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ABSTRACT

Digital twin (DT) can achieve real-time information fusion and interactive feedback between virtual space and
physical space. This technology involves a digital model, real-time information management, comprehensive
intelligent perception networks, etc., and it can drive the rapid conceptual development of intelligent construction
(IC) such as smart factories, smart cities, and smart medical care. Nevertheless, the actual use of DT in IC is par-
tially pending, with numerous scientific factors still not clarified. An overall survey on pending issues and
unsolved scientific factors is needed for the development of DT-driven IC. To this end, this study aims to provide
a comprehensive review of the state of the art and state of the use of DT-driven IC. The use of DT in planning,
design, manufacturing, operation, and maintenance management of IC is demonstrated and analyzed, following
which the driving functions of DT in IC are detailed from four aspects: information perception and analysis, data
mining and modeling, state assessment and prediction, intelligent optimization and decision-making. Further-
more, the future direction of research, using DT in IC, is presented with some comments and suggestions. This
work will help researchers gain in-depth and systematic understanding of the use of DT, and help practitioners to
better promote its implementation in IC.
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1 Introduction

1.1 Concept of Intelligent Construction (IC)
The concept of IC has been described by the Global Engineering Frontier 2018 [1], based on the

integration of advanced construction technology [2–5] and information technology (IT) [6–10] with a
focus on cyber-physical systems (CPS) [11–13]. Conventionally, in both industrial [14,15] and digital
construction [16–19], the activities of building components, parts, and systems (i.e., physical systems) are
analyzed throughout the construction life-cycle, which includes project approval, design, manufacturing,
transportation, assembly, operation and maintenance, and service. Through the twin model of cyberspace
[20,21], information perception and interaction, data mining and modeling, state assessment and
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prediction, intelligent optimization and decision are carried out according to the knowledge system of the
construction of objects, processes, equipments, and systems, and promote innovation and the
implementation of intelligent-sensing technology [22–24].

With increasing advances in the construction industry, Industry 4.0 proposed a new construction
technology to achieve high adaptability, rapid design changes using IT, and a more flexible technical
workforce training. The advanced construction technologies employed include CPS [11–13], building
information modeling (BIM) [25,26], Internet of Things (IoT) [27,28], big data [29,30], and cloud
computing [31,32]. In the era of Industry 4.0, IC has received increasing attention owing to the need for
sustainability. As such, IC considers more intelligence in perception technology [33], data mining [34],
design optimization [35], and management decisions [36], to facilitate better integration into the whole
life-cycle of construction activities, to fully coordinate all participants, and to complete construction tasks
in an efficient and energy-saving manner. IC has shown a diversified trend, and an increasing number of
IC systems have been developed for specific tasks and applied to actual construction projects.
Consequently, this has greatly improved the level of intelligence in construction [37,38].

1.2 Concept of Digital Twin (DT)
The concept of DTwas described as an information-mirror model by Grieves [39], and is a digital replica

of a living or non-living physical entity. It enables a seamless transfer of data by connecting the physical and
virtual worlds [40], thereby allowing virtual entities to exist simultaneously with physical entities. The
definition of DT has two important features. First, it emphasizes the connection between the physical
model and the corresponding virtual model or counterpart. Second, a connection is established, using
sensors to generate real-time data [41,42]. Tab. 1 lists some definitions of DT with their references
[40,43–47]. As stated earlier, DT is a real-time digital reproduction of a physical entity. It faithfully maps
physical objects, and can describe and optimize these objects based on selected models.

Table 1: Definition of DT in the literature

Number Definition Refs.

1 DT is digital copies of biological or non-biological physical entities.
By bridging the physical and virtual worlds, data are seamlessly
transferred, allowing virtual entities to exist simultaneously with
physical entities.

Abdulmotaleb [40]

2 DT is an integrated multi-physics, multi-scale, probabilistic
simulation of completed vehicles or systems that use the best physical
models, sensor updates, fleet histories, etc., to reflect the life of their
corresponding flying twin.

Glaessgen et al. [43]

3 A coupled model of real machines running on a cloud platform that
uses a combination of data-driven analysis algorithms and other
available physics knowledge to simulate health conditions.

Lee et al. [44]

4 Real-time optimization using digital copies of physical systems. Soderberg et al. [45]

5 The dynamic virtual representation of a physical object or system
throughout its life-cycle, using real-time data to achieve
understanding, learning, and reasoning.

Bolton et al. [46]

6 DT shares physical, virtual and interactive data between them to map
all components in the product life-cycle.

Tao et al. [47]
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1.3 Relationship between DT and IC
Previously, it was a challenge to present the state of an IC system in real time. However, the emergence of

DT has solved this problem [48–50]. The construction system can monitor the physical process, create DT in
the physical world [51], receive real-time information from the physical world for simulation evaluation, and
make smart decisions through real-time communication and cooperation with human beings. The combination
of DT and IC will certainly make future construction technology more intelligent, efficient, and convenient.

