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ABSTRACT

As the emergency power supply for a simulation substation, lead-acid batteries have a work pattern featuring non-
continuous operation, which leads to capacity regeneration. However, the accurate estimation of battery state of
charge (SOC), a measurement of the amount of energy available in a battery, remains a hard nut to crack because
of the non-stationarity and randomness of battery capacity change. This paper has proposed a comprehensive
method for lead-acid battery SOC estimation, which may aid in maintaining a reasonable charging schedule in
a simulation substation and improving battery’s durability. Based on the battery work pattern, an improved
Ampere-hour method is used to calculate the SOC during constant current and constant voltage (CC/CV) char-
ging and discharging. In addition, the combined Particle Swarm Optimization (PSO) and Least Squares Support
Vector Machine (LSSVM) model is used to estimate the SOC during non-CC discharging. Experimental results
show that this method is workable in online SOC estimation of working batteries in a simulation substaion, with
the maximum relative error standing at only 2.1% during the non-training period, indicating a high precision and
wide applicability.
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1 Introduction

As the hub of the power grid, substations are responsible for power supply for different regions, which
makes training on substation operation and maintenance crucial. By combining the transformed primary
equipment and a simulation platform, we can create a simulation substation for trainees. The DC power
supply system is an important part of a simulation substation, as it powers relay protection devices,
switch control devices, simulation operation equipment, etc. [1] The simulation substation can maintain
normal operation when the AC power supply fails. In addition, as a key component of the DC power
supply system, batteries can be used as a backup power supply in case of a power failure of the
simulation substation. Therefore, real-time monitoring of battery SOC is a key technology to ensure safe
operation of simulation substation and stability of power grid, as well as a key part of simulation
substation construction.
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Since the French physicist Gaston Plante invented the world’s first rechargeable battery based on lead-
acid chemistry in 1859, the lead-acid battery has been gaining momentum and applied in more and more
scenarios due to its high safety, low cost, stable operation and long service life [2,3]. When it is woven
into the fabric of our daily life, the research on the lead-acid battery SOC comes under the spotlight. At
present, lead-acid batteries can be roughly divided into three categories by application: (1) start and
traction type, which is used for starting or traction of automobiles, motorcycles, and electric tools; (2)
backup type, which is applied in substation DC systems, communication base stations and computer
systems; (3) energy storage type, which is applied in the wind or solar power generation [4]. This paper
delves into the lead-acid battery for simulation substations and batteries mentioned in this paper all refer
to lead-acid batteries.

So far, there has been a lot of in-depth research in the field of SOC estimation at home and abroad. Wang
et al. [5–7] proposed an extended Kalman filter algorithm for accurate SOC estimation based on different
temperature conditions. In the range of −20°C to 40°C, the battery temperature data is collected and the
model parameters of the battery are associated to realize the online parameter estimation of open circuit
voltage (OCV). The final relative error of SOC estimation is just 3%. However, the problem of parameter
deviation arising from battery aging fails to be solved. In order to fully exploit the capacity of batteries in
the application of power storage, Cacciato et al. [8] realized the joint online estimation of the battery
SOC and state of health (SOH) by establishing an electrochemical model of the battery. The relative error
is less than 3%, but the electrochemical model entails a lot of mathematical formula calculations and
modeling, which brings down the applicability. He et al. [9,10] proposed an electromotive force (EMF)
method combined with recursive least-squares (RLS) for online estimation of OCV and SOC of Li-ion
batteries. However, adaptive systems also operate with the drawback of having a high computational
load, which complicates the online running of the model on a real application.

Lead-acid batteries in the DC system of a simulation substation are charged/discharged in either CC
model or non-CC model. CC means that the working current of the lead-acid battery changes slightly in a
continuous period of time. Non-CC means that the working current of the lead-acid battery is always
changing at a fast rate and in a high amplitude [11]. For example, the battery load may increase or
decrease during discharging, which will lead to the instability of the discharge current. In order to achieve
a better effect on battery SOC estimation, this paper proposes a comprehensive method to estimate the
battery SOC under the CC and non-CC models.

