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ABSTRACT

The compressive strength of concrete is one of most important mechanical parameters in the performance assess-
ment of existing reinforced concrete structures. According to various international codes, core samples are drilled
and tested to obtain the concrete compressive strengths. Non-destructive testing is an important alternative when
destructive testing is not feasible without damaging the structure. The commonly used non-destructive testing
(NDT) methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity
test. The poor reliability of these tests due to different aspects could be partially contrasted by using both methods
together, as proposed.in the SonReb method. There are three techniques that are commonly used to predict the
compressive strength of concrete based on the SonReb measurements: computational modeling, artificial intelli-
gence, and parametric multi-variable regression models. In a previous study the accuracy of the correlation for-
mulas deduced from the last technique has been investigated in comparison with the effective compressive
strengths based on destructive test results on core drilled in adjacent locations. The aim of this study is to verify
the accuracy of Artificial Neural Approach comparing the estimated compressive strengths based on NDT mea-
sured parameters with the same effective compressive strengths. The comparisons show the best performance of
ANN approach.
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1 Introduction

Existing reinforced concrete structures were built according to standards and materials quite different to
those available today. The evaluation of structural performance when seismic zones are concerned requires
procedures and methods able to cover lack of data about mechanical material properties and reinforcement
detailing. The structural assessment is more relevant when structural strengthening is necessary to prevent
failures due to earthquakes.

Procedures and methods, such as detailed inspections and tests on materials, are mandatory to establish the
performance levels in recent seismic codes. Accordingly, assessment of the in-situ concrete compressive strength
is mainly based on cores drilled from the structure. This method is expensive and sometimes difficult to employ.

Non-destructive testing (NDT) of materials and structures is a testing and analysis technique without
causing damage to the structure, aiming at maintenance and diagnosis [1–5]. A non-destructive evaluation
procedure for determining the location and size of a crack in a structure has been proposed in Viola et al.
[6–8]. This method is based on measured vibration frequencies and mode shapes. A global minimization
approach is employed for identifying the cracked element in the discretized structure.

Fortunately, NDT can effectively supplement coring since the compressive strength can be cheaply
evaluated throughout the whole structure. The procedure of NDT must be only used in conjunction with
destructive testing according to both European and Italian Standards. Note that firstly steel reinforcements
must be localized in order to perform properly a non-destructive test and/or destructive test method. To
this end, a covermeter, a portable reinforcement bars detector instrument also called pachometer, can be
easily used on-site. The critical step is to set reliable relationships between NDT results and actual
concrete strength. Most codes suggest correlating the results of in-situ NDT with those of corresponding
destructive test carried out on cores drilled at the same selected locations.

The commonly used NDT methods to predict concrete compressive strength include the rebound
hammer test and the ultrasonic pulse Velocity (V) test. Ultrasonic method is a form of NDT and
characterization of materials and structures in civil, mechanical, aerospace, automotive engineering.
Concerning concrete structures, note that “This test method covers the determination of the propagation
velocity of longitudinal stress wave pulses through concrete. This test method does not apply to the
propagation of other types of stress waves through concrete” as reported in [9]. The test equipment
consists of a pulse generator, a pair of transducers (transmitter and receiver), an amplifier, a time
measuring circuit, a time display unit. The test is performed generating a series of pulses by means of the
pulse generator. The transmitting transducer is characterized by the presence of a piezoelectric layer and a
similar transducer acts as a receiver to monitor the arrival of the pulse. A timing circuit is used to
measure the travel time of the pulse. It is possible to make measurements of ultrasonic pulse Velocity (V)
by placing the two transducers on opposite faces (direct transmission), on adjacent faces (semi-direct
transmission), or on the same face (indirect or surface transmission) of a concrete structure or specimen,
even if the direct transmission is the most reliable. The V test result is affected by numerous factors,
including the properties and proportion of the constituent materials, aggregate content and types, age of
the concrete, presence of microcracks, water content, stresses in the concrete specimen, surface condition,
temperature of the concrete, path length, shape and size of the specimen, presence of reinforcement, and
so on, as confirmed in Diaferio et al. [10]. In their study, the results of an experimental campaign
performed on an existing building in the area of Bari (Italy) are presented. The tests involved both
destructive tests and V tests. The correlation curves have been evaluated for each one of the possible test
conditions. Therefore, using the V test alone to predict compressive concrete strength is problematic.