This study summarizes the IC driven by DT from the perspective of sustainable development. First, we
introduce the application of DT, based on five stages: planning, design, manufacture, installation, operation,
and maintenance. Second, we introduce the DT-driven IC from four aspects: information perception and
interaction, data mining and modeling, state assessment and prediction, intelligent optimization and decision.

IC includes the relevant equipment, processes, and systems that support each other, as shown in Fig. 1.
IC equipment is introduced in two dimensions: components and intelligent manufacturing production lines.
From the perspective of the entire life-cycle of the construction link, the IC process is divided into three
stages: planning and design, manufacturing and operation, and maintenance management. An IC system
is introduced from five aspects: self-conscious sensing, information transformation, data mining,
evaluation decision, and virtual real control. Finally, the development trend of IC is summarized in three
aspects: framework, enabling technology, and application of IC. IC’s enabling technology is driven by
BIM, big data, artificial intelligence (AI), and IoT.

2 Uses of DT in IC

Professor Michael Grieves of the University of Michigan proposed the concept of DT in 2003. This
technology was first used by NASA to simulate and analyze the flying spacecraft in the Apollo project
[52]. Recently, it has received widespread attention in the field of intelligent manufacturing. The world’s
most authoritative IT research and advisory firm, Gartner, chose DT as one of the top ten strategic
technology trends in 2016. The Intelligent Manufacturing Academic Consortium of the China Association
for Science and Technology also selected DT-driven intelligent manufacturing as one of the top ten
technological advances in intelligent manufacturing in 2017. In addition to its application in the
manufacturing industry, with the benefits from the development of IoT, big data, cloud computing, AI,
and other new-generation IT concepts, DT has been gradually implemented in the fields of electric power,
shipping, urban management, agriculture, construction, health care, environmental protection, and other
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equipment

Intelligent construction object

Intelligent construction system Intelligent construction process
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Figure 1: Four aspects of IC
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industries. This section considers the application of DT in IC, based on three stages: planning and design,
manufacturing and operation, and maintenance management.

2.1 DT in Planning and Design
The use of DT in planning and design is mainly based on the research on DT planning and design

methods, which make it more efficient. This includes digital planning, design, and simulation.

2.1.1 Digital Planning
Wang et al. [53] built a digital elevation model and shadow image using digital image technology, which

provided effective and reasonable digital investigation tools for the planning and design of urban energy-
saving buildings. Abbas et al. [54] used a geographic information system (GIS) to analyze a digital
elevation model of the river basin in Canadian Fredericton and Charlottetown, and visualized extreme
events and flood disasters in the two cities, to formulate urban planning policies. Franziska et al. [55]
highlighted in the UK’s 2017–2018 urban planning research report that the effective use of BIM
technology in public planning and consultation can provide support for new or updated public
infrastructure, better resource planning, more use of public facilities, mapping, and protection of
architectural historical heritage; moreover, it can achieve cost savings of 15%–25%.

2.1.2 Digital Design
In the field of construction engineering, there have been rapid advances in technology from the

development of three-dimensional (3D) computer-aided design to BIM. BIM-related technology is the core
technology for DT [56]. The employment of DT enables the gathering, generation, and visualization of the
environment of the building of interest. All the data gathered are stored in the DT, resulting in better
optimization of the building design [57]. Sacks et al. [58] proposed the concept of a single workflow of
communication control in a DT structure, and defined the workflow of architectural design, as well as the
extension of BIM tools combined with sensing and monitoring technology. The DT-driven design method
enables researchers to quickly find design flaws and improve efficiency [59]. The concept of DT is still not
clearly defined in the context of buildings and civil infrastructure. Researchers and practitioners have not
reached a consensus on how the DT process and data-centric technology support design.

2.1.3 Digital Simulation
In the design stage, the adaptability and superiority of the simulation can be simulated using a DTmodel.

Haag et al. [60] developed a network physical bending beam test-rig to demonstrate the concept of DT. A
modular approach was studied to build a DT and make the corresponding changes to help designers
quickly evaluate different designs and find any flaws [61]. Lydon et al. [62] proposed a coupled
simulation of the thermal design of a heating and cooling system combined with a light roof structure,
based on the DT model, which greatly shortened the product development time and cost.

2.2 DT in Manufacturing and Operation
The use of DT in construction engineering is different from that in the manufacturing industry. After

establishing a virtual simulation model entity, based on a DT, it is not only applied to the processing and
assembly of prefabricated components, but also used to optimize and manage the entire construction
process to achieve accurate process control. It includes process simulation, digital production line,
condition monitoring, and so on.