There are many factors that affect the durability of batteries, such as the SOC window and temperature
control etc. The most important one is the SOC window of the battery cell. The SOC window refers to the
reasonable upper and lower bound of the SOC during charging and discharging. The SOC window range is
30%–70% [12]. Only by accurate SOC estimation can the battery power be managed strictly in accordance
with the SOC window. The battery cell working in a reasonable SOC window will slow down the edge
polarization phenomenon and improve the battery cell durability, which extends the service life of the
battery [13].

2 SOC Calculation during CC/CV Charging and Discharging

The calculation formula based on the Ampere-hour method is as follows:

Qc=d ¼
Z t

0
Idt (1)

where Qc=d is the amount of electricity charged or discharged by the lead-acid battery, I is the battery current,
and t is the time.
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Due to the limitation of the Ampere-hour method [14], this paper will correct the influence of
temperature and the charge and discharge current on the Ampere-hour method in the process of battery
charging and discharging.

2.1 SOC Calculation during CC Discharging
In China, the standard temperature for the rated capacity of a lead-acid battery is generally 25°C. When

the temperature changes, the available battery capacity will have a certain difference from the rated capacity.
At present, the common compensation coefficient formula is:

dT ¼ 1þ 0:008ðT � TBÞ (2)

where TB is the standard temperature (25°C), T is the current temperature of the battery, and dT is the
temperature compensation coefficient. Therefore, the temperature compensation formula for the battery is:

Qd ¼
Z t

0

I

dT
dt (3)

where Qd is the discharge capacity of the battery.

The rated battery capacity refers to the amount of electricity discharged from the battery to the cut-off
voltage at a current of 0.05 C (20-h discharge rate). When the working current of the battery is greater than
0.05 C, the total energy released at the discharge cut-off voltage is less than the rated capacity [15]. The
discharge efficiency is the ratio of the discharged capacity to the full capacity. According to the actual
discharging test, the discharge efficiency of the battery under different discharge currents is obtained as
shown in Fig. 1.

MATLAB is used to fit the curve of Fig. 1, the discharge efficiency KI under different current Id is:

KI ¼ �10:64Id
3 þ 55:87Id

2 � 94:2Id þ 101:8 (4)

Without considering the temperature, we can obtain the following equation from Eq. (4):

SOC ¼ 1�
R t
0 Iddt

KIQa
(5)

where Qa is the actual capacity when the battery is fully charged. After correcting the current and
temperature, the SOC calculation formula during CC discharging is:

true value

curve fitting

0                0.5 1                1.5                2                2.5                    3

C rate

100

90

40

50

60

70

80

D
is

ch
ar

gi
ng

 e
ff

ic
ie

nc
y •

Figure 1: Relationship between discharge efficiency and discharge rate
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SOC ¼ KIQa � Qd

KIQa
¼ 1�

1

dT

Z t

0
Iddt

KIQa
(6)

2.2 SOC Calculation during CC/CV Charging
The battery charging usually has three stages: CC charging, CV charging and floating charging.

The CC model is used firstly, so that the battery voltage can reach a certain amplitude as soon as
possible. When the battery voltage reaches a certain voltage value, the CV model should take over, as
continued CC charging will lead to water electrolysis (produce hydrogen and oxygen gases and elevate
the battery temperature), instead of improving the charging efficiency. At this time, the charging voltage
remains unchanged, but the charging current starts to taper off. In the process of CV charging, the
magnitude of the current is similar to the MAS theoretical curve, as shown in Fig. 2. When the charging
current exceeds the acceptance curve, gas evolution will occur and the charging efficiency does not
improve. Only when the charging current is below the acceptance curve can the adverse reaction of the
battery be reduced during the charging process and the battery be fully used. The formula of MAS curve
is as follows [16]:

