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ABSTRACT

In this paper, an experimental model of a horizontal cantilever beam with a rotating/oscillating attached to the
shaker for harmonic excitation at the one end and a gyrostabilizer at the other end is built to verify the equations
of the Lagrangian model. The primary focus of the study was to investigate the parameters of excitation ampli-
tude, natural frequency, rotating mass (disk mass), and disk speed of gyro that would minimize the amplitude of
the beam to identify these effects. Numerical and experimental results indicate that the angular momentum of the
gyrostabilizer is the most effective parameter in the reduction of beam displacement.
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Notation
g the gravitational acceleration
E Young’s modulus
h cantilever beam thickness
b width of the cantilever beam
L length of the cantilever beam
I geometrical moment of inertia of the cantilever beam
It mass moment of inertia of free end of the cantilever beam
c equivalent coefficient of torsion damping of bearing on gyro
cb equivalent coefficient of dissipation of cables on beam
k stiffness of torsion spring of gyro
m mass of rotating disk
Mt the weight of the all gyro mechanism excluding flywheel
T total kinetic energy of system
Tgyro the kinetic energy of gyro
D total dissipation energy of system
V total potential energy of system
(X, Y, Z) the coordination in the world coordination system
u the horizontal displacement of beam at the free end
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v the vertical displacement of beam at the free end
θ the precession angle of gyro
φ the orientation angle of beam
s arc-length of beam
ψ the first mode of the shape function of beam
z the harmonic base excitation
z0 the amplitude of the base excitation
ω the angular frequency of base excitation
ωn the natural frequency of beam
Ip the rotary inertia of disk
Io the mass moment of inertia of disk
Ifx, Ify, Ifz the principal moments of inertia of gyroscope (Taken at the center of mass of the gimbal)
Ω the rotational velocity of disk

1 Introduction

The application of rotating and oscillating types of vibration control systems can be found in several
systems such as space structures, robotics, aircraft, ships, etc. [1–4]. Due to a wide variety of uses, several
studies and investigations have been performed on non-linear dynamics of rotating and oscillating tip mass
systems used as vibration control for the past several years. Studies are still continuing with new published
materials on this interesting and multi parameter topic of vibration control [5–7]. Hence, several studies
have been performed both theoretically and experimentally on non-linear dynamics of a beam with rotating
and oscillating tip mass under variations of parameters subject to sinusoidal and random excitation. Most
common used in these studies is the Bernoulli-Euler beam model, which includes a vertical cantilever beam
with a concentrated tip mass at one end [8]. However, Timoshenko theory is considered to be an
improvement since shear deformation and rotational inertia of the beam are also taken into account [9,10].

Currently, a large number of researchers remain focused on flexible structures with passive dynamic
vibration absorbers such as rotating mass (flywheel), beam, liquid, pendulum, etc., used for several
engineering applications [11–14]. The passive vibration absorbers to be effective and desirable as a vibration
control device due to its simplicity and lower cost. The dynamic behavior of a beam–tip mass-pendulum
system was investigated to determine the autoparametric interaction between the beam and pendulum
frequencies effecting beam displacement under sinusoidal excitation [15]. An orientable flexible beam with a
tip mass and passive pendulum attached to the tip mass was researched under sinusoidal excitation
experimentally [16]. Also, the passive vibration absorber is activated by the structural motion without any
external input to reduce displacement which in turn makes the system beneficial [17]. Although having
desirable results, passive vibration control apparatuses have their limitations and require activation energy
from the system and requires a starting oscillation in order to provide energy for oscillating the pendulum.
This limitation of passive vibration control systems have lead the need and development of active vibration
control systems, hence the area of high interest and research work has been concentrated towards active
systems. However, active control systems require external energy/power input to operate the vibration control
apparatus, hence active vibration absorbers are more complex, unreliable and un-robust due the requirement
to control internal hardware such as sensors and control equipment that are not present in passive systems [18].