2.2.1 Process Simulation
(1) Processing of assembly component
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Before the processing of assembly components, the virtual simulation method can be used to carry out
an in-depth design and process simulation of components, and to comprehensively analyze the rationality of
assembly component design, processing rate, and efficiency. A new method was proposed for resource
supply and demand-matching manufacturing, based on complex networks and the IoT, to realize
intellectual perception and access to manufacturing resources [63]. Bilberg et al. [64] applied a DT to the
assembly unit to create a DT model that extended the use of virtual simulation models developed during the
production system’s design phase. It was used for implementation control, human and machine task-
assignment, and task sequencing. Um et al. [65] proposed a universal data model, based on a DT, to
support plug-and-play in modular, multi-vendor assembly lines. DT with intelligent manufacturing services
were combined to produce more sensible manufacturing planning and precise production control [66].

(2) Simulation of assembly process

With the development of IT, the influence of traditional construction technology has become
increasingly profound, especially with the deepening of complex construction technology. Through the
CPS simulation of the DT model, the construction assembly scheme is determined and optimized to be
safe, more efficient, and reasonable. Ellinger et al. [67] used DT in the design of cross-laminated timber
to simulate and improve the limitation of the hybrid panel, which is mainly its unsuitability for use in
long-span buildings. Using four-dimensional simulation in major capital construction projects can provide
a convenient reference for project personnel and help to reduce the cost of projects [68]. Virtual
commissioning is a key technology in Industry 4.0, which can deal with the issues faced by engineers
during the early design phases. The process of virtual commissioning involves the creation of a DT. Such
a model can be used to test and verify the control system in a simulated virtual environment to achieve
rapid setup and optimization prior to physical commissioning [69].

2.2.2 Digital Production Line
All the elements of the production stage are integrated into a closely coordinated process through digital

methods to achieve an automated production process. By means of a 3D virtual simulation model of an
industrial robot, a DT model was established to control the robot for the automatic assembly of
large-scale spacecraft components [70]. It was an effective way to realize the efficiency of an enterprise-
resource service, by combining the basic manufacturing services with the cloud-manufacturing resource-
service composition technology, based on the DT model of each stage of the product life-cycle [71].
Zhang et al. [72] proposed an image-processing method, based on a DT model, to realize the rapid
individualized design of a hollow glass production line. A framework was proposed for intelligent
production management and for control methods using DT, which were applied to assembly shops for
complex products [73]. A method based on a DT was proposed, which combined physical system
modeling and semi-physical simulation to realize a rapid and individualized design of an automatic flow-
shop manufacturing system [74]. Liau et al. [75] applied a DT to the injection-molding industry,
representing all stages of injection molding as virtual models to achieve a two-way control of physical
processes. A DT-based manufacturing CPS was proposed to control intelligent workshops in parallel
under a large-scale individualized paradigm [76]. A factory-network physical-integration framework was
proposed for digital-based systems to deal with the problems faced by digital factories, and to shift the
current state of digital factories to intelligent manufacturing [77].

2.2.3 Equipment Status Monitoring
The production process can be monitored visually by collecting real-time operation data of the

production equipment. Abnormal equipment must be dealt with and adjusted in time to optimize the
production process. Botkina et al. [78] introduced DT data formats and structures for cutting tools,
information flow, and data management, and applied a DT to improve machining solutions optimized for
process planning. When the DT application was applied in the production workshop, the state of the
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machines and products in the workshop were reflected in the virtual model in real time, thereby making the
manufacturing of the product more intelligent.

2.3 DT in Maintenance Management
The use of DT in maintenance management is based on the virtual simulation model of DT. The real state

of the physical model is fed back to the virtual simulation model through the signal data of the IoT devices.
When the physical model fails, the virtual simulation model will synchronously produce faults. Therefore,
the virtual simulation model can judge whether the physical model will produce faults according to the
real-time state data, which can effectively reduce the failure rate. This part includes fault warning,
maintenance, and management-scheme optimization.

2.3.1 Fault Warning
By reading the real-time parameters of the sensors or control systems on the building components, a

visual remote monitoring model is established to analyze the state of the building components with AI. A
maintenance strategy to reduce the loss is proposed, and an early warning is given. Based on DT, fault
detection and health management of different parts or areas can be realized. According to the state of the
virtual model’s data, the operating mode of the building components is optimized, the safety risk is
reduced, while the stability of the building structure is improved.

