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ABSTRACT

This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of
the long-span bridge girder. Firstly, multivariate Bayesian dynamic linear model (MBDLM) considering dynamic
correlation among the multiple variables is provided to predict dynamic extreme deflections; secondly, with the
proposed MBDLM, the dynamic correlation coefficients between any two performance functions can be pre-
dicted; finally, based on MBDLM and Gaussian copula technique, a new data fusion method is given to predict
the serviceability reliability of the long-span bridge girder, and the monitoring extreme deflection data from an
actual bridge is provided to illustrated the feasibility and application of the proposed method.
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1 Introduction

Structural Health Monitoring (SHM) is a promising technology to improve the serviceability of civil
infrastructures and achieve the sustainable management. For the long-span bridges, the monitoring
extreme deflection data provided by SHM systems is an important parameter for structural serviceability
analysis and can be used for evaluating and predicting structural dynamic serviceability reliability.

In recent years, SHM has become the escalating urgent need for the modern bridge engineering and grew
into a hot topic on both investments and researches around the world. With the innovation of sensing data
acquisition, SHM systems are comprehensively deployed and used for obtaining the extreme deflection
data of the long-span bridge bridges in different sampling frequency. How to make reasonable use of
these data for predicting the dynamic serviceability reliability of the long-span bridge girder, has been
still at the initial research stage, but it has become one of the main scientific problems in the SHM field
[1-3]. Due to the same dynamic random loads, the dynamic monitoring data at the different control
monitoring points of the long-span bridge girder, shows the randomness, correlation and so forth. The
performance functions corresponding to the failure modes can be expressed with the dynamic monitoring
data, further, the dynamic correlations among the failure modes at the multiple control monitoring points
can be reflected. Therefore, with the random and correlative monitoring data, the correlation models
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among the performance functions of the failure modes at the different control monitoring points, can be built,
further, the dynamic reliability of the long-span bridge girder can be reasonably predicted [4].

Long-span bridge serviceability reliability prediction can be made with reliability analysis methods (e.g.,
first order second moment reliability method [1-10], BDGCM [11], first order reliability method [5,8], etc.)
based on the allowable deflection information and the predicted extreme deflection information obtained with
Bayesian dynamic linear models (BDLM) [12—17]. In this paper, the long-span bridge girder is adopted as
the research object. The serviceability reliability for the single monitoring point of bridge girder is defined as
the component reliability, and the serviceability reliability of bridge girder with or without considering the
correlation of the performance functions for deformation failure modes at different monitoring points is
termed the system reliability.

For the long-span bridges, dynamic correlation occurs among the performance functions corresponding
to the deformation failure modes at different control monitoring points for the long-span bridge girder
[11,18-21]. Therefore, time-variant correlation plays an important role in dynamic serviceability
reliability analysis of bridge girder. In the field of bridge engineering, some studies about dynamic
reliability prediction considering time-variant correlation among failure modes at different monitoring
points have been conducted with copula functions, for example: Fan et al. [22] proposed the Bayesian
dynamic gaussian copula model (BDGCM) for characterizing dynamic correlation between failure modes
at two monitored points and predicting time-dependent reliability of the bridge girder considering time-
variant correlation between two failure modes, where, the correlation coefficients among the failure
modes are approximately computed and the built BDLM does not consider the correlation between two
variables; Liu et al. [21] proposed Gaussian copula-Bayesian dynamic linear model-based time-dependent
reliability prediction method for Yitong River Bridge considering dynamic correlation between two
failure modes, where, the correlation coefficients among the failure modes are also approximately solved
and the built BDLM also does not take account of the correlation between two variables. The above
studies show the correlation coefficients affecting the Gaussian copula function accuracy, have not been
accurately computed. Therefore, building the accurate correlation model among multiple failure modes,
and further dynamically predicting bridge girder reliability should be further studied, and become the
topic of the present research.

In view of the above existing problems, this article takes the long-span bridge girder as the research
object, firstly, MBDLM is built and adopted to predict the dynamic extreme deflections. Secondly, with
the predicted covariance matrix of the MBDLM, the correlation coefficients among the predicted
deflections can be accurately obtained, further, the correlation coefficients among the multiple
performance functions can be accurately predicted. Finally, based on the MBDLM and the Gaussian
copula technique, the new data fusion approach is proposed to predict the dynamic serviceability
reliability of the long-span bridge girder, and an actual bridge is provided to illustrated the feasibility of
the proposed approach. The flowcharts of this paper are shown in Fig. 1.
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Figure 1: The flowcharts of this paper
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2 MBDLM of Monitoring Extreme Deflections at Multiple Monitoring Points

MBDLM is a predicting approach based on a philosophy of information updating [23,24]. It includes a
multivariate state equation, a multivariate observation equation and the initial multivariate state information.
The multivariate state equation and the multivariate observation equation are both linear. The modeling
processes of MBDLM are shown in Fig. 2.

