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ABSTRACT

Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and
control of smart structures, and monitoring of structural integrity. As a model-based method, the inverse finite
element method (iFEM) has been proved to be a valuable shape sensing tool that is suitable for complex struc-
tures. In this paper, we propose a novel approach for the shape sensing of thin shell structures with iFEM. Con-
sidering the structural form and stress characteristics of thin-walled structure, the error function consists of
membrane and bending section strains only which is consistent with the Kirchhoff–Love shell theory. For numer-
ical implementation, a new four-node quadrilateral inverse-shell element, iDKQ4, is developed by utilizing the
kinematics of the classical shell theory. This new element includes hierarchical drilling rotation degrees-of-free-
dom (DOF) which enhance applicability to complex structures. Firstly, the reconstruction performance is exam-
ined numerically using a cantilever plate model. Following the validation cases, the applicability of the
iDKQ4 element to more complex structures is demonstrated by the analysis of a thin wallpanel. Finally, the defor-
mation of a typical aerospace thin-wall structure (the composite tank) is reconstructed with sparse strain data
with the help of iDKQ4 element.
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1 Introduction

In the last decades, curved thin-shell structure such as composite tank of spacecraft has been widely used
in aerospace because of its excellent bearing capacity and weight-saving [1,2]. Structural integrity is the key
factor to ensure its function and strength, but the complex construction process makes it prone to defects.
Meanwhile, the tank structure bears time-varying load conditions during service, which may damage its
structural integrity and reduce its remaining life. Therefore, the establishment of a health monitoring
system for real-time monitoring structural state and predicting damage can play an important role in the
whole life cycle of structure manufacturing, service and maintenance. Traditional nondestructive testing
technologies such as ultrasonic testing [3,4] and acoustic emission technology [5,6] have the problems of
time-consuming and high cost which make it not suitable for real-time monitoring of structural response.
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So the health monitoring technology based on embedded strain sensors (optical fiber sensors, strain gauges,
etc.) will become an important direction of structural health assessment in the future [7,8].

The dynamic reconstruction of the three-dimensional displacement field of a structure known as shape
sensing is a crucial component of structural health monitoring which provides data support for subsequent
calculation of stress and strain and failure prediction. Furthermore, the real-time evaluation of the
deformed shape is also a vital technology for the development of smart structures such as morphed
capability and embedded conformal antennas that require real-time shape sensing to provide feedback for
their actuation and control systems.

Numerous studies on shape sensing found in the open literature can be divided into the following
categories: (1) the Modal Method (MM) [9–12]; (2) analytical methods [13–15]; (3) Artificial Neural
Networks (ANN) [16,17]; (4) the inverse Finite Element Method (iFEM) [18–20]. MM, firstly developed
by Foss et al. [9], is a modal transformation algorithm in which the displacement field of the structure is
expressed by modal shapes and corresponding weights. The modal shapes are known and the weights
need to be computed using strain–displacement relationship and measured surface strains. There are two
different ways to calculate modal shapes. The first one is to use the finite element method or analytic
method, but it requires such prior information as the material properties [11]. The other is to estimate
experimentally but it could be significantly onerous [12]. Based on the Bernoulli–Euler beam theory, Ko
et al. [13] constructed the displacement transfer function by fitting the axial strain distribution with
piecewise polynomials, and further obtained the bending deflection of the beam. However, Ko’s theory
only considers simple bending deformation of the beam, and could do nothing about the coupling
deformation of beam structures subjected to highly coupled loading cases. Xu et al. [14,15] proposed a
novel method that could decouple complex beam deformations subject to the combination of different
loading cases, including tension/compression, bending and warping torsion to reconstruct deformed shape
of thin-walled beam structures. The ANN needs a large number of parameters, such as network topology,
weight and initial value of threshol and a lot of training time. Moreover, ANN can be regarded as a black
box and the results calculated are difficult to explain, which will affect the credibility and acceptability of
the results. Generally speaking, each of the above methods has certain limitations, so the scope of
application is limited.