Combined with DT and virtual reality, a new application mode based on a DT is formed. In the
manufacturing industry, Wang et al. [79] introduced an innovative investigation on prototyping a DT as
the platform for human-robot interactive welding and welder behavior estimation. Uhlemann et al. [80]
studied a cyber-physical production system based on DT to demonstrate the potential and advantages of
real-time data acquisition, and subsequent simulation-based data processing. A low-cost manufacturing
execution system (MES), based on Android devices and cloud-computing tools, had been developed and
implemented by Corona [81]. Though collecting the machine data supported by MES and manufacturing
technology that connects the protocol of machine tools, the DT model of the workshop was generated for
production control and optimization integration. Schluse et al. [82] introduced an experimental DT system
to create interactions in different application scenarios, and to provide data and communication functions
for simulation-based integrated systems engineering. Macchi et al. [83] discussed the conceptual
framework and potential application of an order-management-process decision-support system, based on a
DT model of a manufacturing system. A conceptual framework and potential applications of a decision-
support system for the order-management process were discussed, based on the DT of the manufacturing
system [84].

Research progress in DT has led to continuous development in the medical, sports, and other fields. In
the medical field, Groth et al. [85] used an accurate computational fluid dynamics (CFD) model generated by
ANSYS soft to build a medical DT model that could reliably predict the pathological evolution and effect of
surgical correction. In the sports industry, Barricelli et al. [86] established a Smart-Fit system to support
trainers and coaches to monitor and manage athletes’ fitness activities and results, and produced clear
suggestions that trainers could use to trigger athletes’ optimal behaviors.

Compared with other industries, the development of IT in the construction industry has been relatively
slow because of the complexity of buildings. However, with the concept of digital earth, proposed by IBM,
the smart city system has been incorporated into all aspects of daily city management. From the investigation
of the use of DT-concept roads, the deployment of a DT box, and the feedback of real-world, real-time data
flow through the IoT, equipment has become the key component for solving the problem of automatic driving
vehicles (intelligent mobile devices) [87]. Gang et al. [88] proposed an information communication
technology artifact, based on the dynamic source-routing framework, to optimize the functional
requirements of the intelligent operation and maintenance of urban roads. Through the establishment of
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an urban data-evaluation model, the performance of the model and various specified baselines was compared
to control urban air pollution in an economic and effective way [89].

2.3.2 Optimization of Management Decision
(1) Optimization of the production line

By analyzing the status data of the production line, the configuration parameters of manufacturing
instruments are modified to ensure the performance and quality of products, as well as to optimize the
production index. Tao et al. [90] proposed a DT model-driven method to improve the accuracy and
efficiency of prediction and health management. Lynn et al. [91] proposed a manufacturing system based
on a network and a physical system to realize process control and optimization. Luo et al. [92]
established a multi-domain unified modeling method of DT machine tools to study its Computer
Numerical Control (CNC) machine tools in order to make these machine tools more intelligent, optimize
their operational mode, reduce the sudden failure rate, and improve the stability of machine tools.

(2) Optimization of management decision

In the context of Industry 4.0, simulation-based decision-support tools, commonly called DT [93], are
increasingly being used. Using DT to carry out the intelligent management of engineering projects provides
more accurate control of decision-making, reliable operation, and maintenance, and effectively improves the
management and operational levels of engineering projects. Shi et al. [94] proposed the application of DT to
water-conservancy project-operation management. Park et al. [95] applied DT to construct the virtual space
of a micro-grid and realized the operational scheduling model of an energy-storage system, with the goal of
minimizing the electricity charge. Recently, using big data, Breillat [96] summarized the role of network
physical production systems, based on DTs, in facilitating corporate decision-making.

3 DT-Driven IC

In recent years, the construction industry has been experiencing low production, high accident rates,
labor shortage, and rising costs every year. With the rapid development of digital and intelligent
technology, IC is considered the mainstream direction of development in the industry. However, owing to
the uniqueness of construction products, the non-repeatability and fragmentation of the construction
process, and the complexity of the site environment, IC still faces many difficulties in being
implemented. Therefore, research on DT-driven IC has become a popular trend, and has achieved good
results in intelligent design [97,98], production [99–101], logistics [102,103], and construction [104–106].
IC is a deep integration of AI technology with advanced construction technology. It is a highly integrated
and collaborative construction system based on BIM, IoT, AI, cloud computing, big data, and other
technologies that can adapt to changing needs in real time. IC has brought great changes to all aspects of
the construction industry, enabling it to learn, produce, and use knowledge, thus realizing a balance of
digitization, networking, and intelligence.

IC is not a technology oriented to a single production stage, but a highly integrated multi-link
construction system (as shown in Fig. 2 for system architecture), which integrates key stages such as
design, production, logistics, and construction. In an IC system, each stage can achieve a high degree of
information sharing and business collaboration, which means that the IC system can quickly respond to
the changing needs (for example, changes and supply) of each stage to achieve the flexibility and
efficiency of the construction process. Advanced IT is the basis of IC, and its rapid development provides
the necessary conditions for its implementation. BIM technology provides the underlying support for the
creation, integration, management, and service of product information for IC [107,108]. The IoT
technology provides the basic support for the real-time acquisition and transmission of information in the
process of production, logistics, and construction [109,110], and also provides a strong guarantee for the
intelligent evaluation and operation of all stages of IC [111–113].