—| Historical extreme deflectiondata at the multiple monitoring points
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Figure 2: Modelling processes of MBDLM

2.1 Assumptions of MDLM
(1) The monitoring variables (y;;,t =1,2,...) are independent of each other, and only related to the
state variables (9,-,;, t=1,2, )

(2) The state variables, monitoring variables and the corresponding errors all approximately follow
normal distribution.

(3) Different state variables are dependent between each other.

(4) Monitoring errors and state errors are internally and mutually dependent.

2.2 MDLM about Monitoring Extreme Deflections at Multiple Monitoring Points of the Long-Span

Bridge Girder
In this paper, the extreme deflection data is the maximum of the monitoring deflection data in each hour.

Based on the historical monitoring extreme deflection data, MDLM (Multiple dynamic linear model) is built
as follows [23-25].

Multivariate observation equation:

Y :F,T+10t+1 + Vg1, Vep1 ~ N0, Vigr) (1)

where, Y, = (y17t+1,y2’t+1, ...,erH)T isa (r x 1) column observation of » monitoring points at time z + 1;
1000...0
0100...0

FtT+1 =1 0010...0 is a known (r x ) matrix; 0, = (917,“, 02,411, ...,H,JH)T isa (rx 1) column
0000...1

rXr

.. . . T .
state of » monitoring points at time ¢+ 1; v, = (v17,+1,v27,+1,...,va) 1S a (rx 1) column
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observational error of » monitoring points at time ¢ + 1; v, is internally dependent; N(.) is normal
probability density function (PDF); ¥V, is a (r X r) variance matrix.

Multivariate state equation:

0,01 =G0, + 01,001 ~NO, W) ()
1000...0
0100...0 :

where, G, = | 0010...0 is a known (r X ) matrix; 9,:(617,, 04, ..., 0,,1) isa (7 x 1) column state
0000...1 / . T

of » monitoring points at time ¢ + 1; @, = (wl,,ﬂ MO RTINS wr,,ﬂ) isa (r x 1) column state error of »

monitoring points at time ¢+ 1; . is internally dependent; @, and v, ; are mutually dependent; W, is a
(r x r) variance matrix.

Initial multivariate state information:
(0:|D;) ~ N(m,, Cy) (3)

where, D,— (DL,, Dy,, .. -7Dr-,t) ,D;;is the 1nf0rmatT10n set of the /™ monitoring variable at and before time ¢,
and Dj ) = y[,,+1,D,-7,}; m,:(mlyt, my, ...,m,_,) is a (r x 1) column initial state mean of » monitoring
points at time ¢+ 1; C, is a (r X r) variance matrix.

2.3 Bayesian Probabilistic Recursion of MDLM: MBDLM
Bayesian probabilistic recursion processes of MDLM can be obtained with Bayes method. The detailed
steps are shown as follows [23-25].

(1) The state posteriori distribution at time ¢
For the column initial state mean m, and the variance matrix C,, there is
(0:/D;) ~ N(m,, C;) “
(2) The state priori distribution at time ¢ + 1
(0r411D;) ~ N(ar1, Ri11) 5)
where, a, =G, . 1my;, R, = G,HC,GtT+1 + W, GtT+l is the transpose of G, ;.

(3) One-step prediction distribution at time ¢ + 1

Y|P ~N(f 11, Qi) ©)

T .
where, f.., = FtT+|az+1:(ﬁ,z+1aﬁ,t+17 ---aﬁ,t+1) s O = FtT+1Rt+1Ft+1 + V1. According to the
definition of highest posterior density (HPD) region [23], the predicted interval of each variable with a

95% confidential interval at time ¢ is [ﬁJH —1.645\/Oi 11, firr1 + 1.645/0;r1],i = 1,2,....1.
(4) The state posteriori distribution at time ¢ + 1
(041[Drs1) ~ N1, Crin) (7

T —1
where, Ci 1 = R4y _At+1Qt+1At+1: m | = a +Are, A :Rt+1Ft+1Q,+1, e =Y _fz+1
(One-step prediction column errors).
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2.4 Determination of the Main Probability Parameters about MBDLM

For MBDLM, the main probability parameters include V.1, W1, m; and C; the interval period of
model updating is one hour; V,; can be approximately estimated with variance matrix about the
differences between the state data and the monitoring extreme data at the different monitoring points,
where the state data can be obtained through resampling the monitoring extreme data with cubical
smoothing algorithm with five-point approximation [3,9]; according to the research [3,23,24], W, can
be solved with Eq. (8).