Meanwhile, several researches have been investigating different types of vibration control apparatuses in
range from simple to complex; for instance the use of gyrostabilizers, being a complex yet effective vibration
control apparatus is used for several engineering applications such as stabilization of wheeled vehicles
[19,20] and wind induced vibrations [21]. The apparatus including the gyrostabilizer used in this study
supplies the external energy requirement by an electric motor in a rotating gimbal to the flywheel (disk
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mass). The remaining energy provided to the apparatus comes from the momentive motion of gyrostabilizer and is
therefore classified as a passive control apparatus under several engineering studies and applications. The
gyrostabilizer is effective for bending moments rather than shear forces due to the utilization of gyroscopic
moment to reduce or eliminate undesirable motion [22–24]. Therefore, compared to conventional active mass
dampers for vibration suppression, the gyrostabilizers are much effective in a larger frequency range and
represent a weight and volume saving due to the angular momentum of the gyroscope [11].

For the modeling of antennas, robotic manipulators, appendages of aircrafts, spacecrafts or vehicles, etc.,
beams carrying a tip mass with (or without) rotary inertia can be used. In this study, the vibration control
results of a horizontal cantilever beam with a rotating/oscillating tip mass (gyrostabilizer) at one end and
harmonic excitation at the other end has been investigated through theoretical and experimental methods.
Parameters of excitation amplitude, natural frequency of the beam tip mass system, rotating mass (disk
mass) and disk speed that would minimize the amplitude of the beam were identified alongside the
effects to the system. The apparatus included an oscillated mass connected to the free end of the beam
with a small ball bearing and disk with DC electrical motor mounted to the oscillating tip, while the other
end was mounted to a shaker.

2 Experimental Set-Up

Experimental studies were performed on an apparatus set-up in the Mechanical Engineering Department
laboratory at Texas Tech University as seen in Fig. 1. For accurate results both physical properties of the
apparatus as well as mechanical properties were optimized as show in Tab. 1. On the experimental
apparatus the gyrostabilizer is mounted to one end of the cantilever beam, while the other end of the
cantilever beam is mounted to the shaker; this provides vertical displacement in harmonic form with
different amplitudes and forcing frequencies to the cantilever beam.

The experimental apparatus set-up consists of a waveform generator (Siglent SDG1025), a vertical/
horizontal shaker (Calidyne Inc., Model A88), two accelerometers (TE Connectivity, 4623M3-010-040,
4600-010-060) and MATLAB software (National Instruments, USB 6343) as seen in a schematic diagram
form shown in Fig. 2. The excitation waveform generator was used to set up parameters such as forcing
amplitude, range of forcing frequency of the cantilever beam system and linear sweep rate of forcing
frequency as small as 0.001 Hz/s. The sweep rate of 0.001 Hz/s was kept stable for all forcing frequency
ranges during each sweeping frequency experiment. The shaker provided forcing amplitude and forcing

Figure 1: Photography of the experimental system

SV, 2021, vol.55, no.4 283



frequency coming from the waveform generator to the end of the cantilever beam connected to the shaker.
Accelerometers were used to measure the forcing excitation amplitude for closed loop control and
displacement of the cantilever beam next to the tip mass location. MATLAB software collected cantilever
displacement data in graphical form with respect to sweeping forcing frequency in real time.

Table 1: Physical properties of the experimental system elements

Symbol Numerical values Description

E 210e9 N/m2 Young’s modulus

h 0.0016 m Cantilever beam thickness

b 0.0254 m Width of the cantilever beam

g 9.81 m/s2 Gravitational acceleration

L 0.312 m, 0.505 m Length of the cantilever beam

I 8.670e−12 m4 Geometrical moment of inertia of the cantilever beam

cb 0.05 N.s/m Equivalent coefficient of dissipation of cables on beam

It 5.4242e−04 kg.m2 Mass moment of inertia of free end of the cantilever beam

c 0.007 N.m.s/rad Equivalent coefficient of torsion damping of bearing on gyro

k 5e−05 N.m/rad Stiffness of torsion spring of gyro

m 0.0263 kg, 0.0344 kg Mass of rotating disk

r 0.0196 m Radius of disk

Mt 0.128 kg The weight of the all gyro mechanism excluding flywheel

Ip 1.334e−5 kg.m2 Rotary inertia of disk

Io 6.670e−6 kg.m2 Mass moment of inertia of disk

Ifx 12e−4 kg.m2 Mass moment of inertia of gyroscope at x-direction

Ify 6e−4 kg.m2 Mass moment of inertia of gyroscope at y-direction

Ifz 7e−4 kg.m2 Mass moment of inertia of gyroscope at z-direction

Ω 0–25000 rpm Rotating speed of disk

Figure 2: Schematic diagram of the experimental system
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Experimental studies were performed for different parameters such as length of the cantilever beam
system, rotating mass, rotating speed of the mass and forcing amplitude. In order to determine the
relationship between varying parameters, one parameter was changed and the rest of were kept stable for
each experimental run.