SDHM, 2021, vol.15, no.3 189



The construction industry’s development has evolved in stages: from human force to mechanical power
construction 1.0 (prefabricated building), standardized modular assembly-line construction 2.0 (industrial
building), and CAD + CNC/CAM + BIM informatization construction 3.0 (digital building). It has come
to the fourth Industrial Revolution led by intelligent manufacturing in the construction industry.
Therefore, the world’s traditional and emerging construction powers have proposed the development of
IC planning. Tab. 2 presents the IC development plans of some countries and organizations [114–120].

In this study, the system of IC is divided into five intelligent layers: connection, analysis, network,
cognition, and execution layers. The main function of the connection layer is intelligent perception—
that is, the ability to obtain information and data from different parts of the construction industry at
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Space Cycle
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Intelligent optimization and decision-making

Information perception and interaction

Data mining and modeling
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Material

Geometric 
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System

Mainterance
&Management

Figure 2: IC system

Table 2: Main IC development plans in the world

Country/organization Intelligent-construction development plan Refs.

� Germany Industry 4.0 [114]

� South Korea Manufacturing Industry Innovation 3.0 Strategy [114]

� European Union Horizon 2020 [115]

� Japan Industrial Value Chain Initiative [116]

� United States Advanced Manufacturing Partnership [117]

� Unites Kingdom Modern Industrial Strategy [118]

� France New France Industrial [119]

� China Made in China 2025 [120]
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different stages through various sensors. It also includes the ability to recognize the environment, object
categories, and attributes through memory, learning, judgment, reasoning, and other processes. The main
function of the intelligent analysis layer and the intelligent network layer is data mining, which
transforms the perceptual information into a 3D information model and uses big-data technology to mine
the data needed by the collaborators. The main function of the intelligent cognitive layer is to evaluate
and make decisions, that is, using the real-time state data of buildings to evaluate and make optimal
decisions. The main function of the intelligent execution layer is to provide feedback-entity control, that
is, to provide a feedback optimization scheme for construction equipment through an intelligent device,
so as to realize automatic construction with the machinery. This section focuses on the IC system based
on CPS, and introduces the development of intelligent construction from four aspects.

3.1 Information Perception and Interaction
An effective AI system is based on its perception, memory, and thinking ability, as well as learning,

adaptive, and autonomous behavior abilities. With the ability of dynamic intelligent perception in
complex scenes, we need to use multisource information-fusion technology to collect and fuse both
similar and different types of sensor information across time and space. Only through memory, learning,
judgment, and reasoning can we achieve the purpose of recognizing the environment, object categories,
and attributes. On this basis, we can enable experience-based judgment and the intelligent processing of
decision-making.

3.1.1 Sensing
In the process of using information, the first step is to obtain accurate and reliable information; sensors

are the main means of obtaining such information in the fields of science and production. A sensor can feel
the measured information and transform it into an electrical signal or other required information output
according to certain rules to meet the requirements of information transmission, processing, storage,
display, recording, and control. It has the characteristics of miniaturization, digitization,
intellectualization, multi-functionality, systematization, and networking [121]. In modern industrial
production, especially in the process of automatic production, various sensors should be used to monitor
and control various parameters in the production process, so that the equipment can work in a normal or
optimal state and the product can achieve the best quality. Therefore, without excellent sensors, modern
production would lose its foundation.

In basic subject research, the sensing has a more prominent position. The progress of modern science
and technology has led to the development of many new fields. In addition, various kinds of extreme-
technology research play an important role in deepening the understanding of materials, and in
developing new energy and materials such as ultra-high and ultra-low temperatures, ultra-high pressure
and vacuum, and super-strong and ultra-weak magnetic fields. Without appropriate sensors, it would be
impossible to obtain significant information that cannot be directly obtained by the human senses. The
first obstacle in many basic scientific studies lies in the difficulty of obtaining object information, and the
emergence of new mechanisms and high-sensitivity detection sensors certainly leads to breakthroughs in
this field. The development of sensing is often the pioneer of some frontier disciplines.

Sensors have already been used in many fields such as industrial production [122], space development
[123], ocean exploration [124], environmental protection [125], resource investigation [126], medical
diagnosis [127], bioengineering [128], and even in the protection of cultural relics [129]. Almost every
modern project, in all arenas from space to the vast ocean, to all kinds of complex engineering systems,
cannot proceed without the use of sensors.