W= —Gz+1CzG;T+1 +C,/é )]

where, GtT+l is the transpose of G, 1, J is the discount factor which is usually 0.48-0.98 [3,9].

m;, is the mean value vector composed of mean value about the data for each state variable at and before
time ¢, there is a state variable at each monitoring point; C; is the variance matrix of all the state variables at
and before time z. The state data can be estimated with cubical smoothing algorithm with five-point
approximation [3,9].

Clit; €125 -5 Clyrt
T c CotyennsCop )
m, = (mlﬂ,, Mg, ... mm) ,Cr = e R m;, is the mean value of the state data about
Cr1tyCr2ty -y Crt
the /™ state variable, ci; 1s the variance of the state data about the iM state variable, ¢; j. 18 the covariance
n n
2
0., > (00 — miyg)
P . E . Jj=1 Jj=1
between the ™ state variable and the ]th state variable, m;, = , Cif = ,
n n
ny m
2220 (O X Okie)
I=1k=1 . ; .
Ciji = — mi, x mj;, where 0 ;, is the k" state data about the i state variable at and
ny X np '

before time ¢.

3 Dynamic Prediction of Correlation Coefficients

O, Q125 -+, Qe
D21, Doty ooy Qo
Qr,l,n Qr,Z,ta [EXX} Qr,t

. -1 . L . . . . . o
variable, (Q,-’,) is the prediction precision, Q;;, is the covariance between the i™ predicted monitoring
variable y;, and the ™ predicted monitoring variable Vis-

In Eq. (6), Q1= , Qi is the variance about the i™ predicted monitoring

The deformation failure mode at the monitoring point is: If the monitoring deflection is more than the
allowable deflection, then the monitoring point failed. The predicted performance functions of deformation
failure modes at the multiple monitoring points are

&it+1 :[f]_J/i,z+l,i:1a27---,” (9)

where, [f] is the allowable deflections, y; . is the predicted variable obtained with Eq. (6), [f] and y; 4, are
independent between each other.

Further, the dynamic prediction of correlation coefficients (p(gis+1,gj+1)) between any two predicted
performance functions can be achieved with Eq. (10).
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p (g i+ &+l ) = CO/\Q]g(ilﬁlttl 72];:)
_ COV(V] — Vig+1, If1 - yj,t—H)
VO X Oy
_ COV(V]’ [f]) - COV(V]»J&',:H) - COV()’;‘JH’ [f]) + COV()/i,tH,yj,tH)
VO X Oy (10)

_ COV([f1,[f1) =0 — 0+ COV (yirs1,¥011)

VO i1 X Ol
_ QO + COV (yi,t+la}/j',t+l)

V(@0 +0,.) x (0 +0,..)

=Pijr+1

where, COV (g;+1,g,+1) is the covariance between the i predicted performance function g; 1 and the /"
predicted performance function gj,11;0y,,., and Oy, are respectively the variance about g;, and gj+1;
COV (is41,Yj+1)=0i;, is the covariance between the i predicted variable y; 1 and the j/* predicted
variable y; 1 1; Oy,,.,=Qir1 and Q) =0;,1 are respectively the variance of y; 1 and y; 15 Qy is the
variance of [f].

4 Dynamic Serviceability Reliability Prediction Based of Long-Span Bridge Girder on MBDLM and
Gaussian Copula Model

The long-span bridge girder exists » deformation failure modes at » monitoring points, and the
corresponding performance functions are shown in Eq. (9). The long-span bridge girder with »
deformation failure modes is considered as a r-dimensional series system.

When the /™ deformation failure mode occurred, with first order second moment (FOSM) method
[1,3,5-10], the predicted reliability index and failure probability can be respectively obtained with Eqgs.
(11) and (12).

Ripi1 = M~ (11)
VO] + Qig

where, i) is the mean of [f].

P, = normcdf (—R,-JJr 1) (12)

where, normedf(-) is the standard normal cumulative distribution function.