3 Mathematical Model

The Euler-Bernoulli beam theory based on thin cantilever beams was used to obtain governing equations
of motion of the cantilever beam with a tip mass. Shear deformation and rotational inertia of the beam were
neglected from the governing equations due to thin cantilever beam assumption (L/h > 20). In the governing
equation, the parameters of the cantilever beam mass density ρ, cross-sectional area A, Young’s modulus E
and moment of inertia.

The mathematical model of the cantilever beam with tip mass (gyrostabilizer) was derived through the
displacement model of the cantilever as shown in Fig. 3. As seen from the Figure, the displaced cantilever
beam with length (L) and gyrostabilizer mass (Mt) at the free end is subject to a harmonic base excitation
(z(t)) from the opposing end, which is attached to the shaker. In the equation models used for these
experiments, the denotations are as follows: arc-length (s), harmonic excitation (z = z0cos(ωt)) with
varying forcing frequencies (ω) and forcing amplitudes (z0). Due to the beam displacement, horizontal
and vertical displacements at the free end and orientation angle were denoted as (u), (v) and (φ), respectively.

The gyrostabilizer mass (Mt) has a rotating mass (m) within the structure consisting of a DC electrical
motor which controls rotational speed of the mass (m) about the geometric axis as shown in Fig. 4. Rotational
(angular) speed of the mass (m) and oscillation of the gyrostabilizer mass (Mt) are denoted by Ω and θ,
respectively. The ball bearing shows resistance from the torsional spring (kθ) and damper (c θ̇) effect due
to the gyrostabilizer mass oscillation generated by rotational mass.

The kinetic energy equation of the cantilever beam with gyrostabilizer tip mass can be written in the
form shown below in Eq. (1), derived from the free-body motion diagram in Fig. 3. In the equation,
u(s, t) and v(s, t) indicate displacements along the inertial directions of the beam with respect to arc-
length and time (dot is indicative of derivative with respect to time t).

Figure 3: Model of the displaced form of cantilever beam with gyrostabilizer tip mass

Figure 4: Gyrostabilizer model

SV, 2021, vol.55, no.4 285



T ¼ 1

2
qA

ZL

0

½ð _vðs; tÞ þ _zðtÞÞ2 þ _uðs; tÞ2�dsþ 1

2
Mt½ð _vðs; tÞ þ _zðtÞÞ2 þ _uðs; tÞ2� þ 1

2
It _’

2þTgyro (1)

The kinetic energy of the gyrostabilizer can be expressed in the form of Eq. (2), derived from the free-
body motion diagram in Figs. 3 and 4.

Tgyro ¼ 1

2
m½ð_vðs; tÞ þ _zðtÞÞ2 þ _uðs; tÞ2� þ 1

2
I0½ _h2 þ ð _’ cos hÞ2� þ 1

2
Ipð�þ _’ sin hÞ2

þ 1

2
Ifxð _’ cos hÞ2 þ 1

2
Ifyð _’ sin hÞ2 þ 1

2
Ifz _h

2
(2)

The potential energy of the cantilever beam with gyrostabilizer can be defined in the form of Eq. (3).

V ¼ 1

2
EI

ZL

0

qðs; tÞ2ds� qAg
ZL

0

ðzðtÞ þ vðs; tÞÞds� ðMt þ mÞðzðtÞ þ vðs; tÞÞg þ 1

2
kh2 (3)

The dissipation function (D) is defined in the form of Eq. (4).