In order to reconstruct the three-dimensional displacement field in real-time with strain data obtained
from the structure surface, Tessler et al. [20] developed an inverse Finite Element Method (iFEM). The
iFEM is formulated based on a weighted-least-square error functional between the analytical and
experimental values of strain on the structure surface. Like the classic Finite Element Method (FEM),
iFEM is also a model-based technique. Therefore, the application of iFEM is not limited by complex
boundary geometry and conditions. Moreover, the formulation only makes use of strain-displacements
relations which make any information about materials or load acting on the structure is unnecessary.
Numerous studies had proved the applicability and robustness of iFEM and different elements such as
iMIN3 [20], iQS4 [19], and iCS8 [21] elements and so on had been developed for different application
structures. All elements are developed based on Mindlin theory, and interpolated using the
anisoparametric shape functions developed by Tessler and Hughes to avoid shear locking when modeling
thin shell structures. Though it has achieved good results, the Kirchhoff–Love shell model is well suited
for thin shell analysis in fact because it disregards transverse shear deformations which reveals that the
deformation of thin shells is physically dominated by membrane and bending actions and the shear
locking can be avoided completely.

The main focus of this work is to redefine the weighted-least-square error functional based on classical
plate theory. Subsequently, a new four-node quadrilateral inverse-shell element, iDKQ4, is developed for
numerical implementation. The new element includes hierarchical drilling rotation degrees-of-freedom
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(DOF) to enhance applicability in modeling complex structures. This study is organized as follows: the
iDKQ4 element is presented in brief in Section 2. Besides, an iFEM formulation developed utilizing the
kinematics of Kirchhoff–Love shell theory for thin shells, is introduced. In Section 3, a cantilever plate
model is firstly employed to demonstrate the reconstruction performance of the iDKQ4 element. Then a
wallpanel is analyzed to demonstrate the robustness for modeling complex shell structures. Finally, the
deformation of a typical aerospace thin wall structure (the composite tank) is computed with a few strain
data with the help of the iDKQ4 element. The conclusions of this study are provided in Section 4.

2 Inverse Finite Element Formulation for Thin Shells

Consistent with obtaining a flat element formulation, the inverse shell element can also be regarded as a
superposition of a plate-bending element and a membrane element. In this paper, the four node plane stress
(as shown in Fig. 1a) element and the DKQ plate bending element based on discrete Kirchhoff theory [22] (as
shown in Fig. 1b) are selected and add them together to get the inverse shell element iDKQ4 (as shown in
Fig. 1c). There are six degrees-of-freedom (DOFs) at each node, as shown in Fig. 1c, where u and v are in
plane translations; w is transverse deflection; hx and hy are bending rotations, and hz is in-plane rotation. Due
to inclusion of drilling rotations, the adaptability of iDKQ4 element to complex structures is greatly
enhanced. Furthermore, the transverse shear is neglected in Kirchhoff–Love shell theory which reveals
that the shear locking can be completely avoided.

The 4-node membrane element with drilling DOFs is derived by combining the in-plane displacements
using Allman-type interpolation functions [23,24] with the standard bilinear independent normal (drilling)
rotation fields.

Figure 1: (a) The plane stress element (b) the DKQ plate bending element (c) the iDKQ4 element
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u ¼
X4
i¼1

Niuiþ
X4
i¼1

Lihzi (1)

v ¼
X4
i¼1

Nivi þ
X4
i¼1

Mihzi (2)

where N is the standard bilinear isoparametric function, and L and M are the shape functions that define the
interaction between the drilling rotation fields and the displacement of the element membrane. Details of the
formulation can be found in the original literature.

At the four corner nodes, two bending rotations hx, hy are the derivatives of the displacement w.

hxi ¼ w;yi

hyi ¼ �w;xi
(3)

Therefore, these kinematic variables are related using the shape functions developed by Batoz for DKQ
element [22]. These interpolations are given as

hx ¼
X4
i¼1

Hx
4i�3wi þ

X4
i¼1

Hx
4i�2hxi þ

X4
i¼1

Hx
4i�1hyi (4)

hy ¼
X4
i¼1

Hy
4i�3wi þ

X4
i¼1

Hy
4i�2hxi þ

X4
i¼1

Hy
4i�1hyi (5)

From the strain-displacement relationship of linear elastic theory, we can know that

exx ¼ @u

@x
þ z

@hy
@x

(6)

eyy ¼ @v

@y
� z

@hx
@y

(7)

cxy ¼
@v

@x
þ @u

@y
þ z

@hy
@y

� @hx
@x

� �
(8)

cxz ¼ cyz ¼ 0 (9)

It should be noted that the plane stress assumption rzz means that the transverse-normal strain ezz has no
contribution to the strain energy.