When the » deformation failure modes are dependent between each other and meantime occurred, the
predicted failure probability of the long-span bridge girder is
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P(g1i1 < 0,841 <0,...,841 <0)

= P(Fl (g1,;+1) < Fl.t+1(0),F2 (gz,z+1) < FZ,H-I(O), ---;Fr(gr,z+l) < Fr,t+1(0))
=P(Uy 1 < Fr41(0), Uz i1 < F2041(0), ..., Upsr < Frpy1(0))

= C(F1141(0), F2141(0), ..., Fr11(0); P12+15 P13t41s - s

Plrt+13P23,6410 P24 t+15 -5 P2y t+15 -3 pr717r7t+1)

(13)

= C(pﬁzlm Pley 0 Pl 3 P12+ 1 P13+ 5 PLrat 15 P23, 15 P24t+15 -5 P21 -5 prfl,r,t+1>

~ Pg (Pfg“+1 Pley, 0Pl P12 P13+ -0 PLret 15 P23+ 15 P2 40410 05 P2t 15 05 pr—l,r,t+1>

\ Qr,l+l vV Qr,t—H

Py, 1s the failure probability of the i"™ deformation failure mode, C is Copula function, Os(+) is Gaussian
copula function.

where, U, ;) = ® (M —Vril _ﬁ’tH) Fr1(0) = <ﬂ> » Pij+1 can be computed with Eq. (10),

When the r deformation failure modes are independent between each other and meantime occurred, the
predicted failure probability of long-span bridge girder is

P(gii1 <0,82041 <0,...,8 41 < ()):l_Ipfgl_t+1 (14)
. 1 b

=

Further, based on Eq. (13), the predicted failure probability of the r-dimensional series system
containing 7 correlated deformation failure modes can be computed with

P(g11 <0UgZ 1 S0U...Ug 41 <0)
:Zp(gr,tﬂ <0) — z P(gis1 < 0,841 <0)
: 1<i<j<r

i=1
+ Z P(gis+1 < 0,841 < 0,8k41 < 0)

1<i<j<k<r

—i-...—i-(—l)rflp(gl,m <0,82001 <0,...,841 < 0)

=> = > <I>c(p;;,i,,,pjg,,t,p,~,j¢+1>
i=1

1<i<j<r

(15)

+ Z @G(pfgu719];},7}?@,(‘”Pu,z+17Pi,k,z+1apj,k,z+1>

1<i<j<k<r

+ o+ (=)D (ps : S . o
G\Prey o Pley, o Pl P12a4+1 P13 410 -+ PLrt+ 15 P23,6415 P24s+10 -5 P2t 1505
pr—l,r,t-H)

Based on Eq. (14), the predicted failure probability of the r-dimensional series system containing r
uncorrelated failure modes can be obtained with

P(g17t+1 < 0 ngyprl < ou... Ugr"prl < 0):1 - prénﬂ (16)
i—1 "

=

Finally, the predicted serviceability reliability indices R, of the r-dimensional series system can be
approximately obtained with
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Rt+] = —norminV(P(g]_’FFl S 0 ng,t+1 S ou... Ugr,t+1 S 0)) (17)

where, norminv(-) is the inverse function of standard normal cumulative distribution function.

With Egs. (11)—(17), predicted failure probability and reliability indices of »-dimensional series system
with or without considering the dynamic correlations among multiple deformation failure modes can be solved.

5 Application to an Existing Long-Span Bridge Girder

The Zhaoqing West River Bridge over West River was built in 2003 in Guangdong City, China. It is a
typical continuous rigid frame bridge, the girders of which are all reinforced concrete box-girders. The main
spans include five spans (94 m + 4 x 144 m) shown in Fig. 3a, where the vertical deflections of the 4# span
girder are monitored with LVDT deflection sensors. The monitoring points are shown in Fig. 3b, namely:
Point A, Point B and Point C. They are respectively located in the middle of the bottom slabs about the
cross-sections for the one-fourth span, midspan and the three-fourth of the 4# span girder. Each point
installed a LVDT deflection sensor. Each point was monitored for 200 hours shown in Fig. 4. The
extreme deflection is defined as the maximum of the monitoring deflections in each hour. For the 4#
girder, the three monitoring points are serial. The deformation failure modes of the three points are serial.
Now, with the monitoring extreme deflection data at the three points, the MDLM of the extreme
deflections is built to predict the dynamic deflections and the correlation coefficients based on Sections
2 and 3, further, with Section 4, the failure probability and reliability indices of the 4# girder with and
without considering the dynamic correlation of the three deformation failure modes, are predicted, and
compared with each other.

