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ABSTRACT

In this article, the main objective is to employ the homotopy perturbation method (HPM) as an alternative to
classical perturbation methods for solving nonlinear equations having periodic coefficients. As a simple example,
the nonlinear damping Mathieu equation has been investigated. In this investigation, two nonlinear solvability
conditions are imposed. One of them was imposed in the first-order homotopy perturbation and used to study
the stability behavior at resonance and non-resonance cases. The next level of the perturbation approaches
another solvability condition and is applied to obtain the unknowns become clear in the solution for the first-
order solvability condition. The approach assumed here is so significant for solving many parametric nonlinear
equations that arise within the engineering and nonlinear science.
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1 Introduction

In wide engineering and physical applications, the nonlinear oscillators exist. Also, the parametric
excitation takes place when a modifying physical parameter, such as a moment of stiffness or inertia, acts
in a forcing model. This excitement yields a variable time coefficient, commonly an oscillation, in the
governing system of motion. On the other hand, an external excitation outcome acting as an
inhomogeneous part in the model of motion. Furthermore, minor parametric excitement produces a major
response when the frequency of the excitement is far from the fundamental resonance, as shown in [1–5].

A classical example of parametric excitation is the swinging pendulum with oscillating support. The
equation of motion describing the model is the well-known Mathieu equation. In 1868 Mathieu studied
the vibration of elliptical membranes [6]. Consequently, he introduced the Mathieu equation that is an
example of a linear differential equation (LDE) with parametric excitation. The Mathieu equation has
application to the dynamics of passive towed arrays in submarines, as well as serving as a useful model
for many interesting problems in physics, biology, applied mathematics, and engineering mechanics fields
[7]. For some of the non-linear variations of the Mathieu, the equation has been presented in [8,9].
Moreover, the oscillations of the mechanical systems under the action of an oscillatory external force may
reveal a Duffing problem, for instance, see references [10–14]. Recently, Moatimid [15] attempted to
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study the stability analysis of a parametric Duffing oscillator. In this investigation Moatimid showed that the
cubic stiffness parameter and the damped parameter have a destabilizing influence, however, the parametric
and natural frequencies are of stabilizing influences.

The main target in the present work is how to achieve accurate approximate solutions of the nonlinear
oscillators with highly strong nonlinearity. In recent centuries, many analytical approaches were developed to
work out the periodic motion of nonlinear oscillators, such as the averaging method, perturbation methods,
harmonic balance method, and the generalized harmonic method. The classical perturbation procedure
depends on small parameters and chooses unsuitable small parameters that can lead to wrong solutions
[16]. Therefore, a new perturbation technique was first proposed by He et al. [17–20]. This technique is
named as the HPM, which represents a combination of the Homotopy analysis and classical perturbation
methods. It has a full promise of the traditional perturbation techniques. The major property of the HPM
is in its ability and flexibility to deal with many types of linear and nonlinear differential equations
conveniently and accurately. Further, the HPM provides us with an appropriate direction to calculate an
approximate or an analytic solution to several models arising in different fields. He [21] was built the
most two considerable steps in the criteria of the HPM with a suitable initial guess and suggested an
alternative approach to the construction of the Homotopy equation. Hence, He applied HPM to solve the
Lighthill equation [17], Duffing equation [22], and Blasius equation [23], then the idea goes through and
has been applied to solve nonlinear wave equations [17], boundary value problems [20]. Babolian et al.
[24] applied the homotopy perturbation method to solve the Burgers, the modified Korteweg-de Vries,
and regularized long-wave equations.

On the other hand, the HPM has more improved and developed by many engineers and scientists, for
instance, a couple of the Laplace transforms and Homotopy perturbation method was implemented by
El-Dib et al. [25]. The HPM with two expanding parameters that efficient for some partial nonlinear
equations was suggested by He [26] and El-Dib [27]. Also, El-Dib [28] introduced a modified version of
the HPM via the multiple scales technique. This new modification works particularly well for the
nonlinear oscillators. Furthermore, away from the traditional HPM, Ren et al. [29] made another couple
of the HPM and multiple time scales to become a powerful mathematical tool for many nonlinear
equations. They displayed that the present procedure may be further afflicted by incorporating several
known technologies. It provides solutions to nonlinear equations, whilst the classical perturbation
technique became unsuccessful. Moreover, Rabbani [30] introduced a new homotopy perturbation
approach for solving main non-linear models through the projection method. A new homotopy
perturbation technique for solving linear and nonlinear Schrödinger equations has been addressed by
Ayati et al. [31]. Further, by utilizing the HPM, a novel approach in examining the nonlinear Rayleigh-
Taylor instability is conducted by El-Dib et al. [32]. Recently, a periodic solution of the cubic nonlinear
Klein–Gordon equation using the He-multiple-scales method has been investigated by El-Dib [33]. Also,
El-Dib et al. [34] investigated the impact of fractional derivative properties on the periodic analytic
solution of the nonlinear oscillations using the HPM. Moreover, He’s-multiple-scale scale to analyze the
cubic-quintic Duffing equation has been analyzed by El-Dib et al. [35]. El-Dib [36] presented a stability
approach of a fractional-delayed Duffing oscillator. A Nonlinear Instability of a Cylindrical Interface
between two MHD Darcian flows has been studied by Moatimid et al. [37]. Further, El-Dib [38]
introduced a modified multiple scale technique for the stability of the fractional delayed nonlinear
oscillator. Besides, a periodic solution of the fractional sine-Gordon equation has been studied by Shen
et al. [39]. Elgazery [40] applied the HPM to give a periodic solution of the Newell-Whitehead-Segel
model. Further, for more very useful modification of the homotopy perturbation approach, Yu et al. [41]
introduced HPM with an auxiliary parameter for nonlinear oscillators. Also, HPM for Fangzhu oscillator
has been used by He et al. [42]. Finally, for more very useful modification of the homotopy perturbation
approach, see [43–45].
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Motivated by possibility applications in engineering, biology, and physics, which is based on studying
the solution of the damped Mathieu equation. Hence, in the present work, our objective is to apply the HPM
to linear or nonlinear equations having periodic coefficients such Mathieu equation which has been of great
importance among researchers. For the presentation of this article; the rest of the manuscript is systematized
as follows: Section 2 is introducing the HPM for the mathematical formulation. The modulation procedure, in
detail, is displayed in Section 3. The non-resonance case, stability analysis of the non-resonance case, the
resonance case of � is near x, stability analysis of the linear Mathieu equation, and stability analysis for
the nonlinear case are represented through Sections 4 to 8, respectively. Finally, the main obtained
outcomes are summarized as concluding remarks in Section 9.