D ¼ 1

2
c _h2þ 1

2
cb _v

2 (4)

Orientation angle of the beam is defined in the form of Eq. (5) [25–27] which indicates a partial
derivative with respect to arc-length (s) along the beam.

qðs; tÞ ¼ @’

@s
¼ ’0; where sin’ ¼ v0 and cos’ ¼ 1� u0 (5)

The displacement of the beam is expressed in Eq. (6) [25,26] with mathematical manipulation and
eliminating terms of higher order.

uðs; tÞ ¼ 1

2

Zs

0

ðv0ð�; tÞÞ2d� and u0 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v02

p
� 1

2
v02 (6)

From Eq. (5) the following equation are obtained:

’ðs; tÞ ¼ sin�1 v0 � v0 þ 1

6
v03 (7)

Derivative of Eq. (7) is expressed as:

qðs; tÞ ¼ ’0 ¼ v00

cos
¼ v00ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p � v00 1þ 1

2
v02

� �
(8)

Beam deformation with respect to arc-length and time can be expressed by accepting the first mode of
the shape function ψ(s) [27] and by acknowledging the tip mass being significantly larger than the beam
mass. By using binomial expansion and mathematical manipulation, Eqs. (6)–(8) have been expanded
into the following equations:

vðs; tÞ ¼ vðtÞwðsÞ; where wðsÞ ¼ 1� cos
ps
2L

� �
(9)
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If w0ðLÞ ¼ p
2L ¼ G5; therefore, the beam displacement, velocity and acceleration at the tip of the beam

can be written in the form of Eq. (10).

’ ¼ vG5 þ 1

6
ðvG5Þ3

_’ ¼ _vG5 þ 1

2
v2 _v G3

5

€’ ¼ €vG5 þ 1

2
ðv2€vþ 2v _v2ÞG3

5

(10)

Therefore, the kinetic energy of the system can be defined by using the above equations, while the
transverse displacement (v) at the free end can be expressed as in Eq. (11).

T ¼ 1

2
qA½ G1 _v

2 þ 2G2 _v_zþ _z2Lþ G3ðv _vÞ2� þ 1

2
ðMt þ mÞ½ð _vþ _zÞ2 þ G2

4ðv_vÞ2� þ
1

2
It G5 _vþ 1

2
G3

5v
2 _v

� �2

þ 1

2
I0½ _h2 þ ð _’ cos hÞ2� þ 1

2
Ipð�þ _’ sin hÞ2 þ 1

2
Ifxð _’ cos hÞ2 þ 1

2
Ifyð _’ sin hÞ2 þ 1

2
Ifz _h

2

(11)

The potential energy of the system in Eq. (3) can be defined in terms of the transverse displacement (v) at
the free end can be expressed as in Eq. (12).

V ¼ 1

2
EI G6v

2 þ G7v
4 þ 1

4
G8v

6

� �
� qAgðzLþ G2vÞ � ðMt þ mÞgðzþ G9v Þ þ 1

2
kh2 (12)

Constants G1 through G9 used in the above equations can be expressed as in Eq. (13).

G1 ¼
ZL

0

ðwðsÞÞ2ds ¼ L
3

2
� 4

p

� �
; G2 ¼

ZL

0

wðsÞds ¼ L

p
ðp� 2Þ;

G3 ¼
ZL

0

Zs

0

ðw0ð�ÞÞ2d�
0
@

1
A

2

ds ¼ p2

384L
ð2p2 � 9Þ; G4 ¼

ZL

0

ðw0ðsÞÞ2ds ¼ p2

8L

G5 ¼ w0ðLÞ ¼ p
2L

; G6 ¼
ZL

0

ðw00ðsÞÞ2ds ¼ p4

32L3
G7 ¼

ZL

0

ðw0ðsÞw00ðsÞÞ2ds ¼ p6

512L5

G8 ¼
ZL

0

ðw0ðsÞÞ4ðw00ðsÞÞ2ds ¼ p8

4096L7
; G9 ¼ wðsÞ ¼ 1

(13)

3.1 Equation of Motion of the Beam at the Free End
Energy method has been used to obtain equations of motion for the cantilever beam with gyrostabilizer

tip mass. The kinetic energy (Eq. (11)), dissipation function (Eq. (4)) and potential energy (Eq. (12)) were
substituted into Lagrange’s Equation (Eq. (14)) and after mathematical manipulation, the beam equation
has taken the following form as seen in Eq. (15):

d

dt

@T

@ _v

� �
� @T

@v
þ @D

@ _v
þ @V

@v
¼ 0; (14)
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(15)