The generalized strains vector consisting of membrane strain e and bending strain k can be
defined as

e1 e2 � � � e6f g¼ e; kf gT (10)

where

e ¼ e1; e2; e3½ � ¼ B1ue;B2ue;B3ue
� �

(11)

j ¼ e4; e5; e6½ � ¼ B4ue;B5ue;B6ue
� �

(12)

where the node displacement vector of iDKQ4 element can be expressed as ue ¼ ½ue1; ue2;ue3; ue4�, and each
node contains six degrees of freedom uei ¼ ½ui; vi;wi; hxi; hyi; hzi�T (i = 1,…,4). The matrices B contain
derivatives of the shape functions, and the explicit expressions are as follows:
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Bi ¼ Bi
1

Bi
2 Bi

3
Bi
4

� �
(13)

B1
j ¼ Nj;x 0 0 0 0 Lj;x½ � (14)

B2
j ¼ 0 Nj;y 0 0 0 Mj;x½ � (15)

B3
j ¼ Nj;y Nj;x 0 0 0 Mj;x þ Lj;y½ � (16)

B4
j ¼ 0 0 Hx

4 � j � 3;x Hx
4 � j � 2;x Hx

4 � j � 1;x 0
� �

(17)

B5
j ¼ 0 0 Hy

4 � j � 3;y Hy
4 � j � 2;y Hy

4 � j � 1;y 0
� �

(18)

B6
j ¼ ½ 0 0 Hy

4 � j � 3;x þ Hx
4 � j � 3;y Hy

4 � j � 2;x þ Hx
4 � j � 2;y H

y
4 � j � 1;x þ Hx

4 � j � 1;y 0� (19)

In order to decouple plane strain and curvatures, the strain rosettes need to be attached to the top and
bottom surfaces of the element as shown in Fig. 2. The sensor can use traditional strain gauges or fiber-
optic sensor such as distributed optical fiber, and optical fiber can collect a large amount of strain data as
input for iFEM calculation, which make it more attractive.

The counterpart of membrane strains and bending curvatures calculated from Eqs. (11) and (12) can
obtain by using the following formula with measured strain data:

eei �
ee1
ee2
ee3

2
64

3
75 ¼ 1

2

eþxx þ e�xx
eþyy þ e�yy
cþxy þ c�xy

8><
>:

9>=
>; (20)

kei �
ee4
ee5
ee6

2
64

3
75 ¼ 1

2h

eþxx � e�xx
eþyy � e�yy
cþxy � c�xy

8><
>:

9>=
>; (21)

where eþxx eþyy cþxy
� �T

i
and e�xx e�yy c�xy

� �T

i are the measured strains on the upper and lower surfaces
respectively with the superscripts ‘+’ and ‘−’ denoting the quantities that correspond to the top and
bottom surface locations, respectively.

For an individual inverse element, the error functional with respect to DOFs of the entire discretization
can be expressed as:

Figure 2: Discrete surface strains measured on the iQS4 element
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feðueÞ ¼
X6
k¼1

wk ekðueÞ � eek
�� �� (22)

where ekðueÞ and eek represent the theoretical strain and the corresponding measured values at a given point
respectively. The error function consist with membrane strain, bending strain only which is consistent with
the classical plate theory.

The squared norms expressed in Eq. (22) can be written in the form of the normalized
Euclidean norms:

ekðueÞ � eek
�� �� ¼ 1

n

Z
Ae

Xn
i¼1

½ekðiÞðueÞ � eekðiÞ�2dAe (23)

where Ae represents the area of the middle surface of the element and n is the number of measuring points in
the element. wk is the weight coefficient that represents the strength of the constraint between the theoretical
strain and its corresponding measured value. The specific form is defined by Eq. (24).

wkf g ¼ k1; k2; k3; 4h
2k4; 4h

2k5; 4h
2k6

� �
(24)

If all the values in eef g can be obtained, the weight coefficient (k = 1,…, 6) is set to 1, otherwise, the
corresponding weight coefficient is set to a small value, for example, 10�5.

Minimizing the error function with respect to the unknown nodal displacement DOF gives rise to

@feðueÞ
@ue

¼ keue � f e ¼ 0 ) keue ¼ f e (25)

where ke is only a function of the measuring position. Once the measuring point position is determined, it is
determined. fe is a function of the measuring position and the measured strains, which are updated in real-
time with the measured strains. The variational statement given in Eq. (25) results in a linear system of
equations that can be solved for the unknown DOF provided that appropriate displacement boundary
conditions have been imposed.

