg−1) <10 20

10∼20 47.5

>20 32.5
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than those of Guo et al. [36], where the soil organic matter content was 12.41 g⋅kg−1, and the total N content
was 0.8 g⋅kg−1. The optimization scheme emphasizes that the soil acidity and alkalinity of high-quality
orchards are moderate, and the contents of soil organic matter, available P, K and Ca are appropriate,
which is consistent with the high soil pH and insufficient contents of soil organic matter, available K and
Ca in apple orchards in Feng County of Jiangsu Province. Therefore, improving the contents of soil
organic matter, available K and available Ca in apple orchards is the focus of soil improvement in Feng
County of Jiangsu Province in the future.

5 Conclusions

In this study, soil pH and nutrient factors were used as input variables, and fruit quality factors were used
as output variables. Artificial neural network was used to predict fruit quality. The results showed that when
Levenberg-Marquardt back propagation training function was used, MPF prediction model structure was
9:12:1, HB prediction model structure was 9:4:1, SSC prediction model structure was 9:9:1, TA
prediction model structure was 9:7:1 and SSC/TA prediction model structure was 9:11:1, and the
prediction accuracy was the highest (R2= 0.851, 0.847, 0.885, 0.678 and 0.746). The results of sensitivity
analysis showed that soil available P, K, Ca and Mg contents had the greatest impact on apple fruit
quality. The suitable range of these mineral elements was determined by RSM. The available P content
was 10∼20 mg⋅kg−1, the available K content was 170∼200 mg⋅kg−1, the available Ca content was
1000∼1500 mg⋅kg−1, and the available Mg content was 80∼200 mg⋅kg−1, which could significantly
improve the quality of apple fruit.
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