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ABSTRACT

In our consideration, a comparison between four different types of controllers for suppression the vibrations of
the cantilever beam excited by an external force is carried out. Those four types are the linear velocity feedback
control, the cubic velocity feedback control, the non-linear saturation controller (NSC) and the positive position
feedback (PPF) controller. The suitable type is the PPF controller for suppression the vibrations of the cantilever
beam. The approximate solution obtained up to the first approximation by using the multiple scale method. The
PPF controller effectiveness is studied on the system. We used frequency-response equations to investigate the
stability of a cantilever beam. We notified that, there is a good agreement between the analytical solution and
the numerical solution.
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1 Introduction

Many types of controllers are used for suppressing the vibrations of different non-linear dynamical
systems such that, negative linear velocity feedback, negative cubic velocity feedback, non-linear
saturation controllers (NSC), non-linear Integral Positive Position Feedback Controllers (NIPPF), the
Integral resonant controllers (IRC) and time delay control. The technique of multiple time scales used to
investigate the micro-beams non-linear vibrations for two different resonance cases (super-harmonic and
harmonic resonances). From this investigation, there is a clear effect of the boundary conditions on the
micro-beams vibrations [1]. Recently, the vibrations of many vibrating systems [2–7] has been studied.
Because of the time delayed and active controls springiness [8–14] in controlling many vibrating system,
many papers used time delay for suppressing the vibrations of non-linear systems. Abdelhafez et al. [15]
investigated the effectiveness of time delays when the positive position controllers are used for
suppressing the vibrations of a self-exited non-linear beam. They notified that, the time margin depends
on the overall delays of the system s1 þ s2. The authors in [16] investigated the influence of two different
delays the first is displacement delay and the second is velocity delay in a cantilever beam. They used the
method of multiple scales to determine all super-harmonic and sub-harmonic resonance cases.
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Since the aim of most studies is to suppress the vibrations, one of the important types of control to
vibrating systems is the PPF, which, described by a single degree of freedom system that, its frequency
tuned to one of the structural frequencies. El-Ganaini et al. [17] presents the effectiveness of the PPF
controller for decreasing the vibrations of nonlinear system at primary resonance and one-to-one internal
resonance. They concluded that, PPF controller successful for systems that, has a small natural frequency.
El-sayed et al. [18] achieved good results in decreasing the vibrations of vertical conveyor subject to
external excitations by using PPF controllers such that, the vibrations in first mode reduced about 99.88%
and the vibrations in the second mode reduced about 99.97% from its values without controllers. Ferrari
et al. [19] offered an experimentally studying for the effectiveness of the PPF controllers on suspended
the vibrations of sandwich plate. Niu et al. [20] realized the fractional-order positive position feedback
(FOPPF) controller. They found that, the FOPPF controller gives better results comparing with PPF
controller. Omidi et al. [21,22] presented three kinds of control to suppress the vibrations of vibrating
systems such that, the Integral resonant controllers (IRC), PPF controllers and the non-linear Integral
Positive Position feedback (NIPPF). The eminent type of decreasing the vibrations is NIPPF type. PPF
controller and multimode modified positive position feedback (MMPPF) controllers are used for
deceasing the vibrations of a flexible beam and a collocated structure, respectively [23,24].

In this article, four types of active vibrations controllers the linear velocity feedback control, the cubic
velocity feedback control, NSC and PPF controller used to suppression the vibrations of a cantilever beam
containing the cubic and fifth nonlinearity terms excited by an external force. The positive position feedback
controller (PPF) is the suitable active control type for decreasing the cantilever beam’s vibrations. The
approximate solution obtained applying the method of multiple scales up to first approximation. The
stability of the cantilever beam investigated at the simultaneous resonance conditions (1:1 internal and
primary). The behavior of the cantilever beam without and with PPF controller is simulated numerically.
The influence of some chosen coefficient is illustrated numerically. The rapprochement between numeric
and analytic solution is offered.

2 Mathematical Modelling

The equation of motion of a cantilever beam described by the following differential equation [15]:

€xþ a1 _xþ b1 _x
3 þ b2 _x

5 þ x2
1 xþ c1 x

3 þ c2 x
5 þ d1 x _x2 þ x2 €x

� �þ d2 x3 _x2 þ x4 €x
� � ¼ f cosð� tÞ (1)

where, x is the displacement of the cantilever beam. The damping coefficient represented by a1. The
nonlinearities terms coefficients are bj, cj and dj ðj ¼ 1; 2Þ. The excitation frequency and amplitude are �
and f . For suppression the vibrations of the cantilever beam, we used four different types of controllers as
the following.

The negative linear velocity feedback:

€xþ eâ1 _xþ eb̂1 _x
3 þ eb̂2 _x

5 þ x2
1 xþ eĉ1 x

3 þ eĉ2 x
5 þ ed̂1 x _x2 þ x2 €x

� �þ ed̂2 x3 _x2 þ x4 €x
� �

¼ ef̂ cosð� tÞ � e Ĝ1 _x
(2)

The negative cubic velocity feedback:

€xþ eâ1 _xþ eb̂1 _x
3 þ eb̂2 _x

5 þ x2
1 xþ eĉ1 x

3 þ eĉ2 x
5 þ ed̂1 x _x2 þ x2 €x

� �þ ed̂2 x3 _x2 þ x4 €x
� �

¼ ef̂ cosð� tÞ � e Ĝ2 _x3
(3)
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The non-linear saturation controller:

€xþ eâ1 _xþ eb̂1 _x
3 þ eb̂2 _x

5 þ x2
1 xþ eĉ1 x

3 þ eĉ2 x
5 þ ed̂1 x _x2 þ x2 €x

� �þ ed̂2 x3 _x2 þ x4 €x
� �

¼ ef̂ cosð� tÞ þ eĥ1y
2

(4a)

€yþ eâ2 _yþ x2
2 y ¼ eĝ2 xy (4b)

The positive position feedback controller:

€xþ eâ1 _xþ eb̂1 _x
3 þ eb̂2 _x

5 þ x2
1 xþ eĉ1 x

3 þ eĉ2 x
5 þ ed̂1 x _x2 þ x2 €x

� �þ ed̂2 x3 _x2 þ x4 €x
� �

¼ ef̂ cosð� tÞ þ eλ̂1y
(5a)

€yþ eâ2 _yþ x2
2 y ¼ eλ̂2 x (5b)

where, x1 and x2 are the natural frequencies of the cantilever beam and the PPF controller. The control and
feedback signals are λ̂1, ĝ1, and λ̂2, ĝ2. The feedback gains are Ĝ1 and Ĝ2. To summarize the comparison
between the four types of control, we explain the flowchart diagram as in Fig. 1.

2.1 Time History with Numerical Simulation
Numerically, the cantilever beam’s differential Eq. (1) was studied using Runge-Kutta 4th order method

at the worst resonance case (One-to-one internal and primary resonance) at the following values of
parameters:

x1 ¼ 1:4; b1 ¼ 0:3331; b2 ¼ 0:1299; c1 ¼ 0:3338; c2 ¼ 0:1319; d1 ¼ 3:2746; d2 ¼ 2:2; a1 ¼ 0:005; f ¼ 0:01

At this study, we compare between four different types of controllers for suppressing the vibration of a
cantilever beam. Fig. 2 presents the uncontrolled cantilever beam before using any type of controllers at the
primary resonance case. In Fig. 3, we used two types of controllers to decrease the vibration of the system.
The first type, is a negative cubic velocity feedback control which decreasing the vibration of the system to
reach 0.13, so, the effectiveness of the control (Ea = amplitude of uncontrolled system/amplitude of
controlled system) equal one as shown in Fig. 3a. The second type, is a negative linear velocity feedback

Figure 1: The flowchart diagram of the main system with PPF controller
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control which decreasing the vibration of the system to reach 0.007, so, the effectiveness of the control
Ea = 21 as shown in Fig. 3b. Fig. 4 illustrates the effectiveness of the non-linear saturation controller
(NSC) on the cantilever beam. From this figure, we concluded that, the NSC controller minimized the
vibration to reach 0.07 which means that Ea = 2. The positive position feedback controller (PPF) is the best
type of controllers for suppressing the vibrations of the cantilever beam where it reduced the vibrations to
0.0006 and Ea = 250 as shown in Fig. 5. The solid lines elucidated the numerical solution of the main
system before and after using the PPF controller while, dash lines elucidated the amplitude adjustments a1
and a2 for the generalized coordinates x and y. Finally, there is a good agreement between the numerical
and analytical solutions of the main system and the PPF controller as presented in Figs. 2 and 5.

Figure 2: Uncontrolled system at primary resonance case

Figure 3: Negative cubic and linear velocity feedback for reducing the amplitude of the cantilever beam
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2.2 Perturbation Analysis
According to the results that we obtained from Fig. 5, Which shows that the most appropriate controller

is the PPF controller so we will study the main system after activating the PPF control. To get the
approximate solution up to the first approximation, we applied the method of multiple scales [25,26] as
the following:

xðt; eÞ ¼ x0ðT0;T1Þ þ ex1ðT0;T1Þ þ Oðe2Þ
yðt; eÞ ¼ y0ðT0;T1Þ þ ey1ðT0;T1Þ þ Oðe2Þ

�
(6)

Figure 4: NSC controller for reducing the amplitude of the main system

Figure 5: PPF controller for reducing the amplitude of the main system
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where, the fast scale is T0 and the slow scale is T1 ¼ et. The derivatives using the multiple scales method take
the forms:

d

dt
¼ D0 þ eD1 þ…

d2

dt2
¼ D2

0 þ 2eD0D1 þ…

9>=
>; Dj ¼ @

@Tj
ðj ¼ 0; 1Þ (7)

Inserting Eqs. (4) and (5) in Eqs. (2) and (3) such that:

D2
0 þ x2

1

� �
x0 þ e D2

0 þ x2
1

� �
x1 ¼ e

f̂ cosð�tÞ þ λ̂1y0 � ĉ1x
3
0 � ĉ2x

5
0

�2D0D1x0 � â1D0x0 � b̂1ðD0x0Þ3
�b̂2ðD0x0Þ5 � d̂1 x0ðD0x0Þ2 þ x20D

2
0x0

� �
�d̂2 x30ðD0x0Þ2 þ x40D

2
0x0

� �

8>>>><
>>>>:

9>>>>=
>>>>;

þ Oðe2Þ (8)

D2
0 þ x2

2

� �
y0 þ e D2

0 þ x2
2

� �
y1 ¼ e λ̂2x0 � 2D0D1y0 � â2D0y0

h i
þ Oðe2Þ (9)

Equating the coefficients of the same power of e:

Oðe0Þ:
D2

0 þ x2
1

� �
x0 ¼ 0 (10)

D2
0 þ x2

2

� �
y0 ¼ 0 (11)

OðeÞ:

D2
0 þ x2

1

� �
x1 ¼

f̂ cosð�tÞ þ λ̂1y0 � ĝ1x
3
0 � ĝ2x

5
0 � 2D0D1x0 � â1D0x0 � b̂1ðD0x0Þ3

�b̂2ðD0x0Þ5 � d̂1 x0ðD0x0Þ2 þ x20D
2
0x0

� �
� d̂2 x30ðD0x0Þ2 þ x40D

2
0x0

� �( )
(12)

D2
0 þ x2

2

� �
y1 ¼ λ̂2x0 � 2D0D1y0 � â2D0y0

h i
(13)

Solving the homogenous differential Eqs. (10) and (11) to get the following:

x0ðT0;T1Þ ¼ AðT1Þ eix1T0 þ �AðT1Þ e�ix1T0 (14)

y0ðT0;T1Þ ¼ BðT1Þ eix2T0 þ �BðT1Þ e�ix2T0 (15)

Denote that A and B, are complex functions in T1. For computation the right hand sides of Eqs. (12) and
(13), we will replace x0 and y0 by its values in Eqs. (14) and (15) so that:

D2
0 þ x2

1

� �
x1 ¼

�2ix1D1A� iâ1x1A� 3ib̂1x
3
1A

2�A� 10ib̂2x
5
1A

3�A
2 � 3ĉ1A

2�A

þ2d̂1x2
1A

2�A� 10ĉ2A
3�A

2 þ 8d̂2x2
1A

3�A
2

" #
eix1T0

þ ib̂1x
3
1A

3 þ 5ib̂2x
5
1A

4�A� ĉ1A
3 � 5ĉ2A

4�Aþ 2d̂1x2
1A

3

þ6d̂2x2
1A

4�A

	 

e3ix1T0

þ �ib̂2x
5
1A

5 � ĉ2A
5 þ 2d̂2x2

1A
5

h i
e5ix1T0 þ λ̂1B

h i
eix2T0 þ f̂

2

" #
ei�T0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

þ CC (16)

D2
0 þ x2

2

� �
y1 ¼ �2ix2D1B� iâ2x2B½ � eix2T0 þ λ̂2A

h i
eix1T0 þ CC (17)
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The complex conjugate parts collected in the term CC. For getting the particular solutions of Eqs. (16)
and (17), we will remove the secular terms such that:

x1ðT0;T1Þ ¼ H1ðT1Þ e3ix1T0 þ H2ðT1Þe5ix1T0 þ H3ðT1Þ eix2T0 þ H4ðT1Þei�T0 þ CC (18)

y1ðT0;T1Þ ¼ H5ðT1Þ eix1T0 þ CC (19)

where Hj ðj ¼ 1;…; 5Þ offering complex functions in T1 which defined in the appendix. From the first
approximation, we concluded the following resonance cases:

i) Primary resonance: � ffi x1

ii) Internal resonance: x1 ffi x2

iii) Simultaneous resonance: One-to-one internal and primary resonance.

3 Periodic Solutions

In this section, the selected one is simultaneous resonance (� ffi x1,x1 ffi x2) is used to discuss the
solvability conditions, we will introduce two detuning parameters ðr1 ; r2Þ so that:

� ¼ x1 þ er̂1 ¼ x1 þ r1
x2 ¼ x1 þ er̂2 ¼ x1 þ r2

�
(20)

Including Eq. (20) into Eqs. (16) and (17) for compiling the solvability conditions as:

� 2ix1D1A� iâ1x1A� 3ib̂1x
3
1A

2�A� 10ib̂2x
5
1A

3�A
2 þ 2d̂1x

2
1 � 3ĉ1

� �
A2�Aþ 8d̂2x

2
1 � 10ĉ2

� �
A3�A

2

þ f̂

2
eir̂1T1 þ λ̂1Be

ir̂2T1 ¼ 0
(21)

�2ix2D1B� iâ2x2Bþ λ̂2Ae
�ir̂2T1 ¼ 0 (22)

Exchanging A and B by the polar form as:

AðT1Þ ¼ a1ðT1Þ eih1ðT1Þ

BðT1Þ ¼ a2ðT1Þ eih2ðT1Þ

D1AðT1Þ ¼ a01ðT1Þ þ ia1h
0
1ðT1Þð Þeih1ðT1Þ

D1BðT1Þ ¼ a02ðT1Þ þ ia2h
0
2ðT1Þð Þeih2ðT1Þ

9>>=
>>;; ðÞ0 ¼ d

dT1
(23)

where aj and hj ðj ¼ 1; 2Þ are the motion’s steady state phases and amplitudes. Subjoining Eq. (23) into
Eqs. (21) and (22). For any two equal complex numbers, the real and imaginary parts are equal so that:

a01 ¼ � â1
2

	 

a1 � 3b̂1x

2
1

8

" #
a31 �

5b̂2x
4
1

16

" #
a51 þ

f̂

2x1

" #
sinf1 þ

λ̂1
2x1

" #
a2 sinf2 (24)

a1h
0
1 ¼

3ĉ1
8x1

� d̂1x1

4

" #
a31 þ

5ĉ2
16x1

� d̂2x1

4

" #
a51 �

f̂

2x1

" #
cosf1 �

λ̂1
2x1

" #
a2 cosf2 (25)
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a02 ¼ � â2
2

	 

a2 � λ̂2

2x2

" #
a1 sinf2 (26)

a2h
0
2 ¼ � λ̂2

2x2

" #
a1 cosf2 (27)

where, f1 ¼ r̂1T1 � h1 and f2 ¼ r̂2T1 þ h2 � h1. Back to the main system parameters, we have the
following equations:

_a1 ¼ � a1
2

h i
a1 � 3b1x

2
1

8

	 

a31 �

5b2x
4
1

16

	 

a51 þ

f

2x1

	 

sinf1 þ

λ1
2x1

	 

a2 sinf2 (28)

a1 _h1 ¼ 3c1
8x1

� d1x1

4

	 

a31 þ

5c2
16x1

� d2x1

4

	 

a51 �

f

2x1

	 

cosf1 �

λ1
2x1

	 

a2 cosf2 (29)

_a2 ¼ � a2
2

h i
a2 � λ2

2x2

	 

a1 sinf2 (30)

a2 _h2 ¼ � λ2
2x2

	 

a1 cosf2 (31)

where, a01 ¼
_a1
e
; a02 ¼

_a2
e
; h01 ¼

_h1
e
; h02 ¼

_h2
e
and ð _Þ ¼ d

dt
.

3.1 Fixed Point Solution
For steady-state solution, we maybe find the fixed point of the Eqs. (28)–(31) by putting _a1 ¼ _a2 ¼ 0

and _fj ¼ 0 ðj ¼ 1; 2Þ, so:

0 ¼ � a1
2

h i
a1 � 3b1x

2
1

8

	 

a31 �

5b2x
4
1

16

	 

a51 þ

f

2x1

	 

sinf1 þ

λ1
2x1

	 

a2 sinf2 (32)

ar1 ¼ 3c1
8x1

� d1x1

4

	 

a31 þ

5c2
16x1

� d2x1

4

	 

a51 �

f

2x1

	 

cosf1 �

λ1
2x1

	 

a2 cosf2 (33)

0 ¼ � a2
2

h i
a2 � λ2

2x2

	 

a1 sinf2 (34)

a2 r1 � r2ð Þ ¼ � λ2
2x2

	 

a1 cosf2 (35)

From the preceding system, the trigonometric functions can be written as:

sinf1 ¼
2x1

f

	 

a1
2

h i
a1 þ 3b1x

2
1

8

	 

a31 þ

5b2x
4
1

16

	 

a51 þ

λ1x2a2
2x1λ2

	 

a22
a1

� �
(36)
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cosf1 ¼
2x1

f

	 

3c1
8x1

� d1x1

4

	 

a31 þ

5c2
16x1

� d2x1

4

	 

a51 þ

λ1ðr1 � r2Þx2

λ2x1

	 

a22
a1

� r1a1

� �
(37)

sinf2 ¼ � x2a2
λ2

	 

a2
a1

(38)

cosf2 ¼ � 2ðr1 � r2Þx2

λ2

	 

a2
a1

(39)

Squaring then adding both sides of Eqs. (36) and (37) and Eqs. (38) and (39) to obtain the following two
equations:

3c1
8x1

� d1x1

4

	 

a31 þ

5c2
16x1

� d2x1

4

	 

a51 þ

λ1ðr1 � r2Þx2

λ2x1

	 

a22
a1

� r1a1

� �2

þ a1
2

h i
a1 þ 3b1x

2
1

8

	 

a31 þ

5b2x
4
1

16

	 

a51 þ

λ1x2a2
2x1λ2

	 

a22
a1

� �2

¼ f

2x1

� �2
(40)

x2
2 4r21 þ 8r1r2 þ 4r22 þ a22
� �

a22 ¼ λ2 a1½ �2 (41)

3.2 Equilibrium Solution of a Fixed Point
While in movement to evolve the steady state solution’s stability, start with the following

procedures:

a1 ¼ a10 þ a11
a2 ¼ a20 þ a21
f1 ¼ f10 þ f11

f2 ¼ f20 þ f21

9>>=
>>; (42)

where, a10, a20, f10 and f20 are the solutions of Eqs. (32)–(35). The perturbations a11, a21, f11 and f21are
very small comparing with a10, a20, f10 and f20 so, after substituting from Eq. (42) into Eqs. (28)–(31) we
keep only the linear terms of a11, a21, f11 and f21. From this procedure, we get the following system:

_a11 ¼ r11a11 þ r12f11 þ r13a21 þ r14f21 (43)

_f11 ¼ r21a11 þ r22f11 þ r23a21 þ r24f21 (44)

_a21 ¼ r31a11 þ r32f11 þ r33a21 þ r34f21 (45)

_f21 ¼ r41a11 þ r42f11 þ r43a21 þ r44f21 (46)

In the appendix, we defined the coefficients rij ði ¼ 1…4Þ ; ðj ¼ 1…4Þ . The matrix form of the previous
system can be written as:

_a11 _f11 _a21 _f21

� �T ¼ D½ � a11 f11 a21 f21½ �T (47)

where D½ � is the Jacobian of the previous Eqs. (43)–(46). The Eigen-values of D½ � determined from extract the
following determinant:
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λ� r11 r12 r13 r14
r21 λ� r22 r23 r24
r31 r32 λ� r33 r34
r41 r42 r43 λ� r44

��������

��������
¼ 0 (48)

which, are the roots of the following polynomial:

λ4 þ �1λ
3 þ �2λ

2 þ �3λþ �4 ¼ 0 (49)

where �i ; ði ¼ 1;…; 4Þ are the coefficients of Eq. (49) that, defined in the appendix. For the above system’s
solution to be stable, the Routh-Hurwitz criterion must be satisfied such that:

�1 > 0; �1�2 � �3 > 0;�3ð�1�2 � �3Þ � �2
1�4 > 0;�4 > 0 (50)

4 Numerical Investigation

Eqs. (40) and (41) solved numerically to obtain the graphical solution for the amplitudes of both
cantilever beam and the PPF controller via the detuning parameter ðr1Þ which, represented by two peaks.
Fig. 6 presents the frequency response curves of the cantilever beam and the PPF controller where, the
stable solution represented by the solid line and the dash one using for the unstable solution. From this
figure, we concluded that the minimum value of the cantilever beam amplitude occurs at r1 ¼ 0 which
means that, the PPF controller is capable of suppress the vibrations of the cantilever beam at the primary
resonance case. For increasing values of a harmonic excitation force, the amplitudes of both the main
system and the PPF controller increase, the jump phenomena occurs and the minimum value of the
cantilever beam amplitude occurs at r1 ¼ 0 as illustrates in Figs. 7a and 7b.

For small values of natural frequency for r2 ¼ 0, i.e., (x1 ¼ x2), the cantilever peak amplitude and the
PPF controller peak amplitude increases and the bandwidth of the vibration reduction increases so, in the case
of small natural frequency the PPF controller is very acceptable as shown in Fig. 8. The bandwidth of the
vibration reduction of the main system increases by increasing the values of the control signal λ1 and the
feedback signal λ2 as represented in Figs. 9a and 10a. Fig. 9b shows that the PPF controller amplitude is
monotonic decreasing function of the control signal λ1. Fig. 10b shows that the PPF controller amplitude
is monotonic increasing function of the feedback signal λ2. For three different values of the internal
detuning parameter r2, Fig. 11 shows the frequency response curves of both the cantilever beam and PPF

Figure 6: The response curves (a) The cantilever beam (b) The PPF controller
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controller. From this figure, the minimum of the steady state amplitudes of both the cantilever beam and PPF
controller happens when r1 ¼ r2. From Fig. 12, there is a good agreement between the frequency response
curves (FRC) which given by the solid line and the numerical solution of Eq. (1) using (RK-4) that marked by
green circles.

Figure 8: Natural frequency efficacy on (a) The cantilever beam (b) The PPF controller

Figure 9: Control signal �1 efficacy on (a) The cantilever beam (b) The PPF controller

Figure 7: External force efficacy on (a) The cantilever beam (b) The PPF controller
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Figure 10: Feedback signal �2 efficacy on (a) The cantilever beam (b) The PPF controller

Figure 11: Detuning parameter r2 efficacy on (a) The cantilever beam (b) The PPF controller

Figure 12: Comparison between the FRC solution and RK-4 solution
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4.1 Influence of the Nonlinear Parameters
In the presence of the PPF controller, we studied the effectiveness of increases of all nonlinear

parameters on the main system. The amplitude of the main system change either in decreasing or in
increasing but this effect is very small so it do not appear clearly. For the nonlinear parameters b1, c1 and
d1, the range of the amplitude of the main system from 0.00070069 to 0.00070087 as observed on Figs.
13a, 13c and 13e. For the nonlinear parameters b2, c2 and d2, the range of the amplitude of the main
system from 0.00070071734 to 0.00070071736 as observed on Figs. 13b, 13d and 13f.

5 Conclusion

In this paper, we used four different types of active controllers for suppression the vibrations of the
cantilever beam excited by an external force. Those four types are the linear velocity feedback control,
the cubic velocity feedback control, the non-linear saturation controller (NSC) and the positive position
feedback (PPF) controller. The best active control type for suppression the vibrations of the cantilever
beam at the primary resonance case is the positive position feedback controller PPF as the following reasons:

i) Its effectiveness Ea equal 250 which more than the effectiveness of any type of controllers used to
control the vibrating cantilever beam in this study.

ii) It is a suitable for small natural frequencies as the bandwidth of the vibration reduction increases.

Figure 13: The influence of the nonlinear parameters on the main system amplitude
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Farther more, the steady state amplitude is monotonic increasing function on the external excitation
force. The bandwidth of the vibration reduction increases for increasing values of the control signal λ1
and the feedback signal λ2. Finally, there is a good agreement between the frequency response curves
(FRC) and the numerical solution using (RK-4). The nonlinear parameters have a very small effect either
in decreasing or in increasing the main system amplitude.
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5 þ 2d̂2x2

1A
5

�24x2
1

, H3ðT1Þ ¼ λ̂1B

x2
1 � x2

2

, H4ðT1Þ ¼ f̂

2ðx2
1 � �2Þ and

H5ðT1Þ ¼ λ̂2A

x2
2 � x2

1

, r11 ¼ � a1
2
þ 9b1x

2
1

8
a210 þ

25b2x
4
1

16
a410

	 

, r12 ¼ f

2x1
cosðf10Þ

	 

,

r13 ¼ λ1
2x1

sinðf20Þ
	 


, r14 ¼ λ1
2x1

a20cosðf20Þ
	 


,

r21 ¼ r1
a10

þ 3d1x1

4
a10 � 9c1

8x1
a10 � 25c2

16x1
a310 þ

5d2x1

4
a310

	 

,

r22 ¼ � f

2x1a10
sinðf10Þ

	 

, r23 ¼ λ1

2x1a10
cosðf20Þ

	 

, r24 ¼ � λ1

2x1a10
a20sinðf20Þ

	 

,

r31 ¼ � λ2
2x2

sinðf20Þ
	 


r32 ¼ 0, r33 ¼ � a2
2

h i
, r34 ¼ � λ2

2x2
a10cosðf20Þ

	 

,

SV, 2022, vol.56, no.2 103

http://dx.doi.org/10.1007/s11071-016-2877-z
http://dx.doi.org/10.1007/s11071-019-05039-w
http://dx.doi.org/10.1007/s11071-019-05039-w
http://dx.doi.org/10.1007/s11071-012-0731-5
http://dx.doi.org/10.1007/s11071-015-2377-6
http://dx.doi.org/10.1016/j.jsv.2014.12.019
http://dx.doi.org/10.1016/j.jsv.2018.05.038
http://dx.doi.org/10.1016/j.cnsns.2014.10.011
http://dx.doi.org/10.1016/j.apm.2018.06.045
http://dx.doi.org/10.1155/2010/286736
http://dx.doi.org/10.1115/1.4029030


r41 ¼ r1
a10

þ 3d1x1

4
a10 � 9c1

8x1
a10 � 25c2

16x1
a310 þ

5d2x1

4
a310 �

λ2
2x2a20

cosðf20Þ
	 


,

r42 ¼ � f

2x1a10
sinðf10Þ

	 

, r43 ¼ r2 � r1

a20
þ λ1
2x1a10

cosðf20Þ
	 


,

r44 ¼ λ2a10
2x2a20

� λ1a20
2x1a10


 �
sinðf20Þ

	 

,

�1 ¼ � r11 þ r22 þ r33 þ r44ð Þ,
�2 ¼ r22 r11 þ r33 þ r44ð Þ þ r44 r11 þ r33ð Þ þ r11r33 � r12r21 � r13r31 � r14r41 � r24r42 � r34r43,
�3 ¼ r11 r24r42 þ r34r43 � r22ðr33 þ r44Þ � r33r44ð Þ þ r22 r13r31 þ r14r41 � r33r44 þ r34r43ð Þ

þ r33 r12r21 þ r14r41 þ r24r42ð Þ þ r44 r12r21 þ r13r31ð Þ þ r12 r23r31 þ r24r41ð Þ
þ r14 r21r42 þ r31r43ð Þ þ r34 r13r41 þ r23r42ð Þ

�4 ¼ r11 r22ðr33r44 � r34r43Þ � r42ðr24r33 þ r23r34Þð Þ � r22 r41ðr14r33 þ r13r34Þ þ r31ðr13r44 þ r14r43Þð Þ
� r33 r12ðr21r44 þ r24r41Þ þ r14r21r42ð Þ � r12 r31ðr23r44 þ r24r43Þ � r34ðr21r43 � r23r41Þð Þ
þ r42 r31ðr13r24 � r14r23Þ � r13r21r34ð Þ:

104 SV, 2022, vol.56, no.2


	A Suitable Active Control for Suppression the Vibrations of a Cantilever Beam
	Introduction
	Mathematical Modelling
	Periodic Solutions
	Numerical Investigation
	Conclusion
	References
	flink7
	flink8