IðtÞ ¼ I0 � e�at (7)

where I0 is the initial charging current, which can be regarded as the current value under the CC charging
stage, IðtÞ is the maximum current value accepted by the battery at any time t under the CV charging
stage, and a is the acceptable current attenuation coefficient. According to the MAS curve formula, the
charging capacity of the battery at any time t under the CV charging stage is:

Qc ¼ I0 �
1� 1

ek

a
(8)

where K ¼ at,Qc is the capacity charged into the battery at time t. In addition, different charging currents and
voltages have different charging efficiency during CC/CV charging [17,18], which is shown in Figs. 3 and 4.
From this we can get the formula as follows:

Qc ¼
g1

R t
0 Icdt constant current charging

g2I0 �
1� 1

ek

a
constant voltage charging

8><
>: (9)

Ic is CC charging current, g1 is CC charging efficiency, g2 is CV charging efficiency.

The least square method of MATLAB is used to fit the curve:

g1 ¼ �0:4423Ic þ 0:9971 (10)

g2 ¼ �3:412V 3 þ 23:17V 2 � 52:48V þ 40:64 (11)

where V is the voltage during CV charging.

The charging process is also affected by temperature. The charging voltage needs to decrease by 4 mV
(2 V battery) for every 1°C rise in temperature (based on the standard temperature of 25°C); the charging
voltage needs to increase by 4 mV (2 V battery) for every 1°C drop in temperature [19]. Temperature
affects the change of charging voltage, thereby indirectly affects the charging efficiency. Therefore,
considering the temperature factor during CV charging, Eq. (11) can be changed into:
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g2 ¼ �3:412� ðV0 þ 0:004ðT0 � TÞÞ3 þ 23:17ðV0 þ 0:004ðT0 � TÞÞ2
�52:48ðV0 þ 0:004ðT0 � TÞÞ þ 40:64

(12)

where V0 is the charging voltage at the standard temperature, T0 is the standard temperature, T is the current
temperature. The calculation formula of battery charging capacity is:

Qc ¼
g1dT

R t
0 Icdt constant current charging

g2I0 �
1� 1

ek

a
constant voltage charging

8><
>: (13)

Therefore, the calculation formula of SOC during charging is:

SOC ¼ Qr þ Qc

Qa
(14)

where Qr is the remaining capacity of the battery before charging or discharging.

Figure 2: MAS charging curve
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Figure 3: Relationship between charging efficiency and CC charging current
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3 Method for Battery SOC Estimation during Non-CC Discharging

Non-CC discharging refers to a process where the discharge current will change with the increase or
decrease of the battery load in actual use [20]. During the training process of a simulation substation, the
DC power supply system supplies power for relay protection devices, switch control devices, simulation
operation equipment, etc. In this case, the calculation based on the improved Ampere-hour method is not
accurate enough because of the integral error caused by the instability of the discharge current. In order
to accurately calculate the discharge capacity under the unstable discharge current, the PSO-LSSVM
model is used to estimate the battery SOC for a simulation substation during non-CC discharging.

3.1 Principle of LSSVM
The LSSVM method can obtain the optimal result when the linear target is interfered with by Gaussian

noise, so it is often used to fit the numerical points in the plane [21–23]. With the least square method,
training data can be transformed into a higher-dimensional feature space through nonlinear mapping, thus
forming a hyperplane and making the data linearly separable. The least square method can be used to
obtain the optimal solution and extract the data information. Therefore, LSSVM demonstrates its
superiority over the standard SVM.

In the sample sets ðx1; y1Þ; ðx2; y2Þ � � � ðxn; ynÞf g, the spatial dimension is n, xn is the sample input vector, and
yn is the sample output vector. The nonlinear mapping function is introduced into the LSSVM to map training data
into a higher-dimensional linear feature space where a regression estimation function [24] is constructed.