Sensors are also widely used in the construction industry. Traditional applications have mainly been for
structural safety monitoring [130] and in the construction process [131] to detect the quality and safety-status
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data of structures at various stages. With the rapid development of smart city construction and big data, IoT
sensor technology has achieved innovative applications in four main aspects: machine control [132],
construction-site monitoring [133], fleet management [134], and wearable device [135] applications.

3.1.2 Industrial Robot
The automation and intelligence of construction are inseparable from the application of industrial robots,

which are widely used in all aspects of construction. As the construction industry has developed, the types
and functions of industrial robots have become more diverse. With the shift from the process of traditional
construction to IC, industrial robots have ushered in new and greater development.

In recent years, more and more researchers have focused on industrial robots to make them more
competitive. With higher precision, fewer errors, more reasonable structure, more convenient
programming, and friendlier human-computer interaction, industrial robots have become increasingly
important in industrial applications. Liu et al. [136] proposed a multi-sensor combined measurement
system, based on the point cloud coordinate-change method, which can improve the position accuracy of
the robot by editing its kinematic parameters; the accuracy was improved by 45.8% through experimental
verification. Wu et al. [137] proposed a robotic 3D measurement system, based on a multi-layer
perceptron neural network. The experimental results show that a high-precision, structured light-vision
sensor model can be obtained. Pérez et al. [138] studied the synergy between virtual reality and robots to
create a fully immersive environment, based on virtual reality, thereby improving the efficiency of the
training and simulation process and providing a cost-effective solution. However, industrial robots are
inconvenient for the exchange of programming information for different processing projects, and their
integration is also difficult [139]. Slavkovic et al. [140] introduced an indirect method for industrial
robot-programming of machining tasks, which was designed to save machining-project information in a
standardized format for the exchange of product model in the data-numerical control format, thus
enabling easy exchange between different users for machining purposes.

3.1.3 Information Perception
The important technical means of modern intelligent-sensing systems is to obtain sufficient sensing

information and feature information generated by the systems. The information from various sensors has
different characteristics, and one of the important tasks of intelligent sensing is to extract the various
characteristics of objects from various types of sensor information. The urban driving environment-
collection method was developed using a road side unit camera and vehicle Global Positioning System
with two sensors, and also the Dempster Shafer theory to map the credibility root to the credibility map
[141]. Kirsty et al. [142] proposed a cut-invariant perception method, based on principal component
analysis. This method gave the required environment information in the case of sliding, and was applied
to the contour-tracking task of six objects with different curvatures.

3.2 Data Mining and Modeling
Data mining has attracted significant attention in the information industry. The main reason is the

explosion of data; there is an urgent need to transform these data into useful information and knowledge
that can then be used in various applications, including business management, production control, market
assessment, engineering design, and scientific exploration. Data mining uses ideas from the following
areas: (1) sampling, estimation, and hypothesis-testing from statistics; (2) search algorithm, modeling
technology, and learning theory of AI, pattern recognition, and machine learning. Data mining has also
rapidly accepted ideas from other fields, including optimization, evolutionary computing, information
theory, signal processing, visualization, and information retrieval. Some other areas, especially in
database systems, need to provide effective storage, index, and query-processing support, which also play
an important role.
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Data mining is a popular topic in the field of AI and databases. It refers to the process of revealing
hidden, previously unknown, and potentially valuable information from a large amount of data in a
database. Data mining is a type of decision-making process. It is mainly based on AI, machine learning,
pattern recognition, statistics, databases, visualization technology, etc. It can analyze the data of
enterprises automatically, perform inductive reasoning, and extract potential patterns to help decision-
makers adjust market strategies, reduce risks, and make correct decisions. The common methods of data
mining include classification, regression, clustering, association rules, features, change and deviation, and
web-page mining. The difference among these methods indicates the mining of data from different angles.

3.2.1 Classification
Classification is used to determine the common characteristics of a group of data objects in the database

and to divide them into different classes according to the classification mode. Its purpose is to map the data
items in the database to a given class through the classification model, which is used to predict the discrete
class of data objects. Classification technology has been applied in many areas including the classification of
building components, the evaluation of material properties and characteristics, structural safety assessment,
and health prediction. The main classification methods are the decision tree [143], k-nearest neighbor [144],
support vector machine [145], vector space model [146], Bayes [147], and neural networks [148,149].

3.2.2 Regression
Regression is a statistical prediction model used to describe and evaluate the relationship between

dependent variables and one or more independent variables. It reflects the temporal characteristics of the
attribute’s values in the transaction database, generates a function that maps data items to a real-value
predictive variable, and determines the dependency relationship between the variables or attributes. The
main research issues include the trend characteristics of the data series, the prediction of the data series,
and the correlation among the data. The regression method has been widely used in construction
engineering [150], all aspects of engineering economy [151], and can also provide a decision-making
basis for building health-monitoring and early-warning systems, such as building settlement and
deformation [152], and bridge anti-collision safety early-warning systems [153].