3 Numerical Validation

3.1 A cantilever Plate under Static Transverse Force Near Free Tip
Firstly, the cantilever plate model is used to verify the accuracy of iDKQ4 element. As shown in Fig. 3,

the dimension of the cantilever plate is 254 × 76.2 × 3.175 mm. The material is aluminium alloy (with
Young’s modulus of 73.084 GPa, Poisson’s ratio of 0.33 and density of 2700 kg/m3). A concentrated
force of 25.728 n is applied along the negative direction of the z-axis near the tip. Bogert et al. [11]
initially analyzed the plate and then tested it in the mechanics laboratory. Then, Tessler et al. [25]
analyzed this structure using iFEM method with iMIN3 element. Kefal et al. [19] also adopted iFEM
method to reconstructed the displacement field of this structure with iQS4 element to verify its bending
performance.

In order to validate the bending capability of iDKQ4 element, the cantilever plate is discretized with
28 inverse elements to ensure that the position of the strain-rosette is coincident with the selection in the
work by Tessler and Kefal. As depicted in Fig. 4, each rectangular element has a single strain rosette and
the strain rosettes are placed at the centroids of each element.

High-fidelity FEM analysis is performed with ABAQUS, a commercially available finite element
software, to generate the strain data as input of iFEM calculation. Moreover, The displacement field
calculated by FEM analysis can also be used as a benchmark to examine the reconstruction accuracy of
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iFEM. Contour plots for the transverse displacement are compared between the iFEM and high fidelity FEM
analyses as shown in Fig. 5. It can be seen that the transverse displacement field reconstructed by iFEM is
basically consistent with that calculated by FEM. The percent difference between the iFEM and FEM
predictions for the maximum deflection is only 0.01%; this result is slightly batter than the predictions of
Tessler and Kafel.

Figure 3: Cantilever plate under transverse force applied near free tip

Figure 4: Discrete cantilever plate model with iDKQ4

Figure 5: Transverse displacement field derived from (a) direct FEM analysis (b) iFEM analysis
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3.2 A Thin-Walled Cylinder Model
In Section 2, the calculation accuracy of the iDKQ4 element is verified by a simple cantilever plate

model. However, structures with complex topology are very common in practical engineering
applications. Therefore, in this section, the robustness and adaptability of the iDKQ4 element in modeling
complex shell structure are verified with a quarter of a thin-walled cylinder shell (as shown in Fig. 6).
The diameter of the cylinder shell is 1 m, the height is 1.5 m and the uniform thickness is 3 mm. The
cylinder is made of aluminium alloy having an elastic modulus of 73.084 GPa and the Poisson’s ratio of
0.33. The cylinder shell adopts the boundary condition that the lower edge is fixed, and 100N
concentrated force is applied at two positions of the upper edge, respectively.

The finite element convergence is studied to establish an exact reference solution of the problem. In
FEM calculation, 930 rectangular S4R elements are used to discretize the cylindrical shell uniformly. In
order to facilitate the transmission of strain data, iFEM calculation adopts the same discretization with
FEM analysis. As shown in Fig. 7, each element has two strain rosettes, one on the centroid of the top
surface and the other one on the centroid of the bottom surface resulting 1860 strain rosettes in total.

Figure 6: Schematic diagram of cylindrical shell model

Figure 7: Discretization of cylindrical shell using 960 iDKQ4 elements with strain rosettes per each element
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The displacement field calculated by direct FEM analysis and the reconstructed result by iFEM are
shown in Fig. 8. It can be seen from the figure that the calculation results of FEM and iFEM are
graphically indistinguishable; The reconstruction error of iFEM in Ux direction is only 0.97%; The
reconstruction error of iFEM in Uy direction is only 0.98%. Although the calculation results are
satisfactory, too many strain rosettes are used. Therefore, it is worthful to explore the accuracy of
reconstruction of iFEM with sparse strain data (402 strain rosettes are used as shown in Fig. 9).

In Fig. 10, the contour plots for the Ux and Uy displacement are depicted for the iFEM analyses. And the
corresponding FEM analysis result is depicted in Figs. 8a and 8b. It can be seen that iFEM can accurately
reconstruct the deformation tendency of the structure even with a few of strain data. The prediction error
of the maximum displacement in Ux direction is 4.52%; The prediction error of the maximum
displacement in Uy direction is 4.61%. The iFEM predictions remain sufficiently accurate even with
sparse strain-rosette data.