2 Mathematical Formulation

To explain the proposed technique, consider the following parametric pendulum equation as an
illustrative example:

d2y

dt2
þ l

dy

dt
þ x2 þ 2q cos 2�t
� �

sin y ¼ 0; (1)

where l; x; q and � are real physical constants. l is the damping coefficient parameter, x2 is the square of
the natural frequency of the unforced system, q is the amplitude of the parametric excitation, and � is the
frequency of the parametric excitation. By using the Taylor expansion up to cubic power, the above
parametric pendulum equation becomes the following damping cubic nonlinear Mathieu equation:

d2y

dt2
þ l

dy

dt
þ x2 þ 2q cos 2�t
� �

y ¼ x2

3!
þ 2q

3!
cos 2�t

� �
y3 þ…: (2)

The homotopy perturbation method can be considered as a combination of the classical perturbation
technique and the homotopy (whose origin is in the topology [46]), but not restricted to the limitations of
traditional perturbation methods. For example, this method does require neither small parameter nor
linearization and only requires little iteration to obtain accurate solutions [17] and [18].

We define the two parts of Eq. (2) as LðyÞ and NðyÞ, where

LðyÞ ¼ d2y

dt2
þ x2y; and NðyÞ ¼ l

dy

dt
þ 2qy cos 2�t � ky3; (3)

where, k ¼ 1

3!
x2 þ 2q cos 2�t
� �

.

Construct the homotopy statement as

Hðy;qÞ ¼ LðyÞ þ qN yð Þ ¼ 0; q 2 0; 1½ �: (4)

As in He’s a homotopy perturbation method, it is obvious that when q ¼ 0, Eq. (4) becomes the
harmonic equation; LðyÞ ¼ 0: Thus,

d2y tð Þ
dt2

þ x2y tð Þ ¼ 0: (5)

According to linear differential equations theory, the general solution of Eq. (5) is expressed in terms of
two linearly independent solutions, say, eixt and e�ixt. Thus, the composite solutions may be in the form

y tð Þ ¼ Aeixt þ �Ae�ixt; (6)

where A and its complex conjugate �A are arbitrary constants of integration. Eq. (4) becomes the original
nonlinear Mathieu Eq. (2) as q ¼ 1. For arbitrary the small parameter q, the solution of Eq. (4) can be

SV, 2022, vol.56, no.1 23



sought in terms of q so that the function y tð Þ becomes y t;qð Þ. Accordingly, Eq. (4) can rewrite as

Hðy;qÞ ¼ d2

dt2
þ x2

� �
yðt; qÞ þ q l

d

dt
þ 2q cos 2�t � ky2ðt; qÞ

� �
yðt; qÞ ¼ 0: (7)

It can be noticed that the homotopy function (7) is essentially the same as (4), except for the function
y t; qð Þ, which contains embedded the homotopy parameter q. The introduction of that parameter within
the differential equation is a strategy to redistribute the periodic part between the successive iterations of
the homotopy method, and thus increase the probabilities of finding the sought solution. Thus, as q
moves from 0 to 1, the function yðt; qÞ moves from y0ðtÞ to yappðtÞ. Expand the function y t;qð Þ as a
power series in the small parameter q such that

yðt; qÞ ¼ y0ðtÞ þ qy1ðtÞ þ q2y2ðtÞ þ…; (8)

where ynðtÞ; n ¼ 1; 2; 3; … are unknowns in needs to determine. Substituting this expansion into the
homotopy Eq. (7) and equating terms with identical powers of q, leads to

q0 :
d2y0
dt2

þ x2y0 ¼ 0; (9)

q1 :
d2y1
dt2

þ x2y1 ¼ �l
dy0
dt

� 2q cos 2�t y0 þ ky30; (10)

q2 :
d2y2
dt2

þ x2y2 ¼ �l
dy1
dt

� 2q cos 2�t y1 þ 3ky20y1;…: (11)