3.2 Equation of Motion of Gyrostabilizer
The energy method was also used to obtain equations of motion for the gyrostabilizer. The kinetic

energy (Eq. (11)), dissipation function (Eq. (4)) and potential energy (Eq. (12)) were substituted into
Lagrange’s Equation (Eq. (16)) and after mathematical manipulation, the gyrostabilizer equation has taken
the following form as seen in Eq. (17):

d

dt

@T

@h_

� �
� @T

@h
þ @D

@h_
þ @V

@h
¼ 0; (16)

ðI0 þ IfzÞ€h� 1

2
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2
v2 _v G3

5
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sin 2h

� 1
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ðIfy � IfxÞ _vG5 þ 1

2
v2 _v G3

5

� �2

sin 2h� Ip� _vG5 þ 1

2
v2 _v G3

5

� �
cos hþ c _hþkh ¼ 0

(17)

4 Results and Discussion

Theoretical and experimental studies were performed for varying parameters such as the natural
frequency of the cantilever beam system, rotating mass, rotating speed of the mass and forcing amplitude.
In order to accurately determine the relationship between the parameters, one parameter was changed as
the rest were kept stable for each individual test.

4.1 Frequency Response Curves
Cantilever beam with gyrostabilizer system frequency response curves were obtained theoretically and

experimentally for the following parameters of natural frequency of the system (ωn), rotating mass (m),
rotating mass speed (Ω), and forcing amplitude z(t). All theoretical and experimental results were plotted
graphically with respect to forcing frequency vs. beam tip-mass amplitude and rotating mass speed versus
maximum beam amplitude at tip.
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Theoretical and experimental frequency response curves of the beam with gyrostabilizer tip-mass
system were plotted graphically as seen in Figs. 5 and 7 with constant parameters of the system natural
frequencies (ωn = 2.12 Hz and ωn = 4.13 Hz), forcing amplitude (z0 = 1.3 mm) and rotating mass (disk
mass) (m = 0.0344 kg) and variable rotating mass speeds of Ω = 0, 11250 and 25000 rpm. The maximum
amplitude of the system was observed at the resonance frequency when the rotating mass speed was
equal to zero (non-active gyrostabilizer); as the rotational mass was initiated with speed (active
gyrostabilizer), the maximum amplitude of the system was dramatically reduced, while the natural
frequency of the system was increased (shifted to the right) due to the inertia moment of the
gyrostabilizer. Hence, theoretical and experimental results concluded in agreement with all parametric
factors displayed in Figs. 5 and 7.

Figure 5: Theoretical and experimental frequency response curves of the beam with respect to parameters of
Ω = 0 rpm, 11250 rpm and 25000 rpm and constant parameters of z0=1.3 mm, m = 0.0344 kg and ωn=2.12 Hz
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Figure 6: Disk speed vs. beam maximum displacement with parameters of ω = 2.12 Hz, m = 0.0344 kg and
z0 =1.3 mm
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The relationship between rotational mass speed and maximum amplitude of the system (amplitude at
resonance frequency) with two different natural frequencies of ωn = 2.12 Hz and 4.13 Hz are shown in
Figs. 6 and 8, respectively. As seen from both figures, the amplitude of the system was significantly
reduced up to a certain rotational mass speed by the gyrostabilizer, however the amplitude of the system
was not highly reduced after a certain speed of the rotational mass such as 12500 rpm with a natural
frequency of 2.12 Hz and 25000 rpm with a natural frequency of 4.13 Hz. These two rotational speeds
can be described as the optimum rotational speeds with respect to their related natural frequencies due to
the amplitude of the system not being effected significantly beyond these points. Both theoretical and
experimental results concluded in agreement with results displayed in Figs. 6 and 8.