Assume the regression function in the case of nonlinearity is:

f ðxÞ ¼ wfðxÞ þ b (15)

where w is the coefficient of the regression function, fðxÞ is the mapping function, and b is the error value.
According to the principle of structural risk minimization, the following minimum objective function can be
constructed:

minw;b;e J ðw; eÞ ¼ 1

2
wTwþ 1

2
c
XN
k¼1

ek
2

s:t: yk ¼ wTfðxkÞ þ bþ ek ; k ¼ 1; . . . ;N

8><
>: (16)

where c is the regularization parameter, also known as the penalty factor, ek is the error variable, b is the error value.
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Figure 4: Relationship between charging efficiency and CV charging voltage
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To solve the above optimization problem, the Lagrange multiplier method is used:

Lðw; b; e; aÞ ¼ J ðw; eÞ �
XN
k¼1

akðwTfðxkÞ þ bþ ek � ykÞ (17)

where a is the Lagrange multiplier.

Derivate w; b; ek ; ak respectively, and let Lðw; b; e; aÞ ¼ 0, we can get:

w ¼ PN
k¼1

akykfðxkÞ

0 ¼ PN
k¼1

akyk

ak ¼ cek ; k ¼ 1; . . . ;N
0 ¼ ykðwTfðxkÞ þ bÞ � 1þ ek ; k ¼ 1; . . . ;N

8>>>>>><
>>>>>>:

(18)

According to (18), the linear equations about a and b are obtained:

0 1n
T

1n �þ c�1I

� �
b
a

� �
¼ 0

y

� �
(19)

where � is called the kernel matrix:

� ¼ fðxkÞTfðxlÞ ¼ Kðxk ; xlÞ; k; l ¼ 1; . . . ;N (20)

Then the following regression estimation function can be obtained:

yðxÞ ¼
XN
k¼1

akKðxk ; xlÞ þ b (21)

where yðxÞ is the battery SOC, b is the deviation, Kðxk ; xlÞ is the Kernel Function, N is the number of training
samples.

The Kernel Function affects the estimation accuracy of LSSVM to a great extent. The Kernel Functions
of LSSVM are generally Radial Basis Kernel Function (RBF), Linear Kernel Function (LKF), and
Polynomial Kernel Function (PKF) and so on [25]. The Kernel Function formula is as follows:

Kðxk ; xlÞ ¼ xkTxl Lin

Kðxk ; xlÞ ¼ ðxkTxlÞd; d � 1 Poly

Kðxk ; xlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� xk � xlk k

r2

r
RBF

8>><
>>:

(22)

where d is the degree of polynomial and r is the bandwidth of the Radial Basis Kernel Function.

3.2 Principle of PSO-LSSVM
PSO is used to optimize the parameters of Kernel Function in order to avoid error caused by experience

and random selection. PSO is to find the optimal solution by iteration from the perspective of a random
solution where fitness is used to measure the quality of the optimal solution. It can find the global
optimal solution by following the current optimal value [26–28]. Each particle represents a solution that
contains a position vector and a velocity vector. For any particle i, the position vector is
ei ¼ ðei1; ei2; . . . einÞ, the velocity vector is vi ¼ ðvi1; vi2; . . . vinÞ, and the vector of the optimal solution
experienced by a single particle is labeled as Ii ¼ ðIi1; Ii2; . . . IinÞ. The optimal solution vector experienced
by all particles in the population is labeled as Iq ¼ ðIq1; Iq2; . . . IqnÞ.
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In this algorithm, the following formula is used for iteration:

viuðhþ 1Þ ¼ mviuðhÞ þ C1p1ðIiuðhÞ � eiuðhÞÞ þ C2p2ðIquðhÞ � eiuðhÞÞ (23)

eiuðhþ 1Þ ¼ eiuðhÞ þ viuðhÞ (24)

where m is the weight coefficient; u ¼ 1; 2; . . . ; n ; n, h are the space dimension and the number of iterations,
respectively; i ¼ 1; 2; 3; � � � ; s, i is the number of population samples; p1, p2 are random numbers between
0 and 1; C1, C2 are acceleration constants, the former is the individual learning factor of each particle,
and the latter is the social learning factor of each particle. In order to reduce randomness, the learning
factor is generally set to C1 ¼ C2 ¼ 2. viu belongs to �vmax; vmax½ �, where vmax is the maximum flight
velocity of the particle. eiu belongs to emin; emax½ �, where emin is determined by the actual situation.