The rebound hammer is a handheld instrument used for testing the quality of hardened concrete in an
existing structure. The test device was developed in 1948 by Ernst Schmidt at the Swiss Federal
Materials Testing and Experimental Institute in Zurich. The development of this “new” device originates
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from tests carried out to measure hardness of metals. For this reason, this test can be considered as an extension
of the Scleroscope test, performed to evaluate the superficial hardness of a material. Due to its simplicity and
low cost, the rebound hammer represents the most widely NDTmethod used for concrete evaluation. “This test
method covers the determination of a rebound number of hardened concretes using a spring-driven steel
hammer”, as reported in [11]. When the plunger of the rebound hammer is pushed against the surface and
the latch is released, the spring-pulled mass rebounds back with a rebound distance. This distance is
measured on a scale numbered from 10 to 100 and is recorded as the Rebound Index (RI). The rebound
hammer test result is significantly influenced by the concrete type (aggregate size, water/cement ratio,
admixtures, the type of cement, cement content, etc.) or by the conditions (moisture, concrete maturity,
curing conditions, surface carbonation, etc.). Besides, important drawbacks of this test are the very limited
area hit by the plunger and its interactions with irregularities such as voids and aggregates.

Many calibration curves have been proposed in literature with wide dispersion around the original
Schmidt curve. The large deviation of curves raised a crucial question of whether the rebound hammer is
effective or not in estimating the concrete strength [12]. Since the rebound hammer test might provide
some information about the compressive strength only if it is calibrated on the specific concrete type,
many codes limit its use. Therefore, using the rebound hammer test alone to predict compressive concrete
strength is problematic.

The questionable reliability of both methods can be partially contrasted by using them together. One of
the most employed NDT combined methods in practice is the SonReb method, developed by RILEM
Technical Committees 7 NDT and TC-43 CND [13–15]. This combination technique is more reliable
because the results obtained in the rebound hammer test provides information about the concrete strength
near the surface, whereas the results obtained in the V test reflects the interior concrete properties.

The most used techniques to predict compressive concrete strength based on the SonReb measurements
are computational modeling, artificial intelligence, and parametric multi-variable regression models.
Computational modeling is based on the modeling of complex physical phenomena and thus is often not
practical. Parametric multi-variable regression models, on the other hand, can be more easily
implemented and used in practice for future applications, such as the reliability assessment of
reinforcement concreste (RC) structures incorporating field data. Artificial intelligence including the
Artificial Neural Network (ANN) approach is a nonparametric statistical tool without knowing the
theoretical relationships between the input and the output. The parametric multi-variable regression model
yielded accurate correlation formulas for the prediction of compressive strength in comparison with
effective compressive strengths based on destructive test results on core drilled in adjacent locations
[16–18]. In the former two studies, performances of the most used formulations in Italy for the estimation
of the compressive strength of concrete utilizing NDT were analyzed. The comparison indicates the fair
estimation potential of the proposed formulations in the evaluation of concrete compressive strength,
starting only from the non-destructive parameters. ANN approach with feasible prediction has been
employed to determine concrete compressive strength using input variables such as age, Portland cement,
water, sand, etc. [19,20]. ANN approach has been already proposed for the evaluation of relationship
between concrete compressive strength and V [21,22].

The aim of this paper is to verify the accuracy of ANN approach comparing the estimated compressive
strength based on NDT measured parameters with the effective compressive strength based on destructive
test results on cores drilled at adjacent locations. To this end, a relevant number of destructive tests and
NDTs have been performed on many reinforced concrete structures [16,17].