Figs. 7 and 9 represent the frequency response curves of different disk masses (m = 0.0344 kg, 0.0263
kg, respectively) and varying rotational speeds of Ω = 0, 11250, 25000 rpm. Figs. 8 and 10 also represent the

Figure 7: Theoretical and experimental frequency response curves of the beam with parameters of Ω = 0
rpm, 11250 rpm, 25000 rpm, z0 = 1.3 mm, m = 0.0344 kg and ωn = 4.13 Hz
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Figure 8: Disk speed vs. beam maximum displacement with parameters of ωn = 4.13 Hz, m = 0.0344 kg and
z0 =1.3 mm
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frequency response curves of different disk masses at varying rotational speeds (Ω = 0–30000 rpm) of disk
masses of m = 0.0344 and 0.0263 kg, respectively. The results indicate that the displacement response is
effectively reduced at the first mode of resonant frequency; by increasing the disk mass or disk velocity
the vibration in the first mode resonant frequency was reduced, which demonstrates that the vibration
attenuation was mainly caused by the angular momentum of the gyroscope.

Theoretical and experimental frequency response curves of the beam with gyrostabilizer system were
obtained with constant parameters of the system natural frequency (ωn=4.13 Hz), forcing amplitude (z0=1.3
mm) and rotating mass (m = 0.0263 kg) and varying disk speeds of Ω = 0, 11250 and 25000 rpm as seen in
Fig. 9. The only difference between Figs. 7 and 9 are the disk mass being 0.0344 kg in Fig. 7 and 0.0263 kg
in Fig. 9. The reduction in disk mass showed less effect on reducing the amplitude of the system when
compared to the higher disk mass due to the reduced inertia moment of the gyrostabilizer tip-mass.

Figure 9: Theoretical and experimental frequency response curves of the beam with parameters of Ω = 0
rpm, 11250 rpm, 25000 rpm, z0 = 1.3 mm, m = 0.0263 kg and ωn = 4.13 Hz
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Figure 10: Disk speed vs. beam maximum displacement with parameters of ωn = 4.13 Hz, m = 0.0263 kg
and z0 =1.3 mm
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The gyrostabilizer with lower disk mass also reduced beam amplitude sıgnificantly as seen from Fig. 10,
however the amplitude of the beam was not significantly reduced after speeds of 20000 rpm. The only
difference between Figs. 8 and 10 are the disk mass being 0.0344 kg in Fig. 8 and 0.0263 kg in Fig. 10.
Reducing the disk mass was still effective in reducing the beam amplitude, but it caused an increase in
the optimal speed of the disk due to decreasing the inertia moment of the gyrostabilizer as seen in Fig. 10.

4.2 Results for Different Excitation Amplitude
Theoretical and experimental frequency response curves of the beam system with constant parameters of

ωn = 4.13 Hz, m = 0.0344 kg andΩ = 11250 rpm were obtained with variable parameters of forcing amplitude
z0=0.6 mm, 1.3 mm and 2.0 mm as seen in the Fig. 11. Graphical results in show that an increased forcing
amplitude also amplified the maximum displacement of the beam amongst other parameters.

5 Conclusion

Equations of motion of a cantilever beam with gyrostabilizer tip-mass at one end and harmonic base
excitation at the other end have been obtained in this paper. The experimental apparatus was built strictly
to specifications listed in Tab. 1 in order to verify theoretical results. All investigations concluded that
theoretical and experimental results were in agreement and theoretical results were verified. In which, the
following conclusions are found:

� The natural frequency of the beam gyrostabilizer system is significantly increased by disk speed and is
fairly effected by the mass of the disk. Higher disk speed of the gyrostabilizer in turn increased the
stiffness of the beam caused by the moment of inertia of rotating disk.

� The investigation clearly shows the amplitude of beam at the free end is highly influenced by the disk
speed of the gyrostabilizer and is fairly effected by the mass of the disk. Disk speed exponentially
reduced the amplitude of the system. However, it is observed that disk speed of the gyrostabilizer
becomes minimally effective on amplitude after the disk speed of Ω = 20000 rev/min. The gyro
reduces the displacement amplitude of beam nearly by 100% by using the disk speed of Ω =
30000 rev/min.

Figure 11: Theoretical and experimental frequency response curves of the beam with different excitation
amplitudes (z0) with stable parameters of m = 0.0344 kg and Ω = 11250 rpm
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