The weight parameter m should be selected appropriately in order to balance the local and global search.
It should gradually change from mmax to mmin as the current iteration number h changes, and the relationship
is as follows:

mðhÞ ¼ mmax � ðmmax �mminÞ
H

� h (25)

where H is the maximum number of iterations.

3.3 Principle of Internal Resistance Test
Internal resistance is an important parameter for battery SOC estimation. In this paper, a 6 V, 4,500 mAH

battery is discharged in stages with different currents. The internal resistance of the battery is measured by the
Kelvin detection method. The excitation signal input and the voltage measurement are realized by two
different wires, respectively, as shown in Fig. 5. This can reduce the influence of the wire resistance in
the detection circuit branch of the battery terminal voltage on the calculation of the battery internal
resistance. Although the wire also has a voltage drop, the current on the terminal voltage measurement
branch is very small, so the voltage drop on the wire at this time has little effect on the calculation of the
AC voltage drop of the battery. In Fig. 5, ViðtÞ is the input sine signal, Rx is the battery equivalent
internal resistance, Rs is the sampling resistor, VRs is the battery terminal AC voltage. The specific
detection process is shown in Fig. 6. The small amplitude sine signal needs to be input to the battery and
sampler in series, and then the sinusoidal voltage drop of the battery and sampling resistance is measured
through the sampling circuit. The AC impedance of the battery is calculated through Eq. (26) on the
principle of series voltage division. In the Eq. (26), DVRx and DVRs are the AC voltage drop at the battery
and the sampling resistor, respectively.

Rx ¼ Rs � DVRx

DVRs
(26)

3.4 Kernel Function Selection
Three kernel functions are used to estimate the SOC, and the results are compared in order to ensure the

accuracy of model estimation. The evaluation indexes of the regression algorithm are generally Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and R-Squared. The LSSVM estimation results of
different kernel functions are compared based on these three indexes. Figs. 7−9 show the battery SOC
estimation results calculated based on the LSSVM algorithm with Poly, Lin, and RBF as the core
functions respectively. Table 1 shows the evaluation indexes of different kernel functions.
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Figure 5: Schematic diagram of Kelvin method for detecting AC internal resistance of the battery
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According to the evaluation indexes in Table 1 and the estimation results shown in Figs. 7–9, the result is
the best when RBF is selected for LSSVM. In the three figures, the discrete points are the true SOC values,
and the solid lines are the online estimation results. In order to further compare the advantages and
disadvantages of the three kernel functions, the relative errors of the estimated values of different kernel
functions are compared, as shown in Fig. 10. It can be seen that the relative error of the estimated value
of RBF is significantly less than that of Poly and Lin, so this paper decides to select RBF as the kernel
function for the LSSVM model.

3.5 Experiment Analysis
It can be seen from the relationship between the OCV and the capacity of the battery, when the same

capacity is discharged on the basis of different remaining capacities, the OCV drops at different rates. In
addition, different discharge rates lead to different voltage drop rates. There could be a voltage recovery
when the discharge current switches from high to low. At this time, the internal temperature of the battery
will decrease, thereby reducing the energy loss. There is a close correspondence between a battery’s
working voltage and its OCV, so for non-CC discharging, the terminal voltage difference and the
discharge time in the current fluctuation period are used as the input of the estimation algorithm.