2 ANN Approach

ANN is an information processing system inspired by biological nervous system being constituted by
many neurons connected in a complex network. The intelligent behavior arises from interactions among
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numerous interconnected neurons aggregated into layers, naming input layer, hidden layer and output layer.
Some receive information from the external environment (i.e., input layer), some send responses in the
environment (i.e., output layer), others communicate only with other units inside the network (i.e., hidden
layer). In a standard neural network, signals travel from the input layer to the output layer along the
hidden layer. Such systems learn from examples, generally without being programmed with any task-
specific rules [23,24].

There are several types of ANN depending on the type of connections between the different layers, on
the activation functions and learning algorithms. Depending on the type of connections between artificial
neurons, Feed-Forward Network (FFN) (please provide the abbreviation) is the simplest and most used
typology and is constituted by more than two layers of neurons. In other words, the input layer and
output layer are bridged by one or more hidden layers. Each neuron is connected to all the neurons of the
previous layer but has no connection with the neurons of its own layer and the signal propagates in a
unidirectional way from input to output through the hidden layer. A schematic representation of a three-
layer ANN is reported in Fig. 1.

The fundamental building blocks of each neural networks, both biological and artificial, are represented
by the neurons. These are an elementary information processing unit characterized by connections (synapses)
able to transfer the signal (stimulus) into other neurons. Each neuron sums the weighted inputs emitting an
y-output which varies according to the specific activation function choice. One of the most used activation
functions is the sigmoid

f xð Þ ¼ 1

1þ e �xð Þ (1)

where x is the input of the neuron.

The values of synaptic weights represent the first unknown parameter to be determined. In order to
minimize the total error of the network, a process of learning (or training) must be carried out. In the
supervised learning process, the aim is the prediction of the output value for each valid input data, based
only on a limited number of examples of correspondence.

From a mathematical point of view the learning process consists of finding a minimum of a function in a
n-dimensional space. This function is given by the variation of the error based on the weights of the network.

The most effective and widespread technique used in the learning with more supervision is the
backpropagation error algorithm, which minimizes the total error of the network through the modification
of the weights of the connections. In order to search for a minimum, it is usually used the gradient
descent technique.

Figure 1: Schematic representation of a three-layer ANN
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For our purpose, a feed-forward network composed of 3 layers (input, output, hidden layers), with
sigmoid logistic activation function and supervised learning with backpropagation error algorithm has
been employed (Fig. 2).

3 ANN-Based Prediction of Concrete Compressive Strength Using SonReb Method

The effectiveness of the networks has been investigated as a function of the only variable parameter in
their architecture: the number of neurons of the hidden layer. In order to understand the influence of the
number of connections in a 3-layered feed-forward network with two non-destructive parameters (RI and
V) input, nine ANNs were considered. The increment steps of the units in all the networks were
established based on the efficiency-computational time ratio.

The principal data of all considered networks are reported in Tab. 1, where the Net and RMSE mean
Network and Root Mean Squared error, respectively.

The in-situ compressive strengths, the SonReb parameters RI and V, the estimated compressive strengths
in 16 locations are reported in Tab. 2.

Figure 2: Schematic representation of a three-layer ANN with RI and V as input data

Table 1: ANNs data

Net Net Train Param.
Epochs

Best Performance
Epochs

RMSE
[MPa]

2-5-1 1000 212 1.8438

2-10-1 2000 1063 1.1023

2-15-1 3000 1935 0.7393

2-20-1 5000 2109 0.7234

2-25-1 8000 3842 0.7650

2-30-1 8000 3953 0.3245

2-50-1 10000 6074 0.0001

2-70-1 200000 101626 0.0002

2-90-1 1000000 244198 0.0023
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It is worth mentioning that fck is the actual in-situ strength that can be determined from the core strength
using the proposed following equation [25]:

fck ¼ CH=DCdiaCaCdfcore (2)

where:

-fcore is the strength of a core specimen.

-CH/D is correction factor depending on the height/diameter ratio H/D, equal to 2 (1.5 + D/H).