3.2.3 Clustering
Clustering divides a group of objects into several categories according to their similarity and differences.

The similarity between the objects in each category is high. However, the similarity between objects in
different categories is low, which means that the difference is obvious. The difference in classification is
that clustering does not rely on a given category to divide objects. The algorithm is divided into the
following: (1) partition method, (2) hierarchical method, (3) density-based method, (4) grid-based
method, and (5) model-based method. It can be applied to the classification of smart city management,
management-background big-data decision, and management-scheme trend prediction [154,155].

3.2.4 Association Rules
Association rules describe the relationships between two data items in the database. We can infer the

occurrence of another thing from the occurrence of one thing, which is the association or mutual
relationship hidden in the data, so as to better understand the development law of things. In the
construction industry, it can be applied to association rules for anomaly detection and reliability
evaluation of intelligent devices [156].

3.2.5 Features
Feature extracts feature expressions from a set of data in a database, which express the overall

characteristics of the dataset. The purpose of feature selection is to extract useful information from
massive amounts of data to improve the efficiency of data use. The selection and evaluation of feature
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validity include probability theory, mathematical statistics, and information theory. For example, in structural
damage detection, prediction can be carried out according to the features [157].

3.2.6 Change and Deviation
Deviations are small objects in a dataset. Generally, deviation objects are called exceptions or outliers.

The purpose of deviation is to identify objects that differ from most other objects. For example, by analyzing
abnormal cases in the classification, abnormal mode, observation results, expected deviation, and other
information [158], potential accidents can be found in the areas of structural health monitoring and early-
warning systems. Therefore, it can be applied to the discovery, analysis, identification, evaluation, and
early warning of various abnormal information. The causes include data from different classes, natural
variation, data measurement, and collection error.

3.2.7 Web Mining
Through web mining, we can use the web to collect information about politics, the economy, policy,

science and technology, finance, various markets, competitors, supply-and-demand information,
customers, and so on. This study focuses on analyzing and processing information about external
environment and internal operation that has significant or potentially significant impacts on an enterprise,
and identifies various problems and possibilities in the process of enterprise management, according to
the results. In order to identify, analyze, evaluate, and manage crises, we need to analyze and deal with
the information that web mining gathers.

3.2.8 BIM
The construction industry has the largest amount of data at the largest scale. With the development and

popularization of big data and BIM, building industrialization involves transforming the original “design-site
construction” into “design-factory manufacturing-site assembly”. The construction of a building is also a
product-manufacturing process. The purpose of industrialization is to make the building-construction
process the manufacturing process of the manufacturing industry [159].

BIM technology provides a good technical platform for the early construction of industrialization
projects, and later management and maintenance of them. Using BIM technology to establish a library of
layout, the assembly component library of the industrialization building can standardize property types
and components, reduce design errors, and improve drawing efficiency, especially in the processing and
on-site installation of prefabricated components [160]. The dynamic visual management of the entire
process of prefabricated building construction is realized in the manufacturing, transportation, and
assembly process of components with a combination of radio-frequency identification (RFID) technology
and BIM in the construction stage [161].

With the impact of big data, cloud computing, IoT, GIS, mobile internet, and other advances in IT the
integration of social resources will be the main problem the construction industry must overcome. BIM
enables the integration of cross-border resources in the construction industry, and provides a valuable tool
to find the optimal resource integration. The application of the IoT, based on BIM, will give every brick
and piece of rubble their own identity, and an unprecedented value in their own posts [162]. The
combination of BIM with big data and cloud computing made it easy for designers to find valuable
information in a huge database through data-mining technology, while the integration of BIM and GIS
promoted the development of the concept of digital earth [163].

3.3 State Assessment and Prediction
3.3.1 State Assessment

State assessment is a method for estimating the internal state of a dynamic system, based on available
measurement data. The data obtained by measuring a system’s input and output can only reflect its external
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characteristics; the dynamic law of the system needs to be described by the internal state variables (usually not
measured directly). Therefore, state estimation is of great significance for understanding and controlling an IC
system. Taking the 5-1 District of Shizong City as an example, a digital dual model for simulating soil
resistance was established using GIS technology, and a prediction system for earthquake liquefaction and
foundation-damage amplification was established, while liquefaction risk-assessment was also carried out [164].

3.3.2 State Prediction
Decision theory aims to achieve an optimal decision by assuming an ideal decision-maker has complete

information, accurate calculation, and complete rationality. The practical application of this normative model
is called decision, and its goal is to help people make better decisions with its tools and methodologies.
Bayram [165] proposed the “best fit model” as the benchmark of Bromilow’s Time-Cost and Love et al.s’
Time-Floor models, based on 530 public building projects in Turkey, in order to fill the gap in
construction-period prediction.