Figure 8: SOC estimation result based on Lin

Figure 9: SOC estimation result based on RBF

Table 1: LSSVM estimation indexes of different kernel functions

Kernel functions RMSE MAE R-squared

Poly 1.4446 1.0766 0.9925

Lin 0.9869 0.7623 0.9966

RBF 0.4855 0.3936 0.9992
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Based on the comprehensive analysis of various influencing factors of the battery, this paper proposes a
PSO-LSSVM model for SOC estimation during non-CC discharging based on four indicators: battery
internal resistance, terminal voltage difference, temperature, and discharge time. The internal resistance is
obtained by the self-built four-terminal Kelvin testing equipment. Current, terminal voltage, temperature
and other parameters are detected by Neware’s high-performance battery detection equipment. The
experimental environment is shown in Figs. 11 and 12. The input variable of PSO-LSSVM is
x ¼ ðt;V ; r; TÞ, and the output variable is yðxÞ ¼ SOC, where t is the discharge time, V is the voltage
difference; r is the internal resistance, and T is the battery temperature.
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Figure 10: Relative error of SOC estimation under different kernel functions

Figure 11: Internal resistance detection equipment

Figure 12: Battery testing equipment
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The curve of discharge current variation is shown in Fig. 13. During the discharging process, the
terminal voltage, internal resistance, temperature and discharge time of the battery are recorded every
10 s. Fig. 14 is the change curve of relevant parameters during a stepped discharge process. According to
Figs. 13 and 14, when the discharge current increases, the internal resistance increases faster, but the
SOC and terminal voltage decrease faster; when the discharge current decreases, the internal resistance
decreases rapidly before escalating due to the change of the discharge efficiency, but the SOC and
terminal voltage increase rapidly before tapering off. This phenomenon is in line with the discharge
characteristics of batteries for a simulation substation, and it is also an important basis for mapping the
battery SOC change through the battery voltage difference over a period of time.

Voltage differences between several time intervals (5, 10, and 20 min) are calculated. This is to ensure
there are one or more current changes in each time interval, thus making the training data closer to the real
data. The battery discharging experiment has generated a total of 1,140 groups of non-repetitive data in
different time periods, and the time interval between every two groups is 10 s. After an out-of-order
arrangement, the first 1,000 groups are selected as the training data and the rest as the validation data.

The accuracy of the estimated value is determined by the penalty factor c of LSSVM and the bandwidth
of the RBF kernel function r. After PSO is employed to optimize the LSSVM parameters, c ¼ 284,
r2 ¼ 184. Fig. 15 is the validation results of the 140 groups of data using the PSO-LSSVM model, and

Figure 13: Stepped discharge current
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the discrete points are true values of SOC. Fig. 16 shows the comparison between the relative error of the
SOC value estimated based on two sets of conventional kernel function parameters and that estimated
based on the kernel function parameters optimized by PSO. It can be seen that the maximum relative
error of the latter is only 2.1%, which is significantly less than that of the former. The evaluation indexes
of the kernel function parameters optimized by PSO are RMSE = 0.4230, MAE = 0.3421, R-
Squared = 0.9994.

4 Conclusion

As the backup power supply for the DC system in a simulation substation, lead-acid batteries feature
non-continuity in operation. However, the accurate SOC estimation remains a challenge due to the non-
stationarity and randomness of battery capacity change. This paper proposes a comprehensive method for
battery SOC estimation, which may aid in maintaining a reasonable charging schedule in a simulation
substation and improving battery’s durability. Based on the different working conditions of a battery,
taking into account factors such as the terminal voltage, internal resistance, temperature and discharge
time of the battery, different estimation methods are selected to improve the accuracy of SOC estimation.
An improved Ampere-hour method is used to calculate the battery SOC during CC/CV charging and
discharging. A PSO algorithm is employed to optimize the kernel function parameters, and a combined
PSO-LSSVM algorithm is introduced to estimate the battery SOC, with the maximum relative error being
2.1%, which is significantly less than that obtained by conventional kernel function parameters. The PSO-
LSSVM algorithm automatically discovers the data rules during online data collection and accurately

Figure 15: SOC estimation validation results based on PSO-LSSVM
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estimates the SOC change during non-CC discharging, solving the problem of low estimation accuracy
obtained by the improved Ampere-hour method.
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