Eq. (9) can be satisfied by

y0 tð Þ ¼ Aeixt þ �Ae�ixt: (12)

Substituting (12) into Eq. (10) gets the form

d2y1
dt2

þ x2y1 ¼ �ixl Aeixt � �Ae�ixt
� �� qA ei xþ2�ð Þt þ ei x�2�ð Þt

� �
� q�A e�i xþ2�ð Þt þ e�i x�2�ð Þt

� �
þ k A3e3ixt þ 3A2�Aeixt þ 3�A

2
Ae�ixt þ �A

3
e�3ixt

� �
:

(13)

Before analyzing the first-order problem, we must distinguish between the two cases. The case of the
frequency � doesn’t equal the nature frequency x (which is known as the non-resonance case). The
second one is the specific case when � approaches x (which is known as the resonance case).

For arbitrary frequency �, there are secular terms that appear in the Eq. (13). Elimination such secular
terms require that the arbitrary constant A be zero. This means that the expansion (8) cannot be successful to
obtain a valid solution for exciting homotopy Eq. (7).

3 The Modulation Procedure

To obtain uniform expansions for problems of this kind, the expansion (8) needs to be modified. If we
modulate the initial solution (6) so that the constant A becomes A sð Þ with s ¼ qt; such that

dA

dt
¼ q

dA

ds
and

d2A

dt2
¼ q2

dA

ds2
: (14)
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Then Eq. (12) in the modulate case becomes

Y0ðt; sÞ ¼ A sð Þu0 tð Þ þ �A sð Þ�u0ðtÞ; (15)

where

u0ðtÞ ¼ eixt and �u0ðtÞ ¼ e�ixt: (16)

Consequently, the homotopy state, Eq. (7), in the modulated form becomes

d2

dt2
þ x2

� �
Y ðt; s;qÞ þ q l

d

dt
þ 2q cos 2�t

� �
Y ðt; s; qÞ ¼ qkY 3ðt; s;qÞ: (17)

It is convenient to choose the modulated function Y ðt; s; qÞ in separated variables as

Y ðt; s; qÞ ¼ AðsÞu t; qð Þ þ �AðsÞ�u t; qð Þ: (18)

The function u t;qð Þ can be expanded as a power series in the small parameter q such that

uðt; qÞ ¼ u0ðtÞ þ qu1ðtÞ þ q2u2ðtÞ þ…; (19)

where unðtÞ; n ¼ 1; 2; 3; … are unknowns to be evaluated. If the expansion (19) is substituted into Eq. (18)
then gets

Y ðt; s;qÞ ¼ A sð Þ u0ðtÞ þ qu1ðtÞ þ q2u2ðtÞ þ…
� �þ cc:

¼ Y0 t; sð Þ þ qY1 t; sð Þ þ q2Y2 t; sð Þ þ…;
(20)

where cc. indicates to the complex conjugate for the preceding terms and

Yn t; sð Þ ¼ A sð ÞunðtÞ þ �A sð Þ�unðtÞ: (21)

It is noted that:

d

dt
Y ðt; s; qÞ ¼ d

dt
A sð Þuðt; qÞ þ cc½ � ¼ A sð Þ _uðt; qÞ þ quðt; qÞA0 sð Þ þ cc; (22)

and

d2

dt2
Y ðt; s;qÞ ¼ A sð Þ€uðt; qÞ þ 2qA0 sð Þ _uðt; qÞ þ q2uðt;qÞA00 sð Þ þ cc; (23)

where dots indicate differentiation concerning the time t, while dashes refer to the derivative for the time
modulate s: Substituting (18) into Eq. (17) using (22) and (23) gives

A €uþ x2u
� �þ q 2 _uA0 þ lA _uþ 2qAu cos 2�tð Þ þ q2 A00 þ lA0ð Þu� qk A3u3 þ 3A2�Au2�u

� �þ cc: ¼ 0: (24)

Eq. (24) remains to obey the same homotopy concept because it’s become the same harmonic Eq. (5) as

q ! 0. lim
q!1

A0 ¼ d

ds
lim
q!1

A

� �
¼ 0; besides, consequently the original Eq. (2) is found.

In the light of Eq. (19), the modulate homotopy Eq. (24) will be expanded as a power series in q so that
the following non-homogenous harmonic equations are imposed

q0 : A €u0 þ x2u0
� �þ �A �€u0 þ x2�u0

� � ¼ 0; (25)
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q1 : A €u1 þ x2u1
� �þ 2 _u0A

0 þ lA _u0 þ 2qAu0 cos 2�t � kA2 Au30 þ 3�Au20�u0
� �þ cc: ¼ 0; (26)

q2 : A €u2 þ x2u2
� �þ 2 _u1A

0 þ lA _u1 þ 2qAu1 cos 2�t þ u0A
00 þ lA0u0

� 3kA2 Au20u1 þ �A u20�u1 þ 2u0�u0u1
� �� 	þ cc: ¼ 0:

(27)

It is noted that Eq. (25) has been satisfied by Eq. (16) and the zero-order solution for Eq. (17) as
approved in Eq. (15). Substituting Eq. (16) into Eq. (26) becomes

A €u1 þ x2u1
� � þ ix 2A0 þ lAð Þ � 3kA2�A

� 	
eixt þ qA ei xþ2�ð Þt þ ei x�2�ð Þt

� �
� kA3e3ixt þ cc: ¼ 0: (28)

This equation contains secular terms at the non-resonance case and other secular terms when the applied
frequency � approaches the natural frequency x.