Figure 8: Displacement field in x direction calculated by (a) FEM (b) iFEM, displacement field in
y direction calculated by (c) FEM (d) iFEM
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3.3 Shape Sensing of Composite Tank
Although having numerous advantages of high specific strength, high specific modulus, corrosion

resistance and designable performance, the composite is prone to damage such as delamination and
debonding, which often is invisible and has a fatal impact on the bearing capacity of the tank. The
robustness and adaptability of the improved inverse finite element method/iDKQ4 element are verified by
cantilever plate and cylindrical shell structures. In this section, the composite tank is investigated with the
improved iFEM algorithm.

The geometric dimensions of the tank are shown in Fig. 11. The height of the straight barrel section
is 458 mm and the diameter is 3338 mm; The section of the head section is an ellipse with a semi-major
axis of 1669 mm and a semi-minor axis of 1043.12 mm. The radius of the upper and lower manholes is
500 mm. The reinforced composite tank adopts a symmetric stacking sequence, corresponding to

Figure 9: Discretization of cylindrical shell using 960 iDKQ4 elements with strain rosettes located within
201 select elements

Figure 10: Displacement field in (a) Ux (b) Uy direction obtained by iFEM inversion
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½0=�45=90=�45=90=�45=0�s, with the thickness of each layer of 0.15 mm and the total thickness of
3 mm. The material properties of the single lamina are listed in Table 1.

Figure 11: Schematic diagram of tank

Table 1: Mechanical properties of the CFRP lamina

Young’s modulus [GPa]
(E1/E2/E3)

Shear modulus [GPa]
(G12/G13/G23)

Poisson’s ratio
(v12/v13/v23)

Density [kg=m3]

135/7.579/7.579 4.49/4.49/3.2 0.32/0.32/0.49 1620

Firstly, the linear static analysis of the tank is carried out in ABAQUS using a high fidelity grid composed
of 10886 S4R shear deformation shell elements. The same grids is used for iFEM calculation and FEM
analysis. The strain calculated by FEM is used as the calculation input of iFEM, and the displacement field
obtained by FEM analysis is used to evaluate the prediction ability of iFEM. In order to avoid introducing
errors in calculating local strain field, when the input strain field is not fully defined, elements should have
a rectangular shape aligned with the input strain field direction. It is obvious that the elements of the covers
do not meet this requirement, but fortunately we do not care about the results of the metal covers. In the
first case study, the strain of all elements except covers can be obtain as presented in Fig. 12a. However, the
number of strain rosettes used is too high to be applied to practical engineering applications. In the second
case study shown in Fig. 12b, a large number of strain-rosettes are removed from elements and only the
elements on 14 circumferential paths and 15 radial paths are reserved.

To assess the global displacement, it is convenient to compute the axial displacement Ua and radial
displacement Ur:

Ua ¼ UY

Ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

x þ U2
z

q (26)
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Figs. 13a–13f presents the displacement results of FEM analysis and iFEM reconstruction. The tank
expands outward uniformly under internal pressure and the result of iFEM and FEM obtains can
accurately describe this trend. In Figs. 13a, 13b, 13d and 13e, the iFEM and FEM contour plots for Ua

and Ur are presented, showing the results that are graphically indistinguishable. The percent difference
between the iFEM and FEM solutions for the maximum values of Ua and Ur are respectively 5.85% and
1.03%. The iFEM can reconstruct the deformation of the structure relatively accurately even with sparse
strain input, as shown in Figs. 13c and 13f. The percent difference between the iFEM and FEM
predictions for the maximumUr displacement is 1.80%, whereas it is only 0.38% for maximum total rotation.

Figure 12: Discretization of tank model with strain rosettes located within (a) all elements (b) selected
elements

Figure 13: Displacement field in (a) Ua (d) Ur direction calculated by FEM and (b), (c) Ua (e), (f) Ur

direction reconstructed by iFEM
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4 Conclusion

This study proposes an improved iFEM the mathematical foundation of which is based on a least-
squares functional error embracing membrane strain and curvature to solve the shape sensing problem of
thin-shell structure. Subsequently, a new four-node quadrilateral inverse-shell element, named iDKQ4, is
developed for numerical implementation. The robustness and adaptability of the element are verified by a
cantilever plate model and a cylindrical shell model. Then, a composite tank is employed to evaluate the
iFEM/iQS4 technology for application to engineering structures. Finally, the improved iFEM/
iDKQ4 technology can be easily implemented and ready to applied for real-time structural health
monitoring of general thin plate and shell structures.
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