-Cdia is correction factor depending on the diameter of core D, equal to 1.06, 1.00 and 0.98 for D equal to
50, 100 and 150 mm, respectively.

-Ca is correction factor depending on the presence of reinforcing bars, equal to 1 for no bars, and varying
between 1.03 for small diameter bars and 1.13 for large diameter bars.

-Cd is correction factor depending on the damage due to drilling, equal to 1.20 for fcore < 20 MPa and
1.10 for fcore > 20 MPa.

The problem of conversion from cylinder to cube strength has been widely investigated in Indelicato
et al. [26].

Nine different ANNs are considered to understand the influence of the number of units in a 3-layered
feed-forward network with two non-destructive parameters RI and V as inputs.

Table 2: In-situ DT compression strength fck, RI, Vand estimated NDTstrength fc in 16 locations according to
nine different ANNs

N. fc
[Mpa]

RI V
[m/s]

Net
2-5-1

Net
2-10-1

Net
2-15-1

Net
2-20-1

Net
2-25-1

Net
2-30-1

Net
2-50-1

Net
2-70-1

Net
2-90-1

1 10,00 34,72 2470 12,4045 12,5107 12,4807 12,3810 12,4806 10,1252 10,0000 10,0000 10,0003

2 12,60 38,89 2450 14,1812 15,7506 13,8110 12,4210 13,8110 13,6588 12,6000 12,6001 12,5998

3 17,50 36,39 2830 16,2242 16,6681 17,3358 16,1923 16,3358 17,4761 17,5000 17,4999 17,4992

4 17,80 31,90 3250 17,5759 17,8196 17,8132 17,8548 17,8116 17,8220 17,8000 17,7999 17,7999

5 18,50 37,22 2960 18,3682 18,4567 18,4685 18,4242 18,4769 18,4369 18,4998 18,4998 18,4989

6 18,70 38,83 2930 22,4640 19,5950 19,2881 19,1786 19,0493 19,0621 18,6998 18,6999 18,7034

7 18,90 34,61 3285 19,0821 18,8114 18,8407 18,7993 18,8590 18,8803 18,9001 18,8999 18,8991

8 20,60 39,34 3120 21,8318 21,1724 20,9882 21,1203 20,8386 20,9991 20,5999 20,6001 20,6003

9 23,25 39,78 3140 23,9773 22,9694 23,0516 22,8894 23,1242 22,9554 23,2501 23,2502 23,2474

10 25,60 36,84 3500 26,0369 25,6881 25,6579 25,6741 25,6392 25,5776 25,5998 25,5999 25,5985

11 27,80 39,00 2965 22,6131 26,7146 27,0905 27,2633 27,3822 27,3983 27,7998 27,7998 27,7933

12 29,30 41,44 3470 28,8481 29,2246 29,2521 29,3104 29,2810 29,3188 29,2999 29,3000 29,2980

13 32,16 38,39 3490 31,5879 32,0823 32,1095 32,0834 32,1253 32,1612 32,1602 32,1598 32,1582

14 36,80 45,45 3750 37,3258 37,0199 36,9461 36,8660 36,8773 36,8214 36,7998 36,7997 36,7981

15 54,10 47,28 3900 53,6062 53,8774 53,9513 54,0112 54,0136 54,0522 54,1001 54,1001 54,0981

16 56,60 47,33 4095 56,7532 56,6734 56,6491 56,6405 56,6284 56,6289 56,6001 56,6003 56,5981

RMSE [Mpa] 1,8438 1,1023 0,7393 0,7234 0,7650 0,3245 0,0001 0,0002 0,0023
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To evaluate the accuracy of ANN approach, some of the estimated compressive strengths have been
compared with the effective compressive strengths determined in DT on samples extracted in adjacent
locations (Figs. 3–7).
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Figure 3: Comparison between DT fck- values and estimated NDT fc- values using ANN 2-5-1
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Figure 4: Comparison between DT fck- values and estimated NDT fc- values using ANN 2-15-1
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Figure 5: Comparison between DT fck- values and estimated NDT fc- values using ANN 2-30-1
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Based on the results of the present research, it can be observed that the neurons of the hidden layer
constitute the data processing unit of the system more susceptible to error and their quantity can
extremely influence the final output. Therefore, using too few neurons in the hidden layer gives rise to a
phenomenon known as underfitting. Underfitting occurs when the number of neurons in the hidden layers
is not adequate to detect the complicated signals and transform them in a simpler data set. This condition
occurs for the simpler structure of ANN until the best performance in terms of number of neurons is reached.