514 m 94 m 144 m 144 m 144 m 144 m 87 m
K K . 3

Point A Point B Point C

(b)
Figure 3: The positions of the monitoring girder (4#) and the monitoring points (A, B and C)

5.1 Extreme Deflections of the Three Monitoring Points (A, B and C)

The extreme deflection at each point is defined as the maximum of the monitoring deflections at each
point in each hour. The extreme deflections at the three monitoring points (A, B and C) for the 4# box-
girder are monitored for 200 h, which ensure that the probability statistic characteristics of the monitoring
extreme deflections at each monitoring point can be extracted correctly. The monitoring extreme
deflections and the smoothly-processed state data at Points A, B and C are shown in Fig. 4, where the
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state data is obtained through resampling the monitoring extreme data with cubical smoothing algorithm with
five-point approximation [3,9].

5.2 MBDLM Based on the Monitoring Extreme Deflection Data

In Fig. 4, the state data can be approximately considered as the initial state information of the built
MBDLM. With the initial multivariate state information and the monitoring extreme deflection data, the
parameters (V,y1, Wy 1, m, and C)) can be estimated with Section 2.3. Through Kolmogorov-Smirnov (K-
S) test [1,3,9,25], the state data, observational errors and state errors can be all approximately simulated
by normal distributions. Therefore, based on Eqs. (1)—(3), the built MDLM are as follows.

Point A Point B Point C
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Figure 4: Monitoring extreme deflections and the state data at the three monitoring points
Multivariate observation equation:

T
Y= ()’A,z+1,)’3,z+1,yc,t+1) =FtT+10z+1 + Vi
100
T T
= 010 | (0441, 08011,0c41) + (Va1 Vo1 Vers1) s Vertr ~ N(O, Vigy)
001

(18)

where, Y, | = (yAH] yVB1+1,VCoi+1 )T isa (3 x 1) column observation of the monitoring points A, B and C at
. T. . . . .
timet+1; 0, = (HAJH, 011, HCJH) is a (3 x 1) column state of monitoring points A, B and C at time
T. . . . .
t+1;v = (VA,,H S VB 15 Vc,m) is a (3 x 1)column observational errors of the monitoring points A, B

Va1 Va1 Vaci
and C at time t+1; v, 1s internally dependent; V1= Vaus+1VBs+1VB,cos1 |» Viit1 1s the variance of

Ve Ve Vet
Vii+1, Vij+1 1s the covariance of v; 1 and v 4.

Multivariate state equation:
T
01 = (0441, 08041, 0c011) = Gri10; + @4y
100

T T
=| 010 (0 054,0c) + (@aps1, Opse1, OCir1) s Oprr ~ N(O, Wi iy)
001

(19)

3x3

where, 0, = (HA,,, HB_rt,HC,,)T isTa (3 x 1) column state of monitoring points A, B and C at time 7 + 1;
W = (a)AHl,wBH],chH) is a (3 x 1)column state error of monitoring points A, B and C at time
t+1; @4 is internally dependent; ;. ; and v, are mutually dependent; W, is a (3 x 3) variance matrix.
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Initial multivariate state information:
(0:|D;) ~ N(m,, C,) (20)

where, D, = (DA_,t7 Dg,;, Dc.,t) T, D;,(i = 4, B, C) is the information Tset of the monitored variable at point i at
and before time ¢, and D; ;| = {J’i.,tH ,D,-J}; m; = (mAJ, mg, mc’t) isa (3 x 1) column initial state mean of
monitoring points A, B and C at time ¢ + 1; C, is a (3 x 3) variance matrix.

Based on the monitoring extreme deflection data & Egs. (18)—(20) and Section 2.2, the predicted
extreme deflection information of Points A, B and C can be obtained and shown in Figs. 5a—5c, which
show that the predicted extreme deflection data and the predicted extreme deflection ranges both fit the
changing rules of monitoring extreme deflection data. Prediction precision of the MBDLM is shown in
Fig. 5d, which shows that prediction precision of the MBDLM is better and better with updating of the
monitoring extreme deflection data.

~ | * Monitored data
% 90 Predicted data
+  Monitored data LT —Predicted upper data o
E 68t Predicted data : £ gg |\ |~ Predicted lowerdata | -~~~ ]
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- i c
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2 k) i
© S=
3 )
© ©
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S
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0 50 100 150 200 0 50 100 150 200
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g 74 = 0.04F
1S 9o
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= 70 c ——-Point B
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Time/Hour .
Time/Hour
() (d)

Figure 5: Predicted extreme deflections and prediction precision (a) The predicted data at Point A (b) The
predicted data at Point B (¢) The predicted data at Point C (d) Prediction precision at the three points

5.3 Dynamic Prediction of Failure Probability and Reliability Indices for the Long-Span Bridge Girder

Based on MBDLM and Gaussian Copula Model
The predicted performance functions of the deformation failure modes at the monitoring points A, B and
C are, respectively,
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8it+1 = [f] _yi,t+177i :AaBaC (21)

where, [f] is the allowable deflection following normal distribution, mean value and coefficient of variation
of [f] are respectively 240 mm and 0.098, y;,; is the predicted extreme deflection variable at the /™

monitoring point.

The deformation failure modes at the monitoring points A, B and C are serial. Based on Eq. (15), the
dynamic serviceability failure probability of the 4# girder considering the dynamic correlations of
deformation failure modes can be obtained with

pf’Hl - pff;'A,tH +pfé3‘f+l +pff"'c,t+l N q)G (pféA.Hl ’pfé&tﬂ ’pA’B’t+l) - (I)G (png,tH ’pfg’C.tH ,pA’C"tJrl) (22)

— &6 <pfg,g_y,+1 Plec,y aPB,C,t+1) + 26 <png,,+1 Ple, o Plec, 1 PAB+1 pA,C,t+lapB,C,t+1>

where, p. " (i = 4, B, C) is the failure probability of the deformation failure mode at the i™ monitoring point.

Further, based on Eq. (17), the dynamic reliability index of the 4# girder considering the dynamic
correlations of deformation failure modes can be computed with

R = —nOIminV(pr-t,-l) (23)

The predicted correlation coefficients between performance functions corresponding to two deformation
failure modes can be computed with Eq. (10) and shown in Fig. 6. which show that the correlation
coefficients between the failure modes at Points A and B, or Points A and C, or Points A and C are all
time-dependent.

Correlation coefficients

0 50 100 150 200
Time/Hour

Figure 6: Predicted correlation coefficients between performance functions corresponding to two
deformation failure modes

Based on Egs. (11), (12) and (21), the predicted time-variant failure probability and reliability indices at
the three monitoring points can be computed and shown in Figs. 7-9. The predicted results can
approximately and reasonably show the changing trends and ranges of monitored reliability indices,
where the confidence interval the authors choose is 95%. And the predicted reliability indices and failure
probability are time-variant with updating of the monitoring extreme deflection data.

With the Eqgs. (13)—(17) and (22), (23), the predicted failure probability and reliability indices of the 4#
box-girder with and without considering the dynamic correlations of deformation failure modes can be

obtained and shown in Figs. 10 and 11. Fig. 10 shows that the predicted dynamic failure probability
considering correlation coefficients are smaller than the ones without considering correlation coefficients.
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Fig. 11 shows that the predicted dynamic reliability indices considering correlation coefficients are higher
than the ones without considering correlation coefficients. Therefore, the failure probability and reliability
indices of the series structural systems are conservative without considering correlation coefficients.
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Figure 7: The predicted reliability indices and failure probability at Point A
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Figure 9: The predicted reliability indices and failure probability at Point C

From Fig. 11, as can be seen that the predicted reliability indices of the 4# girder system are bigger than
the target reliability index value (ranging from 2 to 6) of bridge systems which is given in reference [26], so
the 4# girder is safe.
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Figure 11: Predicted reliability indices of the reinforced concrete box girder

6 Conclusions

This paper presented a new data fusion approach for the dynamic serviceability reliability prediction of
the long-span bridge girder through combining MBDLM and Gaussian copula model based on monitoring
extreme deflection data. The proposed method considered the dynamic correlation coefficients among the
multiple deformation failure modes.

Through the illustration of the actual long-span bridge girder, the results show that there exists dynamic
correlation among multiple failure modes (Fig. 6), and the time-variant reliability indices considering
dynamic correlation coefficients are bigger than the ones without considering dynamic correlation
coefficients (Figs. 10 and 11). Therefore, as can be concluded that it is essential and important to consider
the dynamic correlation between failure modes for obtaining the more accurate and reasonable dynamic
reliability of structural system.
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