3.4 Intelligent Optimization and Decision
The intelligent optimization method is a very active research field, developed in recent years. Many

scholars and students of systems engineering, automation, computer, management engineering, mining,
machinery, and other majors have widely used intelligent optimization methods. For example, the genetic,
tabu search, simulated annealing (SA), ant colony, and particle-swarm optimization have been widely
used in various industries of the national economy.

In the field of construction engineering, Buitrago et al. [166] introduced a computer tool to calculate and
verify the floor and support loads of cast-in-place multi-story buildings, using three AI optimization methods:
random walk, descent local search, and SA. Under certain circumstances, the best solution was achieved: the
cost of a support system was reduced by up to 53%; the construction time was shortened; and the
conventional requirements of building construction were met.

4 Potential Research Directions

The development of IC technology will phase out traditional construction technology with its heavy
environmental burden. With the increasing attention to the concept of sustainability, the sustainable
development of the construction industry has been clearly positioned. This study proposes a framework
of DT-driven IC, as shown in Fig. 3.

4.1 Framework of DT-Driven IC
4.1.1 Comprehensive Sustainability

Sustainability has become an important topic [167,168]. Combining sustainable concepts with IC to
achieve overall sustainability is an important future research direction. This concept can reduce emissions
in the life-cycle of products, thereby achieving the requirements of both IC and comprehensive
sustainability from the perspective of environmental, economic, and social aspects.

4.1.2 Upgrade Modeling and Simulation Technology
Traditional modeling and simulation technology is an indispensable tool and method for the construction

industry. However, because it is only an independent unit, modeling and simulation are not suitable for an IC
system. DT contains not only model simulation, but also dynamic simulation. The data interaction between
digital and physical objects must be realized, so that the DT operation can add value by continuously
improving industrial applications. Compared with the business environment, the interaction between
uplink and downlink data needs to consider periodicity, data interface, and information modeling in order
to improve efficiency.
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4.1.3 IC in Life-Cycle Service
DT, based on engineering, construction, and maintenance, includes the three main components of an IC

system, covering the whole building life-cycle business from product design and construction to service.
From the virtual engineering design to the real construction site, and then to building operation, DT
always serves every stage of the building life-cycle.

4.1.4 IC Across Blockchain Technology
Through blockchain, we can reduce logistics costs, trace the production and delivery processes of goods,

and improve the efficiency of supply-chain management. Through the hierarchical structure of a scattered
network connected by nodes, blockchain can realize the comprehensive transmission of information in the
whole network and test the accuracy of information, which improves the convenience and intelligence of
IoT transactions, to a certain extent [169].

4.1.5 IC for Environmental Protection
Significant greenhouse gas emissions have led to global warming. Environmental protection is a major

concern in the global construction industry [170,171]. In the study of IC, we need to consider the impact of
raw materials, processing, transportation, construction, recycling, and other aspects to guide the overall
development of IC.

4.1.6 Human–Machine Collaboration
Humans and machines can interact more collaboratively in IC, which enables a human to make efficient

and effective decisions.

4.2 Enabling Technology of IC
4.2.1 Big Data-Driven IC

With the implementation of IC, the accuracy of construction, component quality, and processing
efficiency will continue to improve. With the help of DT and big data technology, a virtual simulation
model of an entity model can be established to produce feedback for the entity state in real time. It can
also be used for real-time health detection, safety diagnosis, and maintenance of structures.

4.2.2 AI-Driven IC
IT has developed rapidly since 2000. In recent years, AI has also rapidly developed in the fields of

medicine, monitoring, and interaction, thereby greatly changing people’s lifestyles. In the future, IC
processes will inevitably reduce human factors. Therefore, the application of AI will be the future
research direction for IC, gradually replacing the role of humans with robots.

4.2.3 IoT-Driven IC
IoT enables all objects that can perform independent functions to access the network, to achieve both

interconnection and the effect of interconnection of all things. The combination of IoT and IC realizes the
interconnection between prefabricated components and construction parts.

5 Conclusions

With the transformation and upgrading of the construction industry, sustainable IC has become
increasingly important. The combination of IC and DT, which have intelligent sensing and simulation
functions, makes the building-production process more efficient and intelligent. At the same time, it can
monitor the status of the structure and prefabricated components in real time, as well as predict potential
safety hazards. After introducing a DT and its application, this paper introduced four aspects of
sustainable IC driven by DT: information perception and interaction, data mining and modeling, condition
evaluation and prediction, and intelligent optimization and decision-making. A framework for sustainable
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IC, driven by a DT, was proposed. The development direction of digital dual-drive sustainable intelligent
construction was also discussed.
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