On the contrary too large number of hidden neurons would encourage another critical phenomenon
known as overfitting, i.e., when the neural network has so much information processing capacity that the
limited amount of information contained in the training set is not enough to train all the neurons in the
hidden layers. This is the case of the ANNs with 70 and 90 neurons in the hidden layers and it can be
detected analyzing the matrix of the synaptic weights in which some values are very close to zero. This
condition results in an overall loss of information within the neural network with a consequent reduction
of effectiveness in the precision of the estimation (Fig. 8).

It follows that Ann 2-50-1 can be considered the best performing for predicting the compressive concrete
strength. The training and learning phases of this ANN with 50 neurons in the hidden layer are reported in
Figs. 9 and 10.
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Figure 6: Comparison between DT fck- values and estimated NDT fc- values using ANN 2-50-1
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Figure 7: Comparison between DT fck- values and estimated NDT fc- values using ANN 2-70-1
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It is important to point out the better potential estimation of ANN present approach compared to
parametric multi-variable regression approach [16,17]. In particular, Fig. 11 shows the comparison
between fck values obtained during DT experimental campaign with respect to fc values calculated
according to the latter approach using the following different correlation formulations suggested by
Giacchetti et al. [27] (Eq. (3)), Di Leo et al. [28] (Eq. (4)), Gasparik [29] (Eq. (5)) and Standards of
Tuscany Region [30].

fc ¼ 7:695 10�11
� �

RIð Þ1:4V 2:6 (3)

fc ¼ 1:2 10�9
� �

RIð Þ1:058V 2:446 (4)

fc ¼ 0:0286 RIð Þ1:246V 1:85 (5)

According to the Standards of Tuscany Region fc is the average of the three values calculated using the
previous correlation formulations (Eqs. (3)–(5)):

fc ¼ fc½Eq: ð3Þ� þ fc½Eq: ð4Þ� þ fc½Eq: ð5Þ�
3

(6)

The comparative study of the above correlation formulas is shown in Fig. 11. A good approximation can
be observed, but Ann 2-50-1 can be considered by far the best performing for predicting the compressive
concrete strength a shown in Fig. 6.
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Figure 8: Comparison between the different last three ANNs with the most reliability in concrete strength
assessment
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Figure 9: ANN behavior during training performance and gradient descendent
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4 Conclusions

In general, most of the models used to study the on-site concrete compressive strength consist of
mathematical rules and expressions that try to capture relationship between NDT parameters and concrete
mechanical characteristics. Generally, these mathematical models based on experimental data are
presented in regression forms. However, since these regression methods have shown less accuracy in
concrete strength predictions, in the recent years new techniques, such as ANN, have been employed to
approximate this non-linear and complex problem.

The results obtained from the study indicate the excellent estimation potential of a multilayer feed-
forward neural network trained with backpropagation error algorithm in the evaluation of concrete

Figure 10: ANN training set
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Figure 11: Comparison between DT fck- values and estimated NDT fc- values according to different
formulations [16,17]
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compressive strength based only on non-destructive parameters. In fact, the calculated RMSE values are to
be considered reasonably low in relation to those calculated with the regression formulas found in the
literature, thus indicating the accuracy of the estimations.

Analyzing the results obtained for the neural networks characterized by two input parameters (i.e., RI
and V value) it can be observed a significant improvement in the estimation of concrete compressive
strength since for networks with 50 neurons into the hidden layer (RMSE = 0.00013 MPa, about
50000 times lower than that obtained with the regression formulas found in the literature).
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