4 The Non-Resonance Case

The analysis in this case concerned with the arbitrary chosen for the applied frequency �, in Eq. (28). At
this stage, secular terms are removed when

A0 þ 1
2lAþ 3ik

2x
A2�A ¼ 0; (29)

with its complex conjugate one. This leads to obtaining the valid function u1ðtÞ as

u1ðtÞ ¼ q

4�

ei xþ2�ð Þt

�þ xð Þ þ
ei x�2�ð Þt

�� xð Þ
� �

þ kA2

8x2
e3ixt: (30)

Consequently, the solution of the first-order problem is formulated as

Y1 t; sð Þ ¼ qA sð Þ
4�

ei xþ2�ð Þt

xþ �ð Þ þ
ei x�2�ð Þt

x� �ð Þ
� �

þ q�A sð Þ
4�

e�i xþ2�ð Þt

xþ �ð Þ þ e�i x�2�ð Þt

x� �ð Þ
� �

þ k

8x2
A3 sð Þe3ixt þ �A

3
sð Þe�3ixt

� �
:

(31)

Substituting Eqs. (16) and (30) into Eq. (27), using Eq. (29), yields

A €u2 þ x2u2
� �þ A00 þ lA0 þ q2A

2 �2 � x2ð Þ �
3k2

8x2
A3�A

2

 �

eixt þ 3k2A4�A

8x2
e3ixt � 3k2A5

8x2
e5ixt

þ q2A

4� �2 � x2ð Þ �� xð Þei xþ4�ð Þt þ �þ xð Þei x�4�ð Þt
h i

þ 3kqA2�A

2x �2 � x2ð Þ �� 2xð Þei xþ2�ð Þt � �þ 2xð Þei x�2�ð Þt
h i

� 3kqA3

4� �2 � x2ð Þ �� xð Þei 3xþ2�ð Þt þ �þ xð Þei 3x�2�ð Þt
h i

þ cc: ¼ 0:

(32)

The valid solution requires to be removed the terms that producing unbounded solution. These terms
imply the following nonlinear solvability condition:

A00 þ lA0 þ q2A

2 �2 � x2ð Þ �
3k2

8x2
A3�A2 ¼ 0: (33)
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The second-order solution is found to be

Y2 t; sð Þ ¼ q2A sð Þ
32�2 �2 � x2ð Þ

�� xð Þ
xþ 2�ð Þ e

i xþ4�ð Þt þ �þ xð Þ
x� 2�ð Þ e

i x�4�ð Þt

 �

� 3kqA3 sð Þ
16� �2 � x2ð Þ2

�� xð Þ2
2xþ �ð Þ e

i 3xþ2�ð Þt þ �þ xð Þ2
�� 2xð Þ e

i 3x�2�ð Þt
" #

þ 3kqA2 sð Þ�A sð Þ
8�2x �2 � x2ð Þ

�� 2xð Þ
xþ �ð Þ ei xþ2�ð Þt þ �þ 2xð Þ

�� xð Þ ei x�2�ð Þt

 �

� k2A5 sð Þ
64x2

e5ixt þ 3k2A4 sð Þ�A sð Þ
64x2

e3ixt þ cc:

(34)

If the accuracy to the second-order perturbation is enough, then the approximate solution at the non-
resonance case is formulated by substituting Eqs. (15), (16), (31) and (34) into Eq. (20), and setting
q ¼ 1, gets

Y ðtÞ ¼ lim
q!1;
s!t

Y t; s;qð Þ

¼ A tð Þeixt þ k

8x2
A3 tð Þe3ixt � k2A5 tð Þ

64x2
e5ixt þ 3k2A4 tð Þ�A tð Þ

64x2
e3ixt

þ qA tð Þ
4�

ei xþ2�ð Þt

xþ �ð Þ þ
ei x�2�ð Þt

x� �ð Þ
� �

þ 3kqA2 tð Þ�A tð Þ
8�2x �2 � x2ð Þ

�� 2xð Þ
xþ �ð Þ ei xþ2�ð Þt þ �þ 2xð Þ

�� xð Þ ei x�2�ð Þt

 �

þ q2A tð Þ
32�2 �2 � x2ð Þ

�� xð Þ
xþ 2�ð Þ e

i xþ4�ð Þt þ �þ xð Þ
x� 2�ð Þ e

i x�4�ð Þt

 �

� 3kqA3 tð Þ
16� �2 � x2ð Þ2

�� xð Þ2
2xþ �ð Þ e

i 3xþ2�ð Þt þ �þ xð Þ2
�� 2xð Þ e

i 3x�2�ð Þt
" #

þ cc:

(35)

5 Stability Analysis for the Non-Resonance Case

The stability criteria in the non-resonance case can be obtained from solving Eq. (29). One may use the
following polar form [16]:

A sð Þ ¼ 1
2n sð Þeig sð Þ; (36)

with real the unknown functions n sð Þ and g sð Þ. Insert Eq. (36) into the first-order solvability condition (29)
which will separate into real and imaginary parts and gives

n sð Þ ¼ n0e
�1
2ls and g sð Þ ¼ 3k

2lx
n0e

�1
2ls þ g0; (37)

where, n0 and g0 are integration constants. The stability criteria in the non-resonance case require that l > 0:

6 The Resonance Case Ω is Near x

Return to the first-order problem Eq. (28) and re-analyzed it because of the nearness of � to x. We
express this approach by introducing the detuning parameter r [16] such that

� ¼ xþ qr: (38)
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Accordingly, we have

�i x� 2�ð Þt ¼ ixt þ 2irs: (39)

Elimination of secular terms from Eq. (28), because of Eqs. (38) and (39) yields

A0 þ 1
2lA� iq

2x
�Ae2irs þ 3ik

2x
A2�A ¼ 0: (40)

The first-order solution in this case is

Y1 t; sð Þ ¼ q

4� xþ �ð Þ Aei xþ2�ð Þt þ �Ae�i xþ2�ð Þt
� �

þ k

8x2
A3e3ixt þ �A

3
e�3ixt

� �
: (41)

Using Eq. (41) with Eq. (27), we obtain the uniform solution for the second-order problem, and the
following solvability is presented:

A00 þ lA0 þ q2

4� xþ �ð ÞAþ kq

8x2
A3e�2irs � 3kq

4� xþ �ð ÞA
�A2e2irt � 3k2

8x2
A3�A2 ¼ 0; (42)

with its complex conjugate. The valid function Y2 t; sð Þ is given by

Y2 t; sð Þ ¼ 3ik

64x3
2A0 þ lAþ 2ikA2�A
� �

A2e3ixt � 3k2

192x4
A5e5ixt þ q2

32�2 xþ �ð Þ xþ 2�ð ÞAe
i xþ4�ð Þt

þ i
q

8�2 xþ �ð Þ2 A0 þ 1
2lA

� �
xþ 2�ð Þ þ 3ikA2�A

� 	
ei xþ2�ð Þt

� kq

16ð2xþ �Þðxþ �Þ
3

� xþ �ð Þ �
1

2x2


 �
A3ei 3xþ2�ð Þt þ cc:

(43)

The approximate solution up to the second-order is formulated by substituting from Eqs. (15), (16), (41)
and (43) into Eq. (16) gets

Y tð Þ ¼ lim
q!1
s!t

Y0 þ qY1 þ q2Y2
� �

¼ Aeixt þ �Ae�ixt þ k

8x2
Aþ 3i

8x
2A0 þ lAþ 2ikA2�A
� �
 �

A2e3ixt � 3k2

192x4
A5e5ixt

þ q

4� xþ �ð Þ Aþ i
q

2� xþ �ð Þ A0 þ 1
2lA

� �
xþ 2�ð Þ þ 3ikA2�A

� 	� 
ei xþ2�ð Þt

þ q2

32�2 xþ �ð Þ xþ 2�ð ÞAe
i xþ4�ð Þt � kq

16ð2xþ �Þðxþ �Þ
3

� xþ �ð Þ �
1

2x2


 �
A3ei 3xþ2�ð Þt þ cc:

(44)

7 Stability Analysis of the Linear Mathieu Equation

In the limiting case as k ! 0 into Eq. (2), linear damping Mathieu equation arrived. In this case, the two
solvability conditions (40) and (42) that produced at the resonance case of � is near x having the following
limit case:

A0 þ 1
2lA� iq

2x
�Ae2irs ¼ 0; (45)
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A00 þ lA0 þ q2

4� xþ �ð ÞA ¼ 0: (46)

The first-order solvability condition (45) can be used to find the stability picture at the resonance case.
The second-order solvability condition (46) can be used to find the value of the detuning parameter r.

It is easy to show that the Eq. (45) can be satisfied by the form

A sð Þ ¼ rþ q

2x

� �
sin�s þ i� cos�s

h i
e ir�1

2l
� �

s; (47)

where, the parameter l must be positive, to find a damping solution. The argument � is given by the
following characteristic equation:

�2 ¼ r2 � q2

4x2
: (48)

The parameter r can be evaluated by substituting Eq. (47) into the second-order solvability condition
(46) to gets

r ¼ � q

2x
or r ¼ � x

4q
l2 � q2

x2
� q2

� �þ xð Þ
� �

: (49)

The use of the first value of r, Eq. (48) yields a zero solution for Eq. (45). For a non-zero solution, the
other values r are conforming. Inserting Eq. (49) into Eq. (48) gets

�2 ¼ x2

16q2
l2 � q2

x2
� q2

� �þ xð Þ
� �2

� q2

4x2
: (50)

The stability criteria require that the right-hand-side of Eq. (50) be positive, which implies that

l2 � q2

x2
� q2

� �þ xð Þ
� �2

� 4q4

x4
> 0: (51)

Stability condition (51) can be rearranged in powers of the applied frequency � as

�2 l2x2 � 3q2
� �þ �x l2x2 � 3q2

� �� q2x2 > 0; (52)

and

�2 l2x2 þ q2
� �þ �x l2x2 þ q2

� �� q2x2 < 0: (53)

The transition curves separating stable state from an unstable state corresponding to

�1 ¼ �x l2x2 � 3q2ð Þ � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4x4 � 2l2x2q2 � 3q4

p
2 l2x2 � 3q2ð Þ ; (54)

and

�2 ¼ �x l2x2 þ q2ð Þ � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x2 þ q2ð Þ l2x2 þ 5q2ð Þp

2 l2x2 þ q2ð Þ : (55)
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8 Stability Analysis for the Nonlinear Case

The first-order solvability condition (40) can be used to find the stability picture at the resonance case.
The second-order solvability condition (42) can be used to find the value of the detuning parameter r.

To relax the periodic term into the Eq. (40) we let

A sð Þ ¼ a sð Þ þ ib sð Þ½ �eirs; (56)

with real functions a and b. Insert Eq. (56) into Eq. (40), separating real and imaginary parts yields:

a0 þ 1
2la� rþ q

2x
þ 3k

2x
a2 þ b2
� �� �

b ¼ 0; (57)

b0 þ 1
2lbþ r� q

2x
� 3k

2x
a2 þ b2
� �� �

a ¼ 0: (58)

In order to solve the above coupled nonlinear Eqs. (57) and (58), we may discuss the behavior at the

steady-state response. This case is corresponding to the case of
d::

ds
¼ 0. If the solutions of Eqs. (57) and

(58), at the steady-state, are represented by a0 and b0, which are given by

1
2la0 � rþ q

2x
þ 3kr2

2x

� �
b0 ¼ 0; (59)

1
2lb0 þ r� q

2x
� 3kr2

2x

� �
a0 ¼ 0; (60)

where r2 ¼ a20 þ b20 is used. Eqs. (59) and (60) are two coupled algebraic equations in a0 and b0. For
nontrivial solutions in a0 and b0, we obtain

r2 ¼ qþ 3kr2ð Þ
4x2

2

� 1
4l

2: (61)

Besides, the constants a0 and b0 may be chosen as

a0 ¼ rþ qþ 3kr2

2x

� �
; and b0 ¼ 1

2l: (62)

Squaring both equations in (62) and adding we get

rþ qþ 3kr2

2x

� �2

¼ r2 � 1
4l

2: (63)

Combing Eq. (61) with Eq. (63) yields

r ¼ 2x2r2 � qþ 3kr2ð Þ2
2x qþ 3kr2ð Þ : (64)

In order to find a constrain for a bounded solution we may modulate the functions a and b as

a sð Þ ¼ a0 þ a1ðsÞ and b sð Þ ¼ b0 þ b1ðsÞ; (65)

where the functions a1ðsÞ and b1ðsÞ refer to a small deviation from the steady-state solution a0 and b0. Then
the system of Eqs. (57) and (58) in the linearizing form becomes
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a01 þ 1
2l� 3k

x
a0b0

� �
a1 � rþ qþ 3kr2

2x
þ 3k

x
b20

� �
b1 ¼ 0; (66)

b0 þ 1
2l� 3k

x
a0b0

� �
b1 þ r� qþ 3kr2

2x
� 3k

x
a20

� �
a1 ¼ 0: (67)

The above system is two coupled linear differential equations of first-order in the two functions a1 and
b1. This system can be satisfied by

a1 sð Þ ¼ rþ qþ 3kr2

2x
þ 3k

x
b20

� �
e
� 1

2l�
3k

x
a0b0

� �
s

sin�s; (68)

b1 sð Þ ¼ e
� 1

2l�
3k

x
a0b0

� �
s

� cos�s; (69)

where � is given by the following characteristic equation:

�2 ¼ r� qþ 9kr2

2x
þ 3k

4x
l2

� �
rþ qþ 3kr2

2x
þ 3k

4x
l2

� �
: (70)

where relations (62) are used. This characteristic equation depends on the two related parameters r and r2.
This relation between them is given in Eq. (61) or in Eq. (64).

With the help of the second-order solvability condition (42) one can find an expression for both the
unknowns r and r2 in terms of the frequency �. To accomplish this, one may substitute the steady-state
solution

A sð Þ ¼ a0 þ ib0ð Þeirs; (71)

into the second-order solvability condition (42). Separating the real and imaginary parts, produces the
following relations, between the parameters r, � and r2:

r2� q2

4� xþ�ð Þþ
1

16
kql2

�2þx��6x2

x2� xþ�ð Þ
� �

� kq

8

�2þx��6x2

x2� xþ�ð Þ
� �

� 3k2

8x2
rþqþ3kr2

2x

� �
 �
r2 ¼ 0; (72)

rþ kq

8

�2 þ x�þ 6x2

x2� xþ �ð Þ
� �

rþ qþ 3kr2

2x

� �
þ 3k2

2x2
r2 ¼ 0; (73)

where relations (62) are used. Removing the parameter r from Eq. (73), by using its equivalent in Eq. (64),
gives a polynomial of second-order in r2:

r4 þ � xþ �ð Þ 12k2qþ 8x3 � 23kqxð Þ þ 6kqx3

36k2 k � xð Þ� xþ �ð Þ r2 � q2x
9k2 k � xð Þ ¼ 0; k 6¼ x: (74)

Replacing r4 and r2 into Eq. (72) with their equivalents in Eqs. (64) and (73) leads to the following
quadratic equation in the detuning parameter r:
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6kx� xþ �ð Þ 8x2 � 1
� �

8x� xþ �ð Þ þ kq �2 þ x�þ 6x2
� �� 	

r2

� �2 xþ �ð Þ2 2x 8xþ kqð Þ 3k2q� 3kqþ 4x2 � 2xqð Þ þ 3k2q2½ �
þ6x2� xþ �ð Þ 3k2q2 þ 8x4 þ 4kq2x2 þ 2kqx 3k2q� 3kqþ 4x2 � 2xqð Þ½ � þ 144kq2x6

" #
r

þ �2 xþ �ð Þ2 3k2q xl2 � q
� �

8xþ kqð Þ þ kq2 3kq� 4x2 þ 2xq
� �� 	� 36kx5 3k2l2 þ 2kqþ 2q3

� �
þ 6kx2� xþ �ð Þ 3k2q2 xl2 � q

� �� qx 3kl2 þ 2q
� �

8xþ kqð Þ þ q2 3kq� 4x2 þ 2xq
� �� 2q2x

� 	 ¼ 0:

(75)

This equation gives two values r1 and r2 for the detuning parameter r which makes the solution (56)
without unknowns.

The stabilization for the problem requires that the right-hand side of Eq. (70) be positive provided that
the exponential in Eqs. (68) and (69) has positive values. It is noted that the stability reveals as the coefficient
of the periodic term in Eq. (2) tends to zero. The instability arrived as the parameter q going away the zero
value. Thus, the stability conditions are found as

l > 0;
3k

x
rþ 3kqþ 9k2r2

2x2
� 1 < 0; (76)

r >
qþ 6kr2

2x
� 3k

4x
l2; (77)

rþ qþ 3kr2

2x
þ 3k

4x
l2 < 0: (78)

Removing the parameter r2 from the above stability conditions by using Eq. (73) yields the following
two conditions for stability:

l > 0; x k � 1ð Þr <
1

6
2x2 � 3kq
� �þ 2kq2 �2 þ x�þ 6x2ð Þ

8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ ; (79)

3

k
r >

q

x
� 3q2 �2 þ x�þ 6x2ð Þ
2x 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � : (80)

The transition curves separating the stable state of unstable one are corresponding to

r ¼ 2x2 � 3kqð Þ 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � þ 12kq2 �2 þ x�þ 6x2ð Þ
6x k � 1ð Þ 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � ; (81)

and

r ¼ 2kq 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � � 3kq2 �2 þ x�þ 6x2ð Þ
6x 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � : (82)

Using the definition (38) the above transition curves can be sought within the parameter q as

� ¼ xþ q
2x2 � 3kqð Þ 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � þ 12kq2 �2 þ x�þ 6x2ð Þ

6x k � 1ð Þ 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � ; (83)

� ¼ xþ q
2kq 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � � 3kq2 �2 þ x�þ 6x2ð Þ

6x 8x� xþ �ð Þ þ kq �2 þ x�þ 6x2ð Þ½ � : (84)
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To obtain the transition curves, independent of the parameter q, we may be inserting Eq. (81) as well as
Eq. (82), into the relation (75), then the following transition curves are imposed

a3�
3 �þ xð Þ3 þ a2x

2�2 �þ xð Þ2 þ 36a1x
4� �þ xð Þ þ a0 ¼ 0; (85)

b3�
3 �þ xð Þ3 þ b2x

2�2 �þ xð Þ2 þ 36b1x
4� �þ xð Þ þ b0 ¼ 0: (86)

It is noted that the instability state lies between the above transition curves. The constant coefficients aj
and bj; j ¼ 0; 1; 2; 3 are given below:

a3 ¼ k 8x2 � 1
� �

2x2 � 3kq
� �

8xþ kqð Þ þ 12kq2
� 	2

� k � 1ð Þ 2x2 � 3kq
� �

8xþ kqð Þ þ 12kq2
� 	

2x 8xþ kqð Þ 3k2q� 3kqþ 4x2 � 2xq
� �þ 3k2q2

� 	
þ 6x k � 1ð Þ2 8xþ kqð Þ 3k2q xl2 � q

� �
8xþ kqð Þ þ kq2 3kq� 4x2 þ 2xq

� �� 	
;

a2 ¼ 12k2q 8x2�1
� �

2x2�3kqþ12q
� �

2x2�3kq
� �

8xþ kqð Þþ12kq2
� 	

�6 k�1ð Þ 2x2�3kq
� �

8xþ kqð Þþ12kq2
� 	

3k2q2þ8x4þ4kq2x2þ2kqx 3k2q�3kqþ4x2�2xq
� �� 	

�6kq k�1ð Þ 2x2�3kqþ12q
� �

2x 8xþ kqð Þ 3k2q�3kqþ4x2�2xq
� �þ3k2q2

� 	
þ6�36kx k�1ð Þ2k2q2 xl2�q

� �
8xþ kqð Þþ36kx k�1ð Þ2q2 3kq�4x2þ2xq

� �
8xþ2kqð Þ

�36kx k�1ð Þ2qx 3kl2þ2q
� �

8xþ kqð Þ2�72kx k�1ð Þ2q2x 8xþ kqð Þ;

a1 ¼þ k3q2 8x2 � 1
� �

2x2 � 3kqþ 12q
� �2 � 4kq2x2 k � 1ð Þ 2x2 � 3kq

� �
8xþ kqð Þ þ 12kq2

� 	
� kq k � 1ð Þ 2x2 � 3kqþ 12q

� �
3k2q2 þ 8x4 þ 4kq2x2 þ 2kqx 3k2q� 3kqþ 4x2 � 2xq

� �� 	
þ 6k2qx k � 1ð Þ2 3k2q2 xl2 � q

� �� qx 3kl2 þ 2q
� �

8xþ kqð Þ þ q2 3kq� 4x2 þ 2xq
� �� 2q2x

� 	
� 6kx2 k � 1ð Þ2 8xþ kqð Þ 3k2l2 þ 2kqþ 2q3

� �
;

a0 ¼ �144kq2x56kqx3 k � 1ð Þ 2x2 � 3kqþ 12q
� �� 36� 36k2qx8 k � 1ð Þ2 3k2l2 þ 2kqþ 2q3

� �
;

b3 ¼ k2q2 8x2 � 1
� �

2 8xþ kqð Þ � 3q½ �2 þ 6qx 8xþ kqð Þ 3k xl2 � q
� �

8xþ kqð Þ þ q 3kq� 4x2 þ 2xq
� �� 	

� 2q 8xþ kqð Þ � 3q2
� 	

2x 8xþ kqð Þ 3k2q� 3kqþ 4x2 � 2xq
� �þ 3k2q2

� 	
;

b2 ¼ 12k2q3 8x2 � 1
� �

2k � 3ð Þ 2 8xþ kqð Þ � 3q½ � þ 6kq2 3k xl2 � q
� �

8xþ kqð Þ þ q 3kq� 4x2 þ 2xq
� �� 	

� 6q 2 8xþ kqð Þ � 3q½ � 3k2q2 þ 8x4 þ 4kq2x2 þ 2kqx 3k2q� 3kqþ 4x2 � 2xq
� �� 	

� 6q2 2k � 3ð Þ 2x 8xþ kqð Þ 3k2q� 3kqþ 4x2 � 2xq
� �þ 3k2q2

� 	
þ 36x 8xþ kqð Þ 3k2q2 xl2 � q

� �� qx 3kl2 þ 2q
� �

8xþ kqð Þ þ q2 3kq� 4x2 þ 2xq
� �� 2q2x

� 	
;

b1 ¼ k2q4 8x2 � 1
� �

2k � 3ð Þ2 � 4q2x2 2kq 8xþ kqð Þ � 3kq2
� 	� 6x2 3k2l2 þ 2kqþ 2q3

� �
8xþ kqð Þ

� q 2k � 3ð Þ 3k2q2 þ 8x4 þ 4kq2x2 þ 2kqx 3k2q� 3kqþ 4x2 � 2xq
� �� 	

þ 6kqx 3k2q2 xl2 � q
� �� qx 3kl2 þ 2q

� �
8xþ kqð Þ þ q2 3kq� 4x2 þ 2xq

� �� 2q2x
� 	

;

b0 ¼ �72� 6x8kq 9k2l2 þ 6kqþ 4kq3
� �

:

9 Conclusion

The homotopy perturbation method (HPM) is one of a easy, powerful, efficient, and accurate approach
for evalueting solutions of a large class of nonlinear equations without the need of a discretization or

SV, 2022, vol.56, no.1 33



linearization process. HPM is a combination of the homotopy and perturbation methods. That can take the
advantages of the conventional perturbation method and eliminating its restrictions. It yields a rapid
convergence of the solution series with a few iterations leading to accurate solutions, and the round-off
errors are avoided. In general, this method has been successfully used to solve different kinds of linear
and nonlinear problems in engineering and science. So, in the present work, we propose a variation of the
homotopy perturbation approach via a modulation method that allows finding analytic solutions for
ordinary differential models with periodic coefficients. This article is prepared to analyze a parametrically
excited oscillator in the presence of strong cubic nonlinearity. The simplest model of this kind is the
Mathieu equation that contains a small parameter [47,48]. The present analysis that employs the
homotopy perturbation approach [17], has no dependence on models having a small parameter. Due to
the present modulation approach, at each level of perturbation, a solvability condition is enjoined. By
solving these solvability conditions drives to examining the stability behavior. In each resonance/non-
resonant cases stability conditions, are obtained.
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