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ABSTRACT

In this paper, the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian
system. Using this system, critical loads and modes of buckling of shells are reduced to symplectic eigenvalues
and eigensolutions respectively. By the symplectic method, the solution of the local buckling of shells can be
employed to the expansion series of symplectic eigensolutions in this system. As a result, relationships between
critical buckling loads and other factors, such as length of pulse load, thickness of shells and circumferential
orders, have been achieved. At the same time, symmetric and unsymmetric buckling modes have been discuss.
Moreover, numerical results show that modes of post-buckling of shells can be Bamboo node-type, bending type,
concave type and so on. Research in this paper provides analytical supports for ultimate load prediction and buck-
ling failure assessment of cylindrical long shells under local axial pulse loads.
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1 Introduction

Cylindrical long shell is a typical and classical structure in engineering, for example submarine
pipelines, which are the core of marine oil and gas transportation [1]. In complex seabed environment,
the long shell structures are more prone to instability because of ocean waves and/or currents, which is
one of the main causes of structural failure [2,3]. The buckling problem of cylindrical shells has been
noticed all along, and it is widely recognized that the sudden loss of capability of bending-bearing
contributes to this kind of failure. More specifically speaking, the membrane stiffness is much higher than
the bending stiffness for shell structures, at the beginning, external compression energy is absorbed
through membrane deformation and stored as membrane strain energy, up to a point, this energy will be
converted to bending strain energy, which leads to large deflection and complex bending deformation
modes, and the buckling initiates. For a long shell structure, buckling usually occurs before material
yielding, which could result in catastrophic consequences, hence, buckling load design is normally ahead
of other kinds of strength design.

Generally, it is difficult to solve buckling problems theoretically, and therefore most research works
concentrate upon experimental methods and numerical methods. At present, research trends on cylindrical
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shell buckling focus more on accurate experiment techniques, advanced new materials, local buckling effects
and micro scale structures, literatures on these areas are enormous. Wang et al. [4] implemented experiments
to analyze geometrical imperfection sensitivity of cylindrical shells buckling. Fatma et al. [5] analyzed the
effect of dent variation on buckling and post-buckling behaviors for cylindrical thin shells. Skukis et al. [6]
proposed an experiment based vibration correlation technique to measure buckling loads of composite
cylindrical shells. Experimental studies had shown that dynamic buckling modes of cylindrical shells
could be mushroom-type and petal type under high speed impact [7]. In fact, the local buckling of
cylindrical shells is mainly caused by uneven stress distribution. When subjected to an impact, stress
wave continually compress the shell until transverse stiffness is not capable enough to sustain lateral
shape, thus may cause local buckling of shells [8]. It is worth mentioning that experimentally achieved
results are effective, but they are limited to too many experiment conditions, such as experiment facilities,
specimen qualities, loading methods, dispersity of test samples and so on, and thus theoretical results are
needed for necessary supplement in a full comprehension of shell buckling problems. Sun et al. [9]
developed a method to solve buckling problems of piezoelectric cylindrical nanoshells using Eringen’s
nonlocal theory. Safarpour et al. [10] investigated buckling behavior for carbon nanotube reinforced
cylindrical piezoelectric shell using a generalized differential quadrature method. In recent years,
functionally graded multilayer structure is a hot topic on cylindrical shell buckling study, and many
classical mathematical and mechanical methods have been applied to investigate instability of these
structures [11–13]. Despite above aspects, the most commonly used method in shell buckling analysis
now is finite element method (FEM), especially in engineering aeras. With its simplicity and high
efficiency, FEM has been applied to solve buckling problems for all kinds of cylindrical shells ranging
from nano shells to macro shell structures [4,14]. Local characteristics of cylindrical shell buckling is of
great practical meaning in shell buckling analysis, on that account, researchers have studied this problem
with all kinds of techniques for a long time [15–17]. Anyhow, some researchers have proposed some
theoretical methods to analyze the mechanism of traditional structural buckling [18–20], but they were
lack of rigorous theoretical deductions for solving buckling governing equations and directly formulated
experience based solutions, which might be incomplete. What’s more, there’s an insufficiency of study on
cylindrical long shell’s local buckling behaviors. And the very point that should be noted is that many
works had been done on shell buckling problems using Ritz approximation, finite element codes,
engineering estimation or other methods [21–28], which are all approximate solutions. However, great
value can be achieved if theoretically accurate solutions to the buckling behaviors are given, by which
the essence of its physical phenomena can be better understood.

Previous analytical methods mentioned are effective techniques for studying buckling of shells and are
based upon the Lagrangian system. One of the mechanisms in common for these methods in solving high
order partial differential governing equations is that their attentions are dedicated to approximate
solutions, like inverse solutions and semi-inverse solutions. There’s another system, i.e., the Hamiltonian
system, it is a dual system that has been proved to be valid for decades and it is equivalent with
Lagrangian system, in addition, it has been successfully applied on many fields, such as shell buckling,
dynamics, wave propagation, vibration, fluid mechanics and so on [29]. The difference is that in
Hamiltonian system it is easier to get a generalized solution in solving high order buckling governing
equations using the method of separation of variables to reduce the order of equations in a complete form
[30]. Based on advantage of the Hamiltonian system, some problems of pre-buckling of short shells are
discussed [31–34]. In this paper, the local buckling problem of cylindrical long shells under pulse load is
analyzed by the symplectic method without pre-assumed analytic shape funcitons. The solutions and
results can give good predictions on ultimate loads and buckling modes development for long cylindrical
shells with local compression loads, and may provide guidance for failure analysis and buckling
resistance design for long shell structures.
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2 The Fundamental Problem and Hamiltonian System

Consider an elastic circular cylindrical shell under axial pulse loads, in which its radius is R, thick h,
Young’s modulus E, Poisson’s ratio t and density q. The shell has infinite length and the length of
compressive load N of axial pulse is 2l. In the circular cylindrical coordinate (r, h, x) as seen in Fig. 1. w
is lateral displacement in the neutral surface along the r direction, and the boundary conditions can be
expressed as

wjx!þ1 ¼ 0
wjx!�1 ¼ 0

�
(1)

Basd on the theory of the small deformation, the Lagrangian function (deformation energy) can be
written as
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where D ¼ Eh3=½12ð1� t2Þ� for bending stiffness, and K ¼ Eh=ð1� t2Þ for tensile stiffness.
The circular coordinate h is taken in analogy to the time coordinate, and @h � @=@h,@x � @=@x.

Introduce ’ ¼ �@h w=R representing circular twist angle, and denote _f � @hf =R. The dual variables of
the original variables q ¼ fw; ’gT can be expressed as p ¼ fp1 ; p2gT where

p1 ¼ �Dð@2
x _wþ ___wÞ

p2 ¼ �Dð@2
xw� _’Þ

�
(3)

p1 and p2 represent equivalent shear load and bending moment respectively. Then the Hamiltonian
function is expressed in dual variables as

Hðp; qÞ ¼ pT _q� Lðp; qÞ (4)

Introduce the state vector

w ¼ fw; ’; p1; p2gT ¼ fqT ; pTgT (5)

The dual equations of the Hamiltonian system can be rewritten in the form: _q ¼ dH=dp and
_p ¼ �dH=dq, namely

_w ¼ Hw (6)

Figure 1: Coordinates and shell nomenclature
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H is a Hamiltonian operator matrix, and has the expression

H¼
0 �1 0 0
@2
x 0 0 1=D

K þ N@2
x 0 0 �@2

x
0 0 1 0

2
664

3
775 (7)

The dual equations in Hamiltonian system are equivalent with the governing equations in Lagrangian
system, but they will be solved in a symplectic space.

3 Symplectic Eigenvalues and Eigensolutions

In symplectic system, the method of separation of variables can be used. The solution of Eq. (6) can be
uniformly written as w ¼ wle

lh, where l is symplectic eigenvalue [29]. According to the closed conditions
of cylindrical shells, the solution satisfies the continuity condition in circumferential direction

wjh¼0 ¼ wjh¼2p (8)

Therefore, the eigenvalues in circumferential direction are

ln ¼ in n ¼ 0;�1;�2; � � �ð Þ (9)

where the eigensolutions of l0 ¼ 0 and ln 6¼ 0 correspond to the axisymmetric and non-axisymmetric
buckling problems, respectively.

The complete solutions of the original problem can be expressed as

wðnÞ ¼
wðnÞ
1 ¼ ½C5j5eλ3x þ C6j6eλ4x�einh ðx, � lÞ

wðnÞ
2 ¼ ½C1j1eλ1x þ C2j2e�λ1x þ C3j3eλ2x þ C4j4e�λ2x�einh ð�l � x � lÞ

wðnÞ
3 ¼ ½C7j7e�λ3x þ C8j8e�λ4x�einh ðx > lÞ

8><
>: (10)

where Ck ðk ¼ 1; 2; � � � ; 8Þ is undetermined constant, and λ is the eigensolution in axial direction, namely

λ1;2 ¼ ifðNR2=2D� n2Þ � ½ðNR2=2D� n2Þ2 � cn�1=2g1=2=R
λ3;4 ¼ c1=4n f½1� n2=c1=2n �1=2 � i½1þ n2=c1=2n �1=2g= ffiffiffi

2
p

R

(
(11)

cn is intermediate coefficient related with n, which can be expressed as cn ¼ n4 þ KR2=D, and constant
vectors, jk ðk ¼ 1; 2; � � � ; 8Þ, can be shown as

j1 ¼ j2 ¼ f1;�in=R;�Dinðλ21R2 � n2Þ=R3;�Dðλ21R2 � n2Þ=R2gT
j3 ¼ j4 ¼ f1;�in=R;�Dinðλ22R2 � n2Þ=R3;�Dðλ22R2 � n2Þ=R2gT
j5 ¼ j7 ¼ f1;�in=R;�Dinðλ23R2 � n2Þ=R3;�Dðλ23R2 � n2Þ=R2gT
j6 ¼ j8 ¼ f1;�in=R;�Dinðλ24R2 � n2Þ=R3;�Dðλ24R2 � n2Þ=R2gT

8>>><
>>>:

(12)

4 Critical Loads and Buckling Modes

For piecewise eigensolution (10), continuity conditions can be expressed as

D1w
ðnÞ
1 jx¼�l ¼ D2w

ðnÞ
2 jx¼�l

D3w
ðnÞ
3 jx¼l ¼ D2w

ðnÞ
2 jx¼l

(
(13)

where operator matrices Dk ¼ dk ; 0; 0; d4½ � ðk ¼ 1; 2; 3Þ, operator vectors d1 ¼ d3 ¼ 1; @x; 0; 0f gT ,
d2 ¼ f1; @x; 0;N@xgT and d4 ¼ f0; 0; 1; @xgT . Since eigensolution (10) should satisfy continuity

56 SDHM, 2021, vol.15, no.1



conditions (13), the undetermined constants C1; C2; � � � ;C8 and critical loads can be determined. Namely
eight algebraic equations can be rewritten by conditions (13) as

B c ¼ 0 (14)

where c ¼ fC1; C2; � � � ;C8gT . If c is nonzero vector, there is a buckling mode at least. Therefore, the
bifurcation condition is that the determinant of the coefficients equals to zero, or

Bj j ¼ 0 (15)

The critical loads and the corresponding buckling modes can be determined by Eqs. (10), (13) and (14).
It should be noted that critical load has many roots from Eq. (14) for a fixed n, so denotem ðm ¼ 1; 2; � � �Þ and
n ðn ¼ 0; 1; 2; � � �Þ as the axial order and circumferential order of the shell buckling. Rewrite the eigensolution
(10) as wðaÞ

nmðX Þeinh for n and wðbÞ
nm ðX Þe�inh for –n while n ≠ 0. For n = 0, wðbÞ

0m ðX ; hÞ is the Jordan form of
wðaÞ
0mðX Þ. Introduce the inner product of the function as

,w1;w2 > ¼
Z �L

�1

Z 2p

0
wT
1 J w2dhdX þ

Z L

�L

Z 2p

0
wT
1 J w2dhdX þ

Z 1

L

Z 2p

0
wT
1 J w2dhdX (16)

where J is a unit rotational matrix [29]. By orthogonalizing, it can be proved that there are adjoint symplectic
orthogonal relations between the eigensolutions as following

,wðaÞ
nmðX ; hÞ; wðbÞ

k j ðX ; hÞ. ¼ �,wðbÞ
nm ðX ; hÞ; wðaÞ

k j ðX ; hÞ. ¼ dn kdm j

,wðaÞ
nmðX ; hÞ; wðaÞ

k j ðX ; hÞ. ¼ ,wðbÞ
nm ðX ; hÞ ; wðbÞ

k j ðX ; hÞ. ¼ 0

(
(17)

Since the symplectic space is complete, the mode of buckling can be obtained by expanding the
eigensolutions (10) as

w ¼
X1
n;m¼1

½Anmw
ðaÞ
nmðX Þeinh þ Bnmw

ðbÞ
nmðX Þe�inh� þ

X1
m¼1

Cmw
ðaÞ
0mðX Þ (18)

where the unknown coefficients, Anm, Bnm and Cm, can be determined from boundary conditions.

5 Numerical Results

For simplicity, define the following dimensionless terms: X ¼ x=R, W ¼ w=R, L ¼ l=R, H ¼ h=R,
Ncr ¼ NR2=D and c ¼ KR2=D. Consider an infinite elastic circular cylindrical shell with Poisson’s ratio
t ¼ 0:25 and H = 0.01. Numerical results are discussed below.

As the first example, take L from 0.1 to 1, the relationship between critical loads of the first five orders
and the length of axial load is depicted in Fig. 2. The figures show downward trends of critical loads with the
length for n = 0,1,2,3 and m = 1,2,3,4,5. For branches m with odd numbers, the trends are noemonotonic
decreasing, for m with the even numbers, the trends are basically monotonic decreasing. From this result
we can see the complexity of buckling problem and difference between axisymmetric buckling behaviors
and non-axisymmetric behaviors. What’s more, the curve patterns are nearly the same for a specific m
with different n on the whole. Another interesting point is that the critical loads have similar values for a
specific n with different m, which illustrates that buckling modes can be various while the critical loads
are similar. For given loading length and circumferential order n, the critical load becomes higher while
the branch order m increases, the reason for this is that the more complex the buckling mode is the more
energy or larger load is needed. Furthermore, there are limit loads when the length L becomes infinite,
but the influence of loading length is different for each m, in the large, the higher the m becomes, the
bigger the length value is when the curve approaches smooth.
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To reveal the internal law of buckling with respect to circumferential orders n, Fig. 3 gives the curves of
critical loads for the first ten circumferential orders n. The results shows that the higher the order n is the
higher the critical load becomes, and it is more obvious for higher orders. The critical loads present a
wave trend for a given n, and then become gentle as length of axial load increases, and finally reach
stable values. With the form of eigensolutions in (7), it is easy to find that there are infinite theoretical
solutions for every n, however, only the top-ranking solutions are of great importance, especially the first
one which is also the lowest and usually occurs the first. While the length of axial load is small,
particularly when L < 0.1, critical loads for different n are very close, with which some experimental
phenomena can be illustrated, for example, sometimes several buckling modes of a short shell can coexist
in one specimen, and in some other cases, the first buckling mode of the same batch of specimen can be
different. As the length of loading area grows, particularly when L > 0.3, the critical loads are distinctly
separated for different order n.

Figure 2: The relationship between critical loads and the length of axial load for n = 0,1,2,3. (a) n = 1,
(b) n = 1, (c) n = 2 and (d) n = 3
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The buckling modes are shown in Figs. 4–7, which correspond to buckling modes for circumferential
orders n = 0,1,2,3 when L = 0.1, and the first five axial orders m = 1,2,3,4,5 are chosen in particular. It is
obvious that Fig. 4 gives axisymmetric buckling modes when n = 0, and the number of circumferential
waves is 0. The shape of the buckling region is similar to bamboo node, and some researchers call it
bamboo node-type buckling. Moreover, as the axial branch number m grows, in other words, as the axial
load increases, the number of axial waves goes up. Even though the taken L = 0.1 is relatively small, it is
still easy to recognize the axial wave mode when m < 5 in Fig. 4, which would be a problem in FEM
simulations since element size may be larger than the axial wave distance. For engineering cylindrical
structures under axial compression, the bamboo node-type mode is the most common seen buckling form.

Fig. 5 shows anti-symmetrical buckling modes for n = 1 with m = 1,2,3,4,5. The number of
circumferential waves is 1, and the axial wave number also goes up along with increasing of m. The
shape of the buckling region is similar to a bending tube, thus some researchers call it bending type
buckling. This type of mode is also a common buckling mode in cylindrical long shell structures,
especially for that with local defects.

Figure 3: The curves of critical loads for the first ten circumferential orders n

Figure 4: Shell buckling modes of the first 5 branches with circumferential order n = 0
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Figs. 6 and 7 show higher order buckling modes for n = 2 and n = 3 with m = 1,2,3,4,5. Their
circumferential wave numbers are 2 and 3, respectively. The increasing of number of buckling waves has
similar law with cases above. The shape of the buckling region is similar to periodically arranged
concaves, thus some researchers call the buckling modes of n ≥ 2 concave type buckling. These kinds of
buckling often occur in anisotropic material shells. Specially, the circumferential mode for n = 2 is
orthogonally symmetric.

Figure 6: Shell buckling modes of the first 5 branches with circumferential order n = 2

Figure 5: Shell buckling modes of the first 5 branches with circumferential order n = 1

Figure 7: Shell buckling modes of the first 5 branches with circumferential order n = 3
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Take L = 0.11, Fig. 8 gives the first branch buckling modes of shells for circumferential orders n = 0–9.
The result indicates that the circumferential wave numbers match the circumferential orders and high order
buckling modes display more complicated deformation shapes. The figures also demonstrate that the
buckling modes evolve from simple bamboo node-type to bending type and concave types, which
correspond to mode characteristics of buckling states of n = 0, n = 1 and n ≥ 2, respectively. All these
modes exhibit characteristics of locality.

Take the axisymmetric buckling mode (n = 0) and the first bifurcation mode (m = 1) for example to study the
influence of length of axial load. And buckling modes for loading length L = 0.1, 0.2,…, 1.0 are plotted in Fig. 9,
respectively. From the images, it is obvious to see that buckling wrinkles located in the region where axial load is
applied, and thus the number of the axial wrinkle waves increases with the scale of loading area. It should be noted

Figure 8: Buckling modes of shells for circumferential order n from 0 to 9
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that the number of axial wrinkles waves does not increase linearly with the length of axial load on account of the
significant influence of material properties. To investigate the evolution pattern of the wrinkle waves in axial
direction, numbers of axial wrinkle waves are listed in Tab. 1 for different kinds of buckling modes.

Figure 9: Buckling modes of shells with length of load from 0.1 to 1.0

Table 1: Number of axial wrinkle waves for different length of load region

L n = 0 n = 1 n = 2 n = 3

0.1 1 1 1 1

0.2 1 3 3 3

0.3 2 3 3 3

0.4 2 5 5 5

0.5 3 5 5 5

0.6 3 5 5 5

0.7 3 7 7 7

0.8 3 7 7 7

0.9 4 9 9 9

1.0 4 9 9 9
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As seen in Tab. 1, the number of axial wrinkle waves are positively correlated with the length of axial
load. In cases that L is small, such as L ≤ 0.1, the axial wrinkle wave number is always 1 for different n. As the
L increases, it gets easier for the shells to buckle, accordingly, the axial wrinkle wave number goes up. And it
is not difficult to conclude from the data that the axial wrinkle number grows in a natural order in the axial
symmetric buckling cases and grows in an odd sequence order in the non-symmetric buckling cases. This
conclusion can be useful for prediction of collapsing modes for cylindrical thin shells and helpful for
geometry and loading design of cylindrical shell structures.

To discuss the thickness effect, define another dimensionless critical load, Pcr ¼ N=ER, which is
independent of thickness, while the dimensionless load Ncr ¼ NR2=D has something to do with thickness.
In fact, the relationship between Pcr and Ncr can be expressed as Ncr H3 ¼ 12ð1� t2ÞPcr. Take the
critical load of bending type buckling (n = 1) as an example, Fig. 10 illustrates the relation of critical
loads with thickness of shells from two perspectives. Fig. 10a presents the curves of critical load Pcr and
the length of load L with 5 different thickness values, which indicates that the critical loads decrease with
the length of load in a non-monotonic way, the critical load curves drop sharply when L < 0.2, and vary
smoothly when L > 0.2, and finally approach flat. Fig. 10b presents Pcr and the shell thickness with four
different length of load, which depicts that the critical loads increase with growth of shell thickness in a
monotonic way. What’s more, the trend of the curves varies from a quadratic type to a linear type when
the length of load grows. Further, load curve for L = 0.1 is much higher than the other curves, and load
curves for L = 0.2, 0.4, 0.5 are quite close, from which we can obtain that buckling mode of a very short
shell needs quite big energy or compressive load to arouse, when the length grows to a critical value, the
buckling load will sharply decrease and the buckling deformation becomes more easily.

6 Solution Verification by Comparison with FEM Results

To verify the effectiveness of the method used for buckling prediction above, a comparison between the
FEM results and the results of this paper are implemented. In the FEM simulation an infinite long cylindrical
shell is simplified to a finite long shell with L/R = 20, and set the R = 1, H = 0.01, E = 200 GPa, ν = 0.25. The
ends of the shell are far enough from the loading region, so that end boundary conditions hardly effect the
local buckling in the middle region, and then set the end boundary conditions to be simply supported. Set the

(a) (b)

Figure 10: Critical loads with pulse length and thickness of shells when n = 1. (a) Pcr vs. normalized length
of load and (b) Pcr vs. normalized thickness
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ends of the loading region to be free of external constraints, and only exert a pair of axial compressive loads.
3 FEM models were established, in which 3 values of the length of loading region were taken: L = 0.6 R,
L = 0.8 R, and L = 1 R. Due to the mesh size effect, the length of the mesh was taken to be 0.1, which is
small enough to get accurate results. The overall mesh quantity is 12600. A 4-node doubly curved thin
shell mesh strategy was adopted with reduced integration and hourglass control. The FEM model is
shown in Fig. 11.

The generalized critical buckling load of the first branch for each FEM model is employed in contrast to
the results in this paper as shown in Tab. 2 below. From the statistics in Tab. 2, we can see that the results in
this paper are consistent with FEM results, and the results are more accordant for the cases in which L is large.

Corresponding to Figs. 12a and 12b, the selected cylindrical shell buckling patterns are the same for
FEM and present results, and thus the reliability and accuracy are verified.

Figure 11: FEM model of cylindrical long shell

Table 2: Critical buckling loads of results from FEM and present method

L L = 0.6 R L = 0.8 R L = 1 R

Ncr/FEM 369.77 355.87 354.69

Ncr/Present 381.87 363.23 355.86

Figure 12: Shell buckling modes for FEM and present results when L = 0.6, 0.8, 1. (a) FEM results and (b)
Present results
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7 Conclusions

In Hamiltonian system, critical loads and modes of buckling of long shells are reduced to symplectic
generalized eigenvalues and eigensolutions respectively. Under axial pulse loads, buckling of cylindrical
long shells may happen and the main reason for the local buckling of shells is the pulse load. The critical
load of local buckling of long shells is related to material constants and geometric parameters of shells
and the pulse length of loads. The eigensolutions, modes of local buckling of shells, can be expressed by
two parameters, namely axial order m and circumferential order n of buckling modes. The modes
corresponding to these parameters show special phenomena. Eigensolutions of the zero eigenvalue
represent the axisymmetric buckling modes and eigensolutions of the non-zero eigenvalues represent non-
axisymmetric modes. The number of wrinkles along axial and circumferential directions and the buckling
types depend on the parameters n and m. Numerical analysis reveals that the modes of local buckling of
long shells mainly include bamboo node-type modes (n = 0), bending type modes (n = 1), concave type
buckling modes (n ≥ 2) and so on. Results from this paper show good agreement with FEM results, and
thus the reliability of the methodology imposed in this paper is verified. The symplectic method can also
provide an analytical support to solve the problem of post-buckling